# Detecting Selectional Behavior of Complex Types in Text

Anna Rumshisky Victor Grinberg James Pustejovsky



**Brandeis University** 

#### **Brief Outline**

- (1) Some aspects of selectional behavior of complex types
- (2) Automatic methodology for detecting some of that behavior

### Complex Types

- Complex types in GL are a mechanism for dealing with selectional behavior of nouns
- Contexts in which complex types occur may select for
  - any of the component types
  - the complex type itself

```
newspaper-n ((PHYS * INFO) * COMPANY)
```

He folded the newspaper carefully (PHYS)

He doesn't believe the newspapers (INFO)

He reads the newspaper every day (PHYS \* INFO)

He tried to sue the newspaper for calling him a liar (COMPANY)

#### **Selector Contexts**

• Usually, something in the context tells you what is is

```
lunch-n (EVENT * FOOD)

I have my lunch in the backpack (FOOD)

Your lunch today was longer than usual (EVENT)
```

- Typically, predicates or modifiers
- Selector contexts may be quite similar, and yet select for different types

```
newspaper-n ((PHYS * INFO) * COMPANY)

I finished this newspaper two hours ago (PHYS * INFO)

I started this newspaper two years ago (COMPANY)
```

### **Argument Position Asymmetries**

- A certain reading may be preferred in a certain argument position
  - E.g. for ANIMAL · FOOD nouns the subject position tends to disprefer the FOOD sense
  - Consistent with the systematic relation between senses (where each sense corresponds to one component type)

#### chicken-n

#### **subject**

a. ANIMAL: peck, look, wander, come, cross, follow, die

#### object

- a. ANIMAL: count, chase, kill, shoot, slaughter, skin, pluck, sacrifice
- b. FOOD: eat, serve, prefer, turn, dip, stuff, carve, baste, roast, simmer
- c. ANIMAL · FOOD: poach, cook

### Multiple Selection

• Complex types also allow for <u>multiple selection</u>

```
We had a delicious (FOOD), leisurely (EVENT) lunch

He finished (PHYS * INFO) the newspaper and folded (PHYS) it carefully
```

- Different selector contexts for the same dot object select for different component types of the dot
- Selectors may or may not be syntactically similar

That three-course (FOOD) lunch sure took forever (EVENT).

#### Clustering Task

- The usual notion of *word sense disambiguation* (single sense per occurrence) may be difficult to apply to dot objects
- But it is often clear which type a particular selector prefers:

#### lunch-n

#### object

- a. FOOD: eat, cook, enjoy, prepare, take, bring, etc.
- b. EVENT: skip, finish, attend, miss, host, cancel, etc.

#### adjectival modifier

- a. FOOD: light, delicious, three-course, excellent, liquid, home-cooked, half-eaten, heavy, substantial, etc.
- b. EVENT: leisurely, early, annual, celebratory, official, private, weekly, etc.
- We would like to do this automatically (!)

### Distributional Similarity

- Typically, such tasks are addressed using the notion of distributional similarity
  - Get all the contexts in which the word occurs
  - Compare contexts for different words
- Context gets represented as a feature vector

```
<(feature<sub>i</sub>, value<sub>i</sub>)> = <(feature<sub>1</sub>, value<sub>1</sub>), (feature<sub>2</sub>, value<sub>2</sub>), ...>
```

- Each feature corresponds to some element or parameter of the context
  - bag of words; populated grammatical relations
- Measure how close two words (e.g. eat-v, cook-v) are distributionally
  - e.g. cosine between vectors; other measures of how often words occur in similar contexts

### Distributional Similarity

Can we use it?

object

- In our task, selector contexts do not need to be distributionally similar
- They only need to be <u>similar in context</u>
   (= activate the same component type)
   construction-n (EVENT \* PHYS)
  - a. EVENT: finance, oversee, complete, supervise, halt
  - b. PHYS: examine, build, photograph
- *Generic distributional similarity* may be low sim(finance-v, complete-v); sim(build-v, fotograph-v)
- *Contextualized similarity* must be high  $c\_sim(finance-v, complete-v, (construction-n, object\_of))$

