Viewing in 3D

Foley \& Van Dam, Chapter 6

Viewing in 3D

- Transformation Pipeline
- Viewing Plane
- Viewing Coordinate System
- Projections
- Orthographic
- Perspective

OpenGL Transformation Pipeline

Homogeneous coordinates
in World System

Viewing Coordinate System

Specifying the Viewing Coordinates

- Viewing Coordinates system, $\left[\mathrm{x}_{\mathrm{v}}, \mathrm{y}_{\mathrm{v}}, \mathrm{z}_{\mathrm{v}}\right]$, describes 3D objects with respect to a viewer
- A viewing plane (projection plane) is set up perpendicular to z_{v} and aligned with $\left(x_{v}, y_{v}\right)$
- In order to specify a viewing plane we have to specify:
- a vector N normal to the plane
- a viewing-up vector \vee
- a point on the viewing plane

Specifying the Viewing Coordinates

- $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ is the point where a camera is located
- P is a point to look-at
- $\mathrm{N}=\left(\mathrm{P}_{0}-\mathrm{P}\right) /\left|\mathrm{P}_{0}-\mathrm{P}\right|$ is the view-plane normal vector
- $\mathrm{V}=\mathrm{z}_{\mathrm{w}}$ is the view up vector, whose projection onto the view-plane is directed up

Viewing Coordinate System

$$
z_{v}=N \quad ; \quad x_{v}=\frac{V \times N}{|V \times N|} \quad ; \quad y_{v}=z_{v} \times x_{v}
$$

- The transformation M , from world-coordinate into viewing-coordinates is:

$$
M=\left[\begin{array}{cccc}
x_{v}^{1} & x_{v}^{2} & x_{v}^{3} & 0 \\
y_{v}^{1} & y_{v}^{2} & y_{v}^{3} & 0 \\
z_{v}^{1} & z_{v}^{2} & z_{v}^{3} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccc}
1 & 0 & 0 & -x_{0} \\
0 & 1 & 0 & -y_{0} \\
0 & 0 & 1 & -z_{0} \\
0 & 0 & 0 & 1
\end{array}\right]=R \cdot T
$$

- Defining the camera in OpenGL:
gIMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt $\left(\mathrm{P}_{0 \mathrm{x}}, \mathrm{P}_{0 \mathrm{y}}, \mathrm{P}_{0 \mathrm{z}}, \mathrm{P}_{\mathrm{x}}, \mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}, \mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{y}}, \mathrm{V}_{\mathrm{z}}\right)$;

Projections

- Viewing 3D objects on a 2D display requires a mapping from 3D to 2D
- A projection is formed by the intersection of certain lines (projectors) with the view plane
- Projectors are lines from the center of projection through each point in the object

Center of
Projection

Projections

- Center of projection at infinity results with a parallel projection
- A finite center of projection results with a perspective projection

Projections

- Parallel projections preserve relative proportions of objects, but do not give realistic appearance (commonly used in engineering drawing)
- Perspective projections produce realistic appearance, but do not preserve relative proportions

[^0]
Parallel Projection

- Projectors are all parallel
- Orthographic: Projectors are perpendicular to the projection plane
- Oblique: Projectors are not necessarily perpendicular to the projection plane

Orthographic

Oblique

Orthographic Projection

Since the viewing plane is aligned with $\left(x_{v}, y_{v}\right)$, orthographic projection is performed by:

$$
\left[\begin{array}{c}
x_{p} \\
y_{p} \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
x_{v} \\
y_{v} \\
0 \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{v} \\
y_{v} \\
z_{v} \\
1
\end{array}\right]
$$

Orthographic Projection

- Lengths and angles of faces parallel to the viewing planes are preserved
- Problem: 3D nature of projected objects is difficult to deduce

Top $V_{\text {ie }}$

Oblique Projection

- Projectors are not perpendicular to the viewing plane
- Angles and lengths are preserved for faces parallel to the plane of projection
- Preserves 3D nature of an object

Oblique Projection

-Two types of oblique projections are commonly used:

- Cavalier: $\alpha=45^{\circ}=\tan ^{-1}(1)$
- Cabinet: $\alpha=\tan ^{-1}(2) \approx 63.4^{\circ}$

