
Dataflow matrix machines:

recent experiments and notes for next steps

DMM technical report 11-2018

November 2, 2018

Abstract

This document describes experiments with self-referential dataflow
matrix machines performed by participants of DMM and Fluid projects
in January-October 2018 and collects together various notes for use in
possible next steps in DMM research.

Contents

1 Recent experiments with self-referential DMMs 3
1.1 Editing a running network on the fly 3
1.2 Emerging bistability in randomly initialized DMMs 3

2 V-value transformers 4
2.1 Software connectors . 4
2.2 DMM subclasses . 5
2.3 V-values as network matrices . 5

3 Diversity scenarios: populations and hybrids 6

4 Learning methods 7

Introduction

The intended audience of this document consists of people already familiar with
dataflow matrix machines and either working on them actively or considering
whether to do some work with dataflow matrix machines in the near future. The
general audience is referred to the published literature and references therein1.

Fragments of these notes might be reused in the subsequent publications by
members of DMM and Fluid projects.

1Michael Bukatin, Jon Anthony, Dataflow Matrix Machines and V-values: a
Bridge between Programs and Neural Nets, “K + K = 120” Festschrift. The paper:
https://arxiv.org/abs/1712.07447. The talk: https://youtu.be/X6GCohQ-LHM. The slides:
https://researcher.watson.ibm.com/researcher/files/us-lmandel/aisys18-bukatin.pdf.

1

https://arxiv.org/abs/1712.07447
https://youtu.be/X6GCohQ-LHM
https://researcher.watson.ibm.com/researcher/files/us-lmandel/aisys18-bukatin.pdf

The essence of neural model of computations is that linear and non-linear
computations are interleaved. Therefore, the natural degree of generality for
neuromorphic computations is to work not with streams of numbers, but with
arbitrary streams supporting the notion of linear combination of several streams
(linear streams).

Dataflow matrix machines (DMMs) is a novel class of neural abstract ma-
chines, which work with arbitrary linear streams instead of streams of num-
bers. The neurons have arbitrary fixed or variable arity. Of particular note are
self-referential facilities: ability to change weights, topology, and the size of the
active part dynamically, on the fly, and the reflection capability (the ability of
the network to analyze its current configuration).

The resulting computational architecture is highly expressive, but we have
only started to explore various ways to use it. Our recent and next steps are di-
rected towards teaching ourselves to harness the power of DMMs, while keeping
the following two of the attractive longer-term goals in mind:

• Learning to learn.

We expect that networks which modify themselves should be able to
learn to modify themselves better.

• Program synthesis.

DMMs are powerful enough to write programs.
They provide a programming framework where one can
deform programs in continuous manner.

A program is determined by a matrix of numbers. Therefore, it is sufficient
to synthesize a matrix of numbers to synthesize a program.

DMMs combine

– aspects of program synthesis setup
(compact, human-readable programs);

– aspects of program inference setup
(continuous models defined by matrices).

We hope that this will make them a sweet spot for program synthesis.

Section 1 describes two recent series of experiments with self-referential
dataflow matrix machines. The subsequent sections collect together various
notes for possible use in the next steps of DMM research. These notes are
loosely grouped into Sections 2 - 4.

2

1 Recent experiments with self-referential DMMs

1.1 Editing a running network on the fly

We conducted a series of experiments providing support for livecoding via
editing a running network on the fly2.

This series of experiments is done with DMMs based on V-values and variadic
neurons implemented in Clojure. A dedicated update neuron is listening for
update V-values on a clojure.async channel.

The further details are given for the latest experiments in this series (the
April 2018 experiments). At the setup, the :direct output of the update
neuron is connected with weight 1 to the :delta input of the :self neuron
which accumulates the currently used network matrix.

The update neuron emits values it receives on its clojure.async channel.
These values are emitted during the “up movement” (the empty map standing
for zero V-value is emitted if nothing is received on the channel).

When the update neuron emits {:direct X} V-value, the V-value X is
copied to the :delta input of the :self neuron during the next “down move-
ment” and gets added to the network matrix during the subsequent “up move-
ment”.