### Reformulating Our Task

- Must group together selectors that occur <u>in the same grammatical</u> relation with the target according to the type they select
  - i.e. activate the same component type of the target noun
- These selectors must be similar with respect to the target noun w and that grammatical relation R
  - i.e. similar with respect to the target context (w, R)

- e.g.  $(w, R) = (lunch, object_of)$
- c\_sim(organize-v, miss-v, (lunch, object\_of))

### Reformulating Our Task

• We want to be able to tell that organize-v and miss-v select the same component type for lunch-n

#### How do we do that?

- We're going to look at all the contexts in which the target occurs, and find other words <u>like the target</u> that occur with the same selectors
  - all things that can be eaten, cooked, organized, and missed
- Then cluster them according to which "sense" of lunch they behave closer to

### Clustering with Inverse Image

#### • lunch-n (EVENT / FOOD):

conference-n

meeting-n

seminar-n

parade-n

rehearsal-n

wedding-n

• • •

sandwich-n

stew-n

pudding-n

meat-n

attend-v

hold-v

miss-v

organize-v

cancel-v

host-v

• • •

eat-v

cook-v

serve-v

prepare-v

Think about it as a bipartite graph:



### What are we doing?

- When computing semantic similarity based on distributional behavior, some contexts are "more equal than others".
- Effectively, we are grouping together *licensing contexts* 
  - they license similar use of selectors with respect to the target
  - simply put, it is the fact that you can cancel meetings, seminars, and weddings makes cancel select the EVENT aspect of lunch
- Thus, our goal is to obtain clusters of *contextual equivalents* for each component type (= "sense") of the target word.

# Clustering with Inverse Image



# Clustering Algorithm-I

- (1) Identify the set of selector contexts in which the target word was found in corpus.
- (2) Take the inverse image of the above set under grammatical  $R^{-1}$ . A word is considered a potential contextual equivalent if it occurs in  $R^{-1}$  with the specified number of the target's selectors. (thres = 5)
- (3) Obtain a set of "good" selectors for each potential contextual equivalent
  - i. Take all the selector contexts in which both the target and the contextual equivalent are found. Compute two conditional probability scores for each selector: P(s | R w) and P(s | R t), where s is the selector context, w is the potential contextual equivalent, and t is the target word.

### Clustering Algorithm-II

- ii. Identify selectors that select the same interpretation both for the target noun and for potential contextual equivalent.
  - E.g. Given the target (lunch-n, object\_of): for sandwich-n, we would need to select eat-v, cook-v, serve-v, prepare-v, etc; for conference-n, we would need to select attend-v, organize-v, miss-v, cancel-v, etc.
  - "Good" selectors will must occur often enough with both words (modeled as having both *conditional probabilities* relatively high).
  - NB Conditional probability will depend on how frequent the appropriate sense is for each of the two words.
  - We pick the top-K selectors that maximize the <u>geometric mean</u> of two conditional probability values. K = 20

#### Choosing selectors for lunch-n/conference-n

(with  $R = object_of$ )



#### **Choosing Good Selectors**

• We now have a contextualized list of selectors for each potential candidate for contextual equivalency, with the appropriate association scores

# **Choosing Good Selectors**

|             | lunch-n |         | sandy | wich-n  |
|-------------|---------|---------|-------|---------|
|             | count   | P(s Rw) | count | P(s Rw) |
| 'eat-v'     | 93      | .1253   | 93    | .2035   |
| 'take-v'    | 48      | .0647   | 30    | .0656   |
| 'get-v'     | 40      | .0539   | 25    | .0547   |
| 'make-v'    | 17      | .0229   | 56    | .1225   |
| 'want-v'    | 19      | .0256   | 17    | .0372   |
| 'bring-v'   | 21      | .0283   | 13    | .0284   |
| 'finish-v'  | 21      | .0283   | 8     | .0175   |
| 'buy-v'     | 14      | .0189   | 12    | .0263   |
| 'prepare-v' | 21      | .0283   | 7     | .0153   |
| 'serve-v'   | 42      | .0566   | 3     | .0066   |

