
Synergy between AI-generating algorithms and dataflow matrix machines

Michael A. Bukatin

March 22, 2020

AI-generating algorithms is an alternate paradigm for producing general artificial intelligence introduced
by Jeff Clune in 2019. Its idea is to create an algorithm which itself automatically learns how to produce
general AI. The approach is structured into three pillars: 1) meta-learning AI architectures, 2) meta-learning
the learning algorithms, and 3) generating effective learning environments.

Dataflow matrix machines form a novel class of programmable neural machines bridging the gap between
programs and recurrent neural networks. This class of neural machines seems to be suitable for general
purpose programming, allows to conveniently express powerful self-modification facilities, and seems to be
naturally tailored for the tasks of synthesizing modular neural architectures.

In this essay, I argue that there is deep synergy between AI-generating algorithms (AI-GAs) and dataflow
matrix machines (DMMs). The particular focus of the present essay is an argument that DMMs are an
extremely natural fit for the first two pillars of AI-GAs.

I also briefly overview the current state of DMM research, and consider further possibilities of potential
fruitful interaction between AI-GAs and DMMs.

1 Introduction 1

2 Problems with traditional neural nets as a programming platform 2

3 DMM architecture 2

4 Future applications of the DMM architecture 3
4.1 Conventional programming and program synthesis . 3
4.2 Self-modification, learning to learn, and neuroevolution . 4

5 Further thoughts on interplay between AI-GAs and DMMs 4
5.1 Leveraging structuring capabilities of DMMs . 4
5.2 We expect DMMs to benefit from AI-GAs work . 4
5.3 How much compute is needed for AI-GAs? . 5
5.4 Safety and ethical considerations . 5

A Appendix: current state of DMM research 6
A.1 DMMs as a programming platform . 6
A.2 Research-grade implementations of DMMs as a programming platform 6
A.3 Design work for DMMs as a machine learning platform . 7

1 Introduction

The May 2019 essay by Jeff Clune1 formulates a paradigm for automatically learning to produce general
AI. The first two pillars of this paradigm, meta-learning efficient architectures and metalearning the learning
algorithms, go back a long way2. The punchline of the AI-GAs essay is that these two pillars together with
the novel third pillar of generating effective learning environments and training data are likely to be able to
sufficiently accelerate each other to reach the level of human-equivalence or more given sufficient computational
resources3.

An important factor here would be our ability to tightly integrate work done under these three pillars. It
would be much easier to make progress along these lines, if there is a unified platform suitable for this work,
whereas a disconnect between algorithms and programs on one side and neural networks and their architectures
on the other side would be a factor inhibiting progress of AI-GAs.

1Jeff Clune, AI-GAs: AI-generating algorithms, an alternate paradigm for producing general artificial intelligence,
https://arxiv.org/abs/1905.10985

2See e.g. Yann LeCun, John Denker, Sara Solla, “Optimal brain damage”, in Advances in neural information processing
systems, pp. 598-605, 1990 and Neil Cotter, Peter Conwell, “Fixed-weight networks can learn”, in 1990 IJCNN International
Joint Conference on Neural Networks, pp. 553-559, IEEE, 1990.

3The question of how much computational resources is needed is quite non-trivial, and I further remark on it in Section 5.3.

1

https://arxiv.org/abs/1905.10985

In particular, it seems that the problem of program synthesis for the traditional programming platforms
used by software engineers in their daily professional activities is much more difficult than the problem of
synthesis of neural nets. Hence if neural nets can’t provide the required programming capabilities in the
pragmatic day-to-day software engineering sense (rather than much weaker theoretical sense of formal Turing
completeness), this will remain a factor slowing AI-GAs progress given that it is necessary for AI-GAs to
synthesize computer code.

I am going to make the case that traditional neural machines such as RNNs are not adequate in this sense,
whereas DMMs seem to be reasonably adequate.

