Open Hashing

Application: Maintain a set of items and support the three operations of **INSERT**, **MEMBER**, and **DELETE**.

Idea: Use a *hash function* h to map a data item d into a hash table array $A[0]...A[m–1]$. Each position is called a *bucket*, and has a pointer to a linked list of all items that have hashed to that position.
Notation:

\[A = \text{The hash table}; \text{each location of the array } A[0] \ldots A[m-1] \text{ (called a } \ "\text{bucket}\) \text{) contains a pointer to a linked list of all items stored there (all buckets are initialized to the nil pointer).} \]

\[h = \text{A function that maps a data item } d \text{ to an integer } 0 \leq h(d) < m. \]

Basic operations:

MEMBER(\(d\)): Search the bucket at \(A[h(d)]\).

INSERT(\(d\)): Do MEMBER(\(d\)) and if \(d\) is not present, add \(d\) to the bucket at \(A[h(d)]\).

DELETE(\(d\)): Do MEMBER(\(d\)) and if \(d\) is present, remove \(d\) from the bucket at \(A[h(d)]\).
The MOD hash function:

\[a \text{ MOD } b \] denotes the remainder when \(a \) is divided by \(b \):

\[
(a \text{ MOD } b) = a - \left\lfloor \frac{a}{b} \right\rfloor b
\]

It is always an integer in the range 0 to \(b-1 \) when \(a \) and \(b \) are positive integers.

When \(d \) is an integer, the standard MOD hash function computes:

\[h(d) = d \text{ MOD } m \]

To avoid patterns when \(d \) and \(m \) have factors in common, \(m \) should be a prime number. Alternately, for a large prime \(q>m \), compute:

\[h(d) = (d \text{ MOD } q) \text{ MOD } m \]