
Viewing in 3D
Foley & Van Dam, Chapter 6



Viewing in 3D

• Transformation Pipeline
• Viewing Plane
• Viewing Coordinate System
• Projections

• Orthographic
• Perspective
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Viewing Coordinate System

yw

zw

xw

world

Tractor 
System

Front-
Wheel 
System P0

xv

yv

zv

Viewing plane

Viewer 
System



Specifying the Viewing Coordinates
• Viewing Coordinates system,  [xv, yv, zv],  
describes 3D objects with respect to a viewer

• A viewing plane (projection plane) is set up 
perpendicular to zv and   aligned with (xv,yv)

• In order to specify a viewing plane we have 
to specify:

• a vector N normal to the plane
• a viewing-up vector V
• a point on the viewing plane



Specifying the Viewing Coordinates

• P0=(x0,y0,z0) is the point where a camera is located
• P is a point to look-at
• N=(P0-P)/|P0-P| is the view-plane normal vector
• V=zw is the view up vector, whose projection onto 
the view-plane is directed up
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Viewing Coordinate System

• The transformation M, from world-coordinate into 
viewing-coordinates is:

• Defining the camera in OpenGL:
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(P0x, P0y, P0z, Px, Py, Pz, Vx, Vy, Vz);
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Projections
• Viewing 3D objects on a 2D display requires a 
mapping from 3D to 2D

• A projection is formed by the intersection of certain 
lines (projectors) with the view plane

• Projectors are lines from the center of projection
through each point in the object
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Projections
• Center of projection at infinity results with a parallel 
projection

• A finite center of projection results with a 
perspective projection



Projections
• Parallel projections preserve relative proportions of 
objects, but do not give realistic appearance 
(commonly used in engineering drawing)

• Perspective projections produce realistic 
appearance, but do not preserve relative proportions

Perspective Projection



Parallel Projection
• Projectors are all parallel
• Orthographic: Projectors are perpendicular 
to the projection plane
• Oblique: Projectors are not necessarily 
perpendicular to the projection plane

Orthographic Oblique



Orthographic Projection
Since the viewing plane is aligned with (xv,yv), 
orthographic projection is performed by:
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Orthographic Projection

Front view

Top View

Side View

• Lengths and angles of faces parallel to the 
viewing planes are preserved

• Problem: 3D nature of projected objects is 
difficult to deduce



Oblique Projection
• Projectors are not perpendicular to the 
viewing plane
• Angles and lengths are preserved for faces 
parallel to the plane of projection
• Preserves 3D nature of an object
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Oblique Projection
•Two types of oblique projections are 
commonly used:

– Cavalier:  α=45ο =tan−1(1)
– Cabinet: α=tan-1(2) ≈63.4ο
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Oblique Projection
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Oblique Projection

φ=45o φ=30o
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Cavalier Projections of a cube 
for two values of angle φ

Cabinet  Projections of a cube 
for two values of angle φ
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Oblique Projection
• Cavalier projection :

– Preserves lengths of lines perpendicular 
to the viewing plane
– 3D nature can be captured but shape 
seems distorted
– Can display a combination of front, side, 
and top views

• Cabinet projection:
– Lines perpendicular to the viewing plane project 
at 1/2 of their length
– A more realistic view than the Cavalier 
projection
– Can display a combination of front, side, and top 
views



Perspective Projection 
• In a perspective projection, the center of projection 
is at a finite distance from the viewing plane
• The size of a projected object is inversely 
proportional to it distance from the viewing plane
• Parallel lines that are not parallel to the viewing 
plane, converge to a vanishing point
• A vanishing point is the projection of a point at 
infinite distance
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Perspective Projection



Vanishing Points
• There are infinitely many general vanishing 
points
• There can be up to three principal vanishing 
points (axis vanishing points)
• Perspective projections are categorized by 
the number of principal vanishing points, equal 
to the number of principal axes intersected by 
the viewing plane
• Most commonly used: one-point and two-
points perspective
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Perspective Projection
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Perspective Projection
Thus, a perspective projection matrix is defined as:
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Perspective Projection
• Mper is singular (|Mper|=0), thus Mper is a many to 
one mapping (for example: MperP=Mper2P)

• Points on the viewing plane (z=0) do not change

• The homogeneous coordinates of a point at infinity 
directed to (Ux,Uy,Uz) are (Ux,Uy,Uz,0). Thus, The 
vanishing point of parallel lines directed to (Ux,Uy,Uz) 
is at [dUx/Uz, dUy/Uz]

• When d→∞,   Mper →Mort



Projections
What is the difference between moving the center of 
projection and moving the projection plane?
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Projections
Planar geometric 
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