These edits of the network matrix can connect other outputs of the update
neuron to other neurons of the network, and then the update neuron can be used
to send asynchronously received updates to those neurons as well. For example,
in our April 2018 experiments we interactively connect the :to-test-image

output of the update neuron to accumulator neuron :test-image (which is to be
used to hold a V-value representing an image) by adding 1 to the element of the
network matrix situated at row [v-accum :test-image :delta] and column
[v-network-update-monitor :network-interactive-updater :to-test-image] .

After that we populate this image-holding neuron by sending the V-value
{:to-test-image V-value-representing-image} to the update neuron.

1.2 Emerging bistability in randomly initialized DMMs

We conducted a series of experiments with randomly initialized DMMs3.
This series of experiments is done with Lightweight Pure DMMs4 based on

streams of network-sized rectangular matrices implemented in Processing 2.
The first Lightweight Pure DMMs with random initialization of the output

layer were created by GitHub user nekel in September 2016. These were the
first self-referential DMMs which not only modified their own network matrix,

2https://github.com/jsa-aerial/DMM/tree/master/examples/dmm/quil-controlled/interactive
3https://github.com/anhinga/fluid/tree/master/atparty-2018/game of afterlife
4Lightweight Pure DMMs were introduced in Appendix D of Michael Bukatin, Steve

Matthews, Andrey Radul, Notes on Pure Dataflow Matrix Machines: Programming
with Self-referential Matrix Transformations, https://arxiv.org/abs/1610.00831.
For relationship between Lightweight Pure DMMs and DMMs based on V-values and variadic
neurons see Appendix F of that preprint.

3

https://github.com/jsa-aerial/DMM/tree/master/examples/dmm/quil-controlled/interactive
https://github.com/anhinga/fluid/tree/master/atparty-2018/game_of_afterlife
https://arxiv.org/abs/1610.00831

but which also used the current values of their network matrix as non-trivial
summands when forming their input layer.

For each network input, the corresponding row of the network matrix is used
to form the value of that input during the “down movement”. However, if the
weight w connecting the given input and the output of Self is non-zero, the
whole network matrix W also participates in the newly formed input value as
w ·W summand. The Lightweight Pure DMMs with random initialization of
the output layers constitute the first example of this phenomenon.

In this series of experiments we sampled a seed for random number generator
and recorded this seed, so that we can reproduce those runs which seem to be of
interest. A significant fraction of those runs exhibited various emerging bistable
dynamic patterns. We committed a number of those configurations to GitHub.

Our empirical observations seem to suggest that the tendency to have a
significant fraction of random initializations for various network configurations
to exhibit bistable patterns might be fairly universal in this context. At the
same time, we have no theoretical understanding of the observed bistability.

The remark which might be useful for people who would like to do further
work with the code we committed is that a squeeze function is applied to all
output matrices5, so all activation functions look like squeeze ◦ f .

2 V-value transformers

DMMs based on V-values and variadic neurons can be considered as transform-
ers of streams of V-values.

So, on one hand, machine learning problems in this context can be formu-
lated as problems of synthesis of transformers of streams of V-values from a
given set of primitives.

On the other hand, there is a task of creating a sufficiently rich library of
built-in transformers of streams of V-values.

2.1 Software connectors

Since V-values are based on nested maps (and, therefore, are similar in spirit to
JSON and such), thinking about various tasks of autogeneration of connectors
between various pieces of software as tasks of autogeneration of transformers of
V-values and streams of V-values is quite natural6.

This might be one of the more straightforward roads to pragmatically useful
program synthesis (instead of focusing on synthesizing small programs from
scratch, one might focus on automating the practice of configuring software
from a small number of large pre-existing software components)7.

5Each matrix is divided by the maximal absolute value of all its elements.
6Cf. Section 5 of Michael Bukatin, Steve Matthews, Linear Models of Computation

and Program Learning, GCAI 2015. https://easychair.org/publications/paper/Q4lW.
7Connectors tend to be much simpler than general software and, therefore, are easier to

synthesize.

4

https://easychair.org/publications/paper/Q4lW

2.2 DMM subclasses

A number of existing well-known formalisms can be considered as subclasses of
DMMs.