2 Problems with traditional neural nets as a programming platform

The current state of unification of programs and neural networks is not quite satisfactory. While the results
establishing Turing-completeness of RNNs in the presence of unlimited memory go back to at least 19874, these
results tends to rely on real numbers of unlimited precision and on using a binary expansion of a real number as
a Turing machine tape. The consequence of such an approach is extreme sensitivity to small levels of noise, as
one needs to perform the calculations to great precision, and even small noise destroys data encoded further in
the binary expansion of the real number in question. Therefore, good learnability properties of neural networks
are destroyed under this approach (and certainly the ability to use reduced precision computations and TPUs
is utterly destroyed).

Generally, there is a boundary between pragmatically usable programming platforms and esoteric program-
ming languages (“Turing tarpits”). Bare-bones RNNs are probably closer to the esoteric side of this divide,
because of their lack of structurization capabilities and the need for imprecise learned embedding of discrete
data structures into vector spaces5.

Self-modification is also difficult. First studies of self-modifying neural networks go back to at least 19936.
However, there is the dimension mismatch: the number of network outputs is much smaller than the number of
network weights. This dimension mismatch forces people to either do self-modification in a heavily constrained
manner (e.g. limiting themselves to a low-dimensional subset in the space of possible network matrices), or to
use “address multiplexing”, which again creates systems highly sensitive to noise.

Dataflow matrix machines are designed to address all these problems of “RNNs as programs” and to provide
us with a class of neural machines which is expressive enough to constitute a viable programming platform, to
host structured information without distorting it by embeddings, to have rich and convenient self-modification
facilities, and to be able to encapsulate any algorithms within neurons, as long as those algorithms agree to
interface via streams of data for which one can combine several streams with coefficients.

3 DMM architecture

The essence of neural model of computations is that linear and non-linear computations are interleaved. Hence,
the natural degree of generality for neuromorphic computations is to work not with streams of numbers, but
with arbitrary streams supporting the notion of linear combination of several streams (linear streams).7

Dataflow matrix machines (DMMs) form a novel class of neural machines, which work with wide variety
of linear streams instead of streams of numbers. The neurons have arbitrary arity (arity of a neuron can be
fixed or variable). Of particular note are self-referential facilities: ability to change weights, topology, and the
size of the active part of the network dynamically, on the fly, and the reflection capability (the ability of the
network to analyze its current configuration).

4Jordan Pollack. On connectionist models of natural language processing. PhD thesis, University of Illinois at Urbana-
Champaign, 1987. Chapter 4 is available at http://www.demo.cs.brandeis.edu/papers/neuring.pdf (Chapter 4 contains the
Turing-completeness proof); see also Hava Siegelmann and Eduardo Sontag. On the computational power of neural nets. Journal
of Computer and System Sciences, 50:132-150, 1995.

5Andrej Karpathy remarks in http://karpathy.github.io/2015/05/21/rnn-effectiveness/: “it is known that RNNs are
Turing-Complete in the sense that they can [...] simulate arbitrary programs (with proper weights). But similar to universal
approximation theorems for neural nets you shouldn’t read too much into this. In fact, forget I said anything.”;
See also Edward Grefenstette, Limitations of RNNs: a computational perspective, NAMPI 2016 workshop at NIPS.

6Jürgen Schmidhuber, A ‘Self-Referential’ Weight Matrix, In: Gielen, S., Kappen, B., ICANN ’93: Proceedings of the Inter-
national Conference on Artificial Neural Networks, Springer, 1993, pp. 446-450.

7This section repeats Section 1 of Michael Bukatin, Dataflow Matrix Machines: a Collaborative Research Agenda, December
2019, https://www.cs.brandeis.edu/∼bukatin/dmm-collaborative-research-agenda.pdf

2

http://www.demo.cs.brandeis.edu/papers/neuring.pdf
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://www.cs.brandeis.edu/~bukatin/dmm-collaborative-research-agenda.pdf

There are various kinds of linear streams. They include streams of numbers, sparse vectors and sparse
tensors (both of finite and infinite dimension), streams of functions and distributions. We found streams of
V-values (flexible tensors based on tree-shaped indices) to be of particular use.

A single dataflow matrix machine can process a large variety of different kinds of linear streams, or it can
be based on a single kind of linear streams, sufficiently expressive for a given class of situations.

This allows us to obtain neural machines which combine general-purpose programming powers of
stream-oriented architectures such as traditional dataflow programming and more novel functional reactive
programming with good machine learning properties of conventional neural networks.

Dataflow Matrix Machines resources:
Reference paper: https://arxiv.org/abs/1712.07447
Reference slide deck: https://researcher.watson.ibm.com/researcher/files/us-lmandel/aisys18-bukatin.pdf

GitHub Pages: https://anhinga.github.io
Open source implementation (Clojure): https://github.com/jsa-aerial/DMM

4 Future applications of the DMM architecture

Here we specifically focus on synthesis of algorithms and programs, and on learning to learn8.
Note that in the world of DMMs there is no strict boundary between an architecture of the network and the

algorithm it implements. Conceptually, we consider a countable address space and a countable-sized network,
with only a finite number of weights being non-zero at any given moment of time and the corresponding
finite part of the network being allocated in the computer memory and active at that moment of time. The
dynamically changing network architecture corresponds to the sparsity structure of the network, i.e. to knowing
which weights must be zero and which weights are allowed to be non-zero at the moment; this also corresponds
to the notion of program sketch in the world of more traditional programming.

So, in some sense, the total of the first two AI-GAs pillars is structured a bit differently. Instead of
distinguishing between learning the architectures and learning the learning algorithms, we distinguish between
learning the architecture and learning the weights of a network capable of modifying its own weights and
architecture. The primitives inside neurons can be arbitrary complex (a subnetwork can even be used inside a
neuron), so supplying a good library of primitives is an important part of learning the architectures.

4.1 Conventional programming and program synthesis

The dimension of the network and the dimension of data are decoupled, so compact neural machines for solving
conventional programming problems are available. For example, by considering streams of maps from words
to numbers, one can build a dataflow matrix machine counting words in a given text which uses only a few
neurons 9. Similarly, by considering streams of V-values (flexible tensors based on tree-shaped indices) and
embedding of lists into trees, one can build a similarly compact dataflow matrix machine accumulating a list
of asynchronous incoming events, for example, mouse clicks10.

The task of synthesis of dataflow matrix machines should be more tractable than conventional program
synthesis. When one works with DMMs, the task of learning program sketches is reformulated as neural
architecture search, and converting a program sketch to a full program should be done by conventional methods
of neural net training.

Dataflow matrix machines allow us to combine

• aspects of program synthesis setup
(compact, human-readable programs);

• aspects of program inference setup
(continuous models defined by matrices).

8The two subsections below repeat Sections 2-3 of Michael Bukatin, Dataflow Matrix Machines: a Collaborative Research
Agenda, December 2019, https://www.cs.brandeis.edu/∼bukatin/dmm-collaborative-research-agenda.pdf

9Section 3 of Michael Bukatin, Steve Matthews, Andrey Radul, Programming Patterns in Dataflow Matrix Machines and
Generalized Recurrent Neural Nets, June 2016. https://arxiv.org/abs/1606.09470

10Section 6.3 of Michael Bukatin, Jon Anthony, Dataflow Matrix Machines and V-values: a Bridge between Programs and
Neural Nets, https://arxiv.org/abs/1712.07447, in Gyuris, B. et al. (eds.), K + K = 120: Papers dedicated to László Kálmán
and András Kornai on the occasion of their 60th birthdays, Research Institute for Linguistics, Hungarian Academy of Sciences,
2017

3

https://arxiv.org/abs/1712.07447
https://researcher.watson.ibm.com/researcher/files/us-lmandel/aisys18-bukatin.pdf
https://anhinga.github.io/
https://github.com/jsa-aerial/DMM
https://www.cs.brandeis.edu/~bukatin/dmm-collaborative-research-agenda.pdf
https://arxiv.org/abs/1606.09470
https://arxiv.org/abs/1712.07447

4.2 Self-modification, learning to learn, and neuroevolution

Using neural networks for metalearning is always non-trivial. In particular, dimension mismatch, namely
the number of neuron outputs being