# **Choosing Good Selectors**

|              | lunch-n |         | confe | erence-n |
|--------------|---------|---------|-------|----------|
|              | count   | P(s Rw) | count | P(slRw)  |
| 'attend-v'   | 15      | .0202   | 263   | .1251    |
| 'hold-v'     | 10      | .0135   | 379   | .1803    |
| 'give-v'     | 23      | .0310   | 33    | .0157    |
| 'tell-v'     | 2       | .0027   | 285   | .1356    |
| 'organize-v' | 6       | .0081   | 79    | .0376    |
| 'take-v'     | 48      | .0647   | 6     | .0029    |
| 'call-v'     | 3       | .0040   | 88    | .0419    |
| 'arrange-v'  | 8       | .0108   | 28    | .0133    |
| 'get-v'      | 40      | .0539   | 4     | .0019    |
| 'bring-v'    | 21      | .0283   | 7     | .0033    |

### Clustering Algorithm-III

- (4) Compute the similarity matrix for the potential contexual equivalents.
  - We compute the similarity measure as the sum of minima, which is effectively equivalent to set-theoretic overlap used in Jaccard and Dice measures.

$$c_{sim}(w_1, w_2, (t, R)) = \sum_{s \in S' \cup S''} \min(P(s \mid R \mid w_1), P(s \mid R \mid w_2))$$

where  $S' = Selectors^K(w_1)$  and  $S'' = Selectors^K(w_2)$  are the contextualized selector lists chosen in the previous step.

|            | sandwich-n | conference-n | rehearsal-n |
|------------|------------|--------------|-------------|
|            | P(slRw)    | P(s Rw)      | P(s Rw)     |
| 'attend-v' | .0000      | .0129        | .0145       |
| 'cancel-v' | .0000      | .0108        | .0017       |
| 'hold-v'   | .0066      | .0108        | .0017       |
| 'eat-v'    | .0005      | .0132        | .0009       |
| 'serve-v'  | .0000      | .0528        | .0660       |

# Clustering Algorithm-IV

- Unlike the standard numerical extensions of Jaccard and Dice, we do not normalize the sum of minima either by the size of the union  $|S' \cup S''|$ , or by the average size of each selector set (|S'| + |S''|)/ 2
- This allows us to avoid having high similarity scores for highfrequency words among candidates for contextual equivalentcy
  - E.g. man-n and thing-n (or variety-n and range-n) are frequent and omnivorous, and so any of the "good" selectors for the target lunch-n would also be "good" for both of them
  - If they are the closest pair amongst all candidates for contextual equivalency they would merge first in clustering and immediately contaminate the clusters

### Clustering Algorithm-V

- These are effectively promiscuous words that occur frequently with all selectors, including the "good" (i.e. reliable) selectors for each of target's senses.
- But conditional probabilities for their selectors are low due to their high frequencies. The sum of their minuma will also be low.
- Thus, normalizing the sum of minima by any value also reflecting this high frequency will remove the advantage that less promiscuous words have over such generics.

### Clustering Algorithm-VI

- (5) Perform agglomerative hierarchical clustering of potential contextual equivalents of the target's senses, using this similarity metric obtained as described above.
- (6) Compute Average Pairwise Similarity (APS) between the elements of each cluster. As we proceed from the bottom of the dendrogram up, APS for the clusters decreases.
  - We compute the percent decrease in APS (APS derivative) for every cluster merge point
- (7) Select several <u>seed</u> elements from the high-scoring selectors (e.g. MI-based) of the target and trace their merges in the dendrogram
  - Cut the dendrogram at the points that have high percent decrease, selecting the clusters obtained prior to the APS-decreasing merge.
  - If selected clusters coincide for several seeds, select those clusters