In addition to conventional neural networks (which can be understood as
consisting of single neurons, or as consisting of layers and modules [yielding
compact architectures]), one can also name synthesis based on composition of
unit generators (which is the standard approach in digital audio synthesis) and
at least some forms of probabilistic programming.

Patterns of creating programs in those subclasses, and patterns of train-
ing/program synthesis in those subclasses can potentially be used in the context
of general DMMs8.

2.3 V-values as network matrices

We use 6-dimensional tensors as network matrices in our current implementation
of DMMs based on V-values and variadic neurons. (We have also considered
removing the activation function from that and making it a parameter of a
neuron, with a possibility of using a linear combination of activation functions,
which would lead to 4-dimensional tensors as network matrices.)

However, potentially we can use “mixed rank” tensors (general V-values) as
network matrices (instead of “flat” tensors we are currently using for that).

We have defined a way to use a non-flat V-value as a multiplicative mask
and as a replacement for a flat vector of coefficients in an operation of taking a
linear combination of V-value subtrees9.

This means that the subsequent apply-matrix function only needs to have
a flat (fixed number of levels) structure of indices for matrix rows, but can use
arbitrarily shaped V-values as matrix rows themselves in the current implemen-
tation (only the use patterns in the examples would need to change).

One might also want to allow non-flat structure on the “upper level”, with
matrix rows being leaves of a V-value. This does require explicitly allowing
leaves of this kind (although a plain number can be subsumed as a V-value
scalar). Informally, this requirement can be understood as the need to know
where in the path to a leaf the row-related keys end and the column-related
keys begin (currently we just rely on the convention that the first 3 keys in the
path are row-related).

One would also need to add together the result of applying different matrix
rows (e.g. one row can create a tree within a V-value, and another row can
create its subtree, so the sum of these contributions would need to be taken).
The present subsection is just a rough sketch, but can be made precise (we were
sharing related informal notes within our group for a while now.)

8Methods based on oscillations and on spiking networks and spike synchronization also
belong here.

9See functions rec-map-mult-mask and rec-map-lin-comb, lines 105-137 and 139-182 of
https://github.com/jsa-aerial/DMM/blob/master/src/dmm/core.clj.

5

3 Diversity scenarios: populations and hybrids

We start with “editing running DMMs on the fly” series of experiments described
in Section 1.1. There is no reason why the editor should be implemented in the
same language or should run on the same computer as the DMM itself, hence
we arrive at asynchronous exchange of V-values between different processes via
one of several available mechanisms (e.g. websockets).

Populations. The next step is to consider a population of DMMs running at
their own speed and capable of asynchronously exchanging V-values with each
other, including “editing suggestions” (data, which the receiving network can
transform into edits of its own network matrix). This would be particularly
important in the next section covering learning methods (Section 4).

Hybrid populations. The next step to consider hybrid populations where
conventional software coexist with DMMs (perhaps with different varieties of
DMMs); all that is needed is to equip conventional software with the ability
to emit and receive V-values from time to time. (If one needs to incorporate
conventional software which performs work of finite duration in time [that is,
transforming an input to an output and exiting], it might be convenient in this
paradigm to wrap it into a layer which works indefinitely long and invokes from
time to time the software which performs finite work.)

Discrete data. One way to incorporate discrete data in our framework is to
include them into leaves as samples from signed probability distributions. This
route is well explored in our publication. Another way is to consider formal
finite linear combinations of discrete data in question10. One can either extend
leaves to accommodate such linear combinations, or one can simply use map
keys to represent the data of interest (and then the framework is unchanged)11.

Multimedia streams. We need to make sure that we can exchange multime-
dia linear streams such as audio and animation. This places different require-
ments in terms of bandwidth and latency compared to asynchronous exchange
of sparse streams of V-values. Initial experiments of injecting streams such as
webcam feeds and loops of recorded videos were performed in recent months for
pre-DMM12 and Lightweight Pure DMM13 architectures.

10The technical name for this construction is vector space generated by a given set.
Sparsity conditions limiting the number of non-zero coefficients can be imposed on the level
of implementation if needed.

11In general, the potential of using meaningful languages of the map keys is insufficiently
explored by us. This potential is very interesting from many angles.

12https://github.com/anhinga/fluid/tree/master/atparty-2018/surreal webcam
13https://github.com/anhinga/fluid drafts/tree/master/Lightweight with Movies

6

https://github.com/anhinga/fluid/tree/master/atparty-2018/surreal_webcam
https://github.com/anhinga/fluid_drafts/tree/master/Lightweight_with_Movies

4 Learning methods

Within hybrid populations, diverse learning methods can be present at the same
time.

Lightweight Pure DMMs have regular structure and thus are well suited
for traditional learning setups, with well-formalized differentiable objectives,
batching, and GPU computations.

At the same time, DMMs based on V-values and variadic neurons which
tend to have highly irregular dynamic structure are usually not well-covered by
existing automated differentiation tools, and making them friendly for GPUs is
an open problem at this time.

Therefore, derivative-free methods seem to be more attractive for DMMs
based on V-values and variadic neurons at the moment, and one hopes to gain
learning speed in this context from the power of learning to learn methods, rather
than from the power of hardware, and also from the interactions with faster
learners within the hybrid population.

Note that learning can be understood via replacing the vector of parameters
W with W+∆W. Therefore, when we are talking about learning to learn, we
should be talking of learning to produce ∆W. This calls for thinking in terms
of formal differences of DMMs (neural networks, programs), W2-W1.

Populations of directions of change. In particular, we started to exper-
iment with a simple version of population coordinate descent14. The popula-
tion coordinate descent is the scheme of coordinate descent we proposed last
year15 where coordinates are sampled from an overdefined coordinate system
and, generally speaking, the probability distribution over this set of coordinates
can change in adaptive manner.

Populations of DMMs and other programs computing potentially use-
ful directions of change. It is more natural to rate not the possible direc-
tions of change themselves, but the sources suggesting those directions, since
the sources can be smart and take existing context into account.

Hence, the setup from Section 3 is natural: there is a population of sources
coming up with individualized editing suggestions for other members of popu-
lation. They are rated adaptively by recipients, depending on the suitability of
their suggestions for a given recipient.

This is a promising line of reasoning, to be further developed.

Final remarks

Here are some additional remarks which might be useful during the next stage
of DMM research and DMM-related software design and development.

14See afterlife balanced coord updates in https://github.com/anhinga/fluid/tree/master/Lightweight Evolutionary.
15

https://github.com/jsa-aerial/DMM/blob/master/design-notes/Early-2017/population-coordinate-descent.md

7

https://github.com/anhinga/fluid/tree/master/Lightweight_Evolutionary
https://github.com/jsa-aerial/DMM/blob/master/design-notes/Early-2017/population-coordinate-descent.md

Hierarchical DMMs. One motivation for possibly using general V-values
as network matrices (Section 2.3) is that this enables grouping neurons into
hierarchical structures without concatenating their names to fit the flat indexing
system.

Deep copy of subgraphs We know matrix transformations for the style of
creating complicated and possibly “pseudo-fractal” networks on the fly via deep
copying of subgraphs16. Hierarchical DMMs should make this easier by allowing
to define subgraphs via hierarchical groups of neurons.

Diversity of DMM viewing and editing interfaces. The considerations
of Section 3 are calling for a system which is not monolithic, but consists of
loosely connected parts, where it is easy to add new parts. Therefore we can
have multiple interfaces for viewing and editing DMM structure on the fly,
including interfaces based on graph visualization and visual editing.

16Section 4 of Michael Bukatin, Steve Matthews, Andrey Radul, Programming Pat-
terns in Dataflow Matrix Machines and Generalized Recurrent Neural Nets,
https://arxiv.org/abs/1606.09470

8

https://arxiv.org/abs/1606.09470

	Recent experiments with self-referential DMMs
	Editing a running network on the fly
	Emerging bistability in randomly initialized DMMs

	V-value transformers
	Software connectors
	DMM subclasses
	V-values as network matrices

	Diversity scenarios: populations and hybrids
	Learning methods

