Example: Red-Black Tree Insertion Algorithm

Idea:

- Although we could convert to a 2-3 tree to perform operations, a "direct" implementation of INSERT is a simple traversal back to the root, performing a rotation or two at each step.
procedure INSERT(d,T):
 Binary search and add a new red leaf v that contains d.

 while v has a red sibling or a red parent do begin
 if v has a red sibling then begin
 Color v and its sibling black.
 $v := \text{PARENT}(v)$
 Color v red.
 end

 else there are 4 cases for v and PARENT(v) being red:

 Case 1L: v is a right child and PARENT(v) is a left child:

 Case 1R: symmetric to case 1L.

 Case 2L: v is a left child and PARENT(v) is a left child:
 $v := \text{PARENT}(v)$
 Do the second half of Case 1L (RR(v) and color LCHILD(v) black).

 Case 2R: symmetric to case 2L.

 end

 if the root is red then color it black

end
Example: Inserting into a Red-Black Tree in Sorted Order

- Initial tree: Insert(1)
- Insert(2), Insert(3): Case 2R: RL(2) & color 3 black, color the root black
- Insert(4), Insert(5): Case 2R: RL(4) & color 5 black
- Insert(6), Insert(7): Case 2R: RL(6) & color 7 black
- Final tree: Case 2R: RL(4) & color 6 black, color the root black