Viewing in 3D

Foley & Van Dam, Chapter 6

Viewing in 3D

- Transformation Pipeline
- Viewing Plane
- Viewing Coordinate System
- Projections
 - Orthographic
 - Perspective

OpenGL Transformation Pipeline

Specifying the Viewing Coordinates

- Viewing Coordinates system, $[x_v, y_v, z_v]$, describes 3D objects with respect to a viewer
- A viewing plane (*projection plane*) is set up perpendicular to z_v and aligned with (x_v, y_v)
- In order to specify a viewing plane we have to specify:
 - a vector N normal to the plane
 - a viewing-up vector V
 - a point on the viewing plane

Specifying the Viewing Coordinates

- P₀=(x₀,y₀,z₀) is the point where a camera is located
 P is a point to look-at
- $N=(P_0-P)/|P_0-P|$ is the view-plane normal vector
- $V=z_w$ is the view up vector, whose projection onto the view-plane is directed up

Viewing Coordinate System

$$z_v = N$$
; $x_v = \frac{V \times N}{|V \times N|}$; $y_v = z_v \times x_v$

• The transformation M, from world-coordinate into viewing-coordinates is:

$$M = \begin{bmatrix} x \frac{1}{v} & x \frac{2}{v} & x \frac{3}{v} & 0\\ y \frac{1}{v} & y \frac{2}{v} & y \frac{3}{v} & 0\\ z \frac{1}{v} & z \frac{2}{v} & z \frac{3}{v} & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -x_{0}\\ 0 & 1 & 0 & -y_{0}\\ 0 & 0 & 1 & -z_{0}\\ 0 & 0 & 0 & 1 \end{bmatrix} = R \cdot T$$

• Defining the camera in OpenGL:

glMatrixMode(GL_MODELVIEW); glLoadldentity(); gluLookAt(P_{0x}, P_{0y}, P_{0z}, P_x, P_y, P_z, V_x, V_y, V_z);

- Viewing 3D objects on a 2D display requires a mapping from 3D to 2D
- A projection is formed by the intersection of certain lines (*projectors*) with the view plane
- Projectors are lines from the center of projection through each point in the object

- Center of projection at infinity results with a parallel projection
- A finite center of projection results with a perspective projection

- Parallel projections preserve relative proportions of objects, but do not give realistic appearance (commonly used in engineering drawing)
- Perspective projections produce realistic appearance, but do not preserve relative proportions

Parallel Projection

- Projectors are all parallel
- Orthographic: Projectors are perpendicular to the projection plane
- Oblique: Projectors are not necessarily perpendicular to the projection plane

Orthographic Projection

Since the viewing plane is aligned with (x_v, y_v) , orthographic projection is performed by:

Orthographic Projection

- Lengths and angles of faces parallel to the viewing planes are preserved
- **Problem**: 3D nature of projected objects is difficult to deduce $T_{op}_{Vi_{elu}}$

- Projectors are *not* perpendicular to the viewing plane
- Angles and lengths are preserved for faces parallel to the plane of projection
- Preserves 3D nature of an object

•Two types of oblique projections are commonly used:

- Cavalier: $\alpha = 45^\circ = \tan^{-1}(1)$ - Cabinet: $\alpha = \tan^{-1}(2) \approx 63.4^\circ$

Cavalier Projections of a cube for two values of angle ϕ

Cabinet Projections of a cube for two values of angle ϕ

• Cavalier projection :

- Preserves lengths of lines perpendicular to the viewing plane
- 3D nature can be captured but shape seems distorted
- Can display a combination of front, side, and top views
- Cabinet projection:
 - Lines perpendicular to the viewing plane project at 1/2 of their length
 - A more realistic view than the Cavalier projection
 - Can display a combination of front, side, and top views

Perspective Projection

 In a perspective projection, the center of projection is at a finite distance from the viewing plane

- The size of a projected object is inversely proportional to it distance from the viewing plane
- Parallel lines that are not parallel to the viewing plane, converge to a vanishing point
- A vanishing point is the projection of a point at infinite distance

Perspective Projection

Vanishing Points

- There are infinitely many general vanishing points
- There can be up to three *principal vanishing points* (axis vanishing points)
- Perspective projections are categorized by the number of principal vanishing points, equal to the number of principal axes intersected by the viewing plane
- Most commonly used: one-point and twopoints perspective

Vanishing Points

One point (z axis) perspective projection

• Using similar triangles it follows:

$$\frac{x_p}{d} = \frac{x}{z+d} \qquad ; \qquad \frac{y_p}{d} = \frac{y}{z+d}$$
$$x_p = \frac{d \cdot x}{z+d} \qquad ; \qquad y_p = \frac{d \cdot y}{z+d} \qquad ; \qquad z_p = 0$$

Perspective Projection

Thus, a perspective projection matrix is defined as:

$$M_{per} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{d} & 1 \end{bmatrix}$$
$$M_{per} P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{d} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \\ \frac{z + d}{d} \end{bmatrix}$$

$$\implies x_p = \frac{d \cdot x}{z+d} \qquad ; \qquad y_p = \frac{d \cdot y}{z+d} \quad ; \qquad z_p = 0$$

Perspective Projection

- M_{per} is singular ($|M_{per}|=0$), thus M_{per} is a many to one mapping (for example: $M_{per}P=M_{per}2P$)
- Points on the viewing plane (z=0) do not change
- The homogeneous coordinates of a point at infinity directed to (U_x, U_y, U_z) are $(U_x, U_y, U_z, 0)$. Thus, The vanishing point of parallel lines directed to (U_x, U_y, U_z) is at $[dU_x/U_z, dU_y/U_z]$
- When $d \rightarrow \infty$, $M_{per} \rightarrow M_{ort}$

What is the difference between moving the center of projection and moving the projection plane?