# Target lunch-n / Seed conference-n

| num    | id   |       |       |      | resulting<br>cluster                                                            |
|--------|------|-------|-------|------|---------------------------------------------------------------------------------|
| 1      | 3985 | 0.445 | 0.445 | 0.00 | [conference-n] [seminar-n]                                                      |
| 2      | 4012 | 0.430 | 0.435 | 0.02 | [meeting-n] [conference-n seminar-n]                                            |
| 3      | 4097 | 0.397 | 0.416 | 0.04 | [rally-n] [meeting-n conference-n seminar-n]                                    |
| 4<br>5 | 4263 | 0.342 | 0.387 | 0.07 | [reunion-n] [rally-n meeting-n conference-n seminar-n]                          |
| 5      | 4394 | 0.314 | 0.363 | 0.06 | [ceremony-n] [reunion-n rally-n meeting-n conference-n seminar-n]               |
| 6      | 4493 | 0.295 | 0.332 | 0.09 | [inquest-n fair-n] [ceremony-n reunion-n rally-n meeting-n                      |
|        |      |       |       |      | conference-n seminar-n]                                                         |
| 7      | 4656 | 0.267 | 0.318 | 0.04 | [congress-n] [inquest-n fair-n ceremony-n reunion-n rally-n                     |
|        |      |       |       |      | meeting-n conference-n seminar-n                                                |
| 8      | 4674 | 0.264 | 0.307 | 0.03 | [disco-n] [congress-n inquest-n fair-n ceremony-n reunion-n rally-n             |
|        |      |       |       |      | meeting-n conference-n seminar-n                                                |
| 9      | 4784 | 0.246 | 0.280 | 0.09 | [talk-n ballot-n election-n referendum-n] [disco-n congress-n                   |
|        |      |       |       |      | inquest-n fair-n ceremony-n reunion-n rally-n meeting-n conference-n seminar-n] |
| 10     | 5001 | 0.223 | 0 272 | 0.03 | _                                                                               |
| 10     | 3001 | 0.223 | 0.272 | 0.03 | congress-n inquest-n fair-n ceremony-n reunion-n rally-n meeting-n              |
|        |      |       |       |      | conference-n seminar-n                                                          |
| 11     | 5072 | 0.216 | 0.265 | 0.03 | -                                                                               |
|        |      |       | _     | -    | disco-n congress-n inquest-n fair-n ceremony-n reunion-n rally-n                |
|        |      |       |       |      | meeting-n conference-n seminar-n                                                |

# Target lunch-n / Seed conference-n

| num | id   | inter-c<br>APS |       |      | resulting<br>cluster                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|------|----------------|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12  | 5294 | 0.197          | 0.224 | 0.15 | [hearing-n summit-n talk-n ballot-n election-n referendum-n disco-n congress-n inquest-n fair-n ceremony-n reunion-n rally-n meeting-n conference-n seminar-n] [parade-n rehearsal-n wedding-n funeral-n clinic-n feast-n celebration-n session-n workshop-n demonstration-n concert-n briefing-n lecture-n reception-n banquet-n luncheon-n]                                                                 |
| 13  | 5316 | 0.196          | 0.219 | 0.02 | [outing-n barbecue-n exhibition-n festival-n] [hearing-n summit-n talk-n ballot-n election-n referendum-n disco-n congress-n inquest-n fair-n ceremony-n reunion-n rally-n meeting-n conference-n seminar-n parade-n rehearsal-n wedding-n funeral-n clinic-n feast-n celebration-n session-n workshop-n demonstration-n concert-n briefing-n lecture-n reception-n banquet-n luncheon-n]                     |
| 14  | 5631 | 0.174          | 0.214 | 0.02 | [outing-n barbecue-n exhibition-n festival-n hearing-n summit-n talk-n ballot-n election-n referendum-n disco-n congress-n inquest-n fair-n ceremony-n reunion-n rally-n meeting-n conference-n seminar-n parade-n rehearsal-n wedding-n funeral-n clinic-n feast-n celebration-n session-n workshop-n demonstration-n concert-n briefing-n lecture-n reception-n banquet-n luncheon-n] [dance-n gathering-n] |

# Target lunch-n / Seed conference-n

| num | id   | inter-c<br>APS |       |      | resulting<br>cluster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|------|----------------|-------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15  | 6299 | 0.138          | 0.206 | 0.04 | [outing-n barbecue-n exhibition-n festival-n hearing-n summit-n talk-n ballot-n election-n referendum-n disco-n congress-n inquest-n fair-n ceremony-n reunion-n rally-n meeting-n conference-n seminar-n parade-n rehearsal-n wedding-n funeral-n clinic-n feast-n celebration-n session-n workshop-n demonstration-n concert-n briefing-n lecture-n reception-n banquet-n luncheon-n dance-n gathering-n] [event-n procession-n]                                                                                    |
| 16  | 6347 | 0.136          | 0.200 | 0.03 | [tournament-n contest-n] [outing-n barbecue-n exhibition-n festival-n hearing-n summit-n talk-n ballot-n election-n referendum-n disco-n congress-n inquest-n fair-n ceremony-n reunion-n rally-n meeting-n conference-n seminar-n parade-n rehearsal-n wedding-n funeral-n clinic-n feast-n celebration-n session-n workshop-n demonstration-n concert-n briefing-n lecture-n reception-n banquet-n luncheon-n dance-n gathering-n event-n procession-n]                                                             |
| 17  | 6401 | 0.134          | 0.185 | 0.08 | [candle-n captive-n portfolio-n office-n post-n presidency-n] [tournament-n contest-n outing-n barbecue-n exhibition-n festival-n hearing-n summit-n talk-n ballot-n election-n referendum-n disco-n congress-n inquest-n fair-n ceremony-n reunion-n rally-n meeting-n conference-n seminar-n parade-n rehearsal-n wedding-n funeral-n clinic-n feast-n celebration-n session-n workshop-n demonstration-n concert-n briefing-n lecture-n reception-n banquet-n luncheon-n dance-n gathering-n event-n procession-n] |

#### Intra-cluster APS for lunch-n / conference-n



# Intra-cluster APS % increase (derivative) for lunch-n / conference-n



#### Lunch-n

#### Food

['juice-n','cocktail-n','alcohol-n','wine-n','ale-n','brandy-n','vodka-n','champagne-n', 'beer-n','pint-n','whiskey-n','gin-n','straw-n','corn-n','liver-n','cereal-n', 'goose-n','vegetable-n','rice-n','pasta-n','stuffing-n','dish-n','tomato-n','pea-n', 'bean-n','ham-n','turkey-n','mushroom-n','potato-n','chicken-n','carrot-n','bacon-n', 'cabbage-n','nut-n','apple-n','orange-n','lettuce-n','dessert-n','chip-n','food-n', 'snack-n','buffet-n','steak-n','salad-n','sandwich-n','dinner-n','meal-n','lunch-n', 'breakfast-n','supper-n','beef-n','sweet-n','crisp-n','chop-n','sausage-n','pizza-n', 'meat-n','chocolate-n','banana-n','spaghetti-n','yogurt-n','ice-cream-n','donut-n','mint-n','honey-n','jam-n','soup-n','toast-n','tea-n','coffee-n','bread-n','cheese-n','cake-n','curry-n','bun-n','biscuit-n','pudding-n','marmalade-n','jelly-n','pie-n','porridge-n','tart-n','pastry-n','stew-n','sauce-n','hay-n','butter-n','roll-n','cream-n']

#### Event

['tournament-n','contest-n','outing-n','barbecue-n','exhibition-n','festival-n','hearing-n','summit-n','talk-n','ballot-n','election-n','referendum-n','disco-n','congress-n','inquest-n','fair-n','ceremony-n','reunion-n','rally-n','meeting-n','conference-n','seminar-n','parade-n','rehearsal-n','wedding-n','funeral-n','clinic-n','feast-n','celebration-n','session-n','workshop-n','demonstration-n','concert-n','briefing-n','lecture-n','reception-n','banquet-n','luncheon-n','dance-n','gathering-n','event-n','procession-n']

food seed: sandwich-n

event seed: conference-n

# Clustering Algorithm-VII

- (8) For each of the target's selectors s in grammatical relation R, compute the following score for each of the chosen cluster C:

  - this score indicates how likely selector s is to pick the sense of the target associated with C

#### Selector Assignment for lunch-n, object\_of

hard assignment:  $\Sigma_{\text{equiv} \in \mathbb{C}}$  P(selector | equiv)