Oblique Projection

$$
\left[\begin{array}{c}
x_{p} \\
y_{p} \\
0 \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & a \cos \phi & 0 \\
0 & 1 & a \sin \phi & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{v} \\
y_{v} \\
z_{v} \\
1
\end{array}\right]=\left[\begin{array}{c}
x_{v}+z_{v} a \cos \phi \\
y_{v}+z_{v} a \sin \phi \\
0 \\
1
\end{array}\right]
$$

$$
\begin{gathered}
1 / a=\tan (\alpha) \\
z / b=1 / a \\
b=z a \\
\\
x_{p}=z \cdot a \cdot \cos (\phi) \\
y_{p}=z \cdot a \cdot \sin (\phi)
\end{gathered}
$$

Cavalier Projections of a cube for two values of angle ϕ

Cabinet Projections of a cube for two values of angle ϕ

Oblique Projection

-Cavalier projection :

- Preserves lengths of lines perpendicular to the viewing plane
- 3D nature can be captured but shape seems distorted
- Can display a combination of front, side, and top views
- Cabinet projection:
- Lines perpendicular to the viewing plane project at $1 / 2$ of their length
- A more realistic view than the Cavalier projection
- Can display a combination of front, side, and top views

Perspective Projection

- In a perspective projection, the center of projection is at a finite distance from the viewing plane
- The size of a projected object is inversely proportional to it distance from the viewing plane - Parallel lines that are not parallel to the viewing plane, converge to a vanishing point
- A vanishing point is the projection of a point at infinite distance

Perspective Projection

Vanishing Points

- There are infinitely many general vanishing points
- There can be up to three principal vanishing points (axis vanishing points)
- Perspective projections are categorized by the number of principal vanishing points, equal to the number of principal axes intersected by the viewing plane
- Most commonly used: one-point and twopoints perspective

Vanishing Points

One point (z axis) perspective projection

Perspective Projection

(x, y, z)

- Using similar triangles it follows:

$$
\begin{array}{ll}
\frac{x_{p}}{d}=\frac{x}{z+d} & ; \quad \frac{y_{p}}{d}=\frac{y}{z+d} \\
x_{p}=\frac{d \cdot x}{z+d} \quad ; \quad y_{p}=\frac{d \cdot y}{z+d} \quad ; \quad z_{p}=0
\end{array}
$$

Perspective Projection

Thus, a perspective projection matrix is defined as:

$$
\begin{aligned}
& M_{p e r}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{d} & 1
\end{array}\right] \\
& M_{\text {per }} P=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{d} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
0 \\
\frac{z+d}{d}
\end{array}\right] \\
& \longrightarrow \quad x_{p}=\frac{d \cdot x}{z+d} \quad ; \quad y_{p}=\frac{d \cdot y}{z+d} \quad ; \quad z_{p}=0
\end{aligned}
$$

Perspective Projection

- $\mathrm{M}_{\text {per }}$ is singular $\left(\left|\mathrm{M}_{\text {per }}\right|=0\right)$, thus $\mathrm{M}_{\text {per }}$ is a many to one mapping (for example: $\mathrm{M}_{\text {per }} \mathrm{P}=\mathrm{M}_{\text {per }} 2 \mathrm{P}$)
- Points on the viewing plane $(z=0)$ do not change
- The homogeneous coordinates of a point at infinity directed to $\left(\mathrm{U}_{\mathrm{x}}, \mathrm{U}_{\mathrm{y}}, \mathrm{U}_{\mathrm{z}}\right)$ are $\left(\mathrm{U}_{\mathrm{x}}, \mathrm{U}_{\mathrm{y}}, \mathrm{U}_{\mathrm{z}}, 0\right)$. Thus, The vanishing point of parallel lines directed to $\left(U_{x}, U_{y}, U_{z}\right)$ is at $\left[\mathrm{dU}_{\mathrm{x}} / \mathrm{U}_{\mathrm{z}}, \mathrm{dU} / \mathrm{U}_{\mathrm{z}}\right]$
- When d $\rightarrow \infty, \mathrm{M}_{\text {per }} \rightarrow \mathrm{M}_{\text {ort }}$

Projections

What is the difference between moving the center of projection and moving the projection plane?

Original

Moving the Center of Projection

Moving the Projection Plane

Projections

Planar geometric $\underset{\text { Parallel }}{\text { projections }} \underbrace{\text { Per }}_{\text {Perspective }}$

Three point

[^0]: Perspective Projection