| eat-v     | FOOD  | host-v       | EVENT | supply-v   | FOOD         |
|-----------|-------|--------------|-------|------------|--------------|
| cook-v    | FOOD  | cancel-v     | EVENT | make-v     | FOOD         |
| serve-v   | FOOD  | organize-v   | EVENT | organize-v | <b>EVENT</b> |
| skip-v    | FOOD  | include-v    | FOOD  | set-v      | <b>EVENT</b> |
| finish-v  | FOOD  | order-v      | FOOD  | throw-v    | FOOD         |
| enjoy-v   | EVENT | grab-v       | FOOD  | need-v     | FOOD         |
| prepare-v | FOOD  | give-v       | EVENT | blow-v     | FOOD         |
| attend-v  | EVENT | spoil-v      | FOOD  | carry-v    | FOOD         |
| miss-v    | EVENT | share-v      | FOOD  | estimate-v | FOOD         |
| take-v    | FOOD  | hold-v       | EVENT | follow-v   | <b>EVENT</b> |
| provide-v | EVENT | pack-v       | FOOD  | lay-v      | FOOD         |
| get-v     | FOOD  | appreciate-v | FOOD  | deliver-v  | FOOD         |
| bring-v   | FOOD  | like-v       | FOOD  | forget-v   | FOOD         |
| buy-v     | FOOD  | offer-v      | FOOD  | manage-v   | <b>EVENT</b> |
| arrange-v | EVENT | plan-v       | EVENT | leave-v    | FOOD         |
| want-v    | FOOD  | interrupt-v  | FOOD  | pass-v     | FOOD         |
|           |       |              |       |            |              |

#### Soft Selector Assignment for lunch-n, object\_of

| Selector   | Selected Type | A-score | Type         | A-score | Confidence |
|------------|---------------|---------|--------------|---------|------------|
| eat-v      | FOOD          | .089    | EVENT        | .002    | .087       |
| cook-v     | FOOD          | .024    | <b>EVENT</b> | .003    | .021       |
| serve-v    | FOOD          | .024    | <b>EVENT</b> | .002    | .022       |
| skip-v     | FOOD          | .002    | <b>EVENT</b> | .000    | .002       |
| finish-v   | FOOD          | .009    | <b>EVENT</b> | .002    | .007       |
| enjoy-v    | EVENT         | .016    | FOOD         | .006    | .010       |
| prepare-v  | FOOD          | .009    | <b>EVENT</b> | .003    | .006       |
| attend-v   | EVENT         | .099    | FOOD         | .001    | .098       |
| miss-v     | EVENT         | .002    | FOOD         | .001    | .001       |
| host-v     | EVENT         | .010    | FOOD         | .000    | .010       |
| cancel-v   | EVENT         | .003    | FOOD         | .000    | .003       |
| organize-v | EVENT         | .034    | FOOD         | .000    | .034       |
| include-v  | FOOD          | .013    | <b>EVENT</b> | .011    | .002       |
| order-v    | FOOD          | .008    | <b>EVENT</b> | .001    | .007       |
| give-v     | EVENT         | .045    | FOOD         | .010    | .035       |
| share-v    | FOOD          | .004    | <b>EVENT</b> | .002    | .002       |
| hold-v     | EVENT         | .004    | FOOD         | .157    | .153       |

#### Lunch-n

- All selectors that occur with lunch-n in the object position
- Sorted on MI(selector, (target, rel))
- Performance much higher than the majority baseline
  - but need a more robust evaluation
- Polysemous selectors linked to the correct sense:

```
hold-v lunch-n EVENT
```

- all occurrences (10) in the BNC are in the EVENT sense

```
leave-v lunch-n FOOD
```

- 3 out of 4 occurrences in the BNC are in the FOOD sense

#### Noun vs. Verb Targets (side remark)

- The same procedure for identifying contextual equivalents may be applied equally to other types of targets besides the dot nominals.
- For example, for verbs!

Given the target (lunch-n, object\_of):

for sandwich-n, we would need to select verbs such aseat-v, cook-v, make-v, etc.

for conference-n, we would need to select verbs such aseat-v, cook-v, make-v, etc.

Given the target (deny-v, object):

for confirm-v, we would need to select report-n, existence-n, allegation-n, for grant-v, we would need to select access-n, right-n, approval-n, permission-n, etc.

• For verbs, selectors are nouns; for nouns, selectors are verbs

#### **Conclusions**

- Method for deriving automatically sets of *selectors that* select for a specific component type
- We avoid the common computational pitfalls in distributional similarity-based clustering by computing clusters of *short contextualized vectors*
- Association scores obtained for each selector with respect to the resulting clusters give a *measure of certainty*
- Can be *extended to several relations* by combining obtained selector assignments
- Can do this without the human labor (!)

Thank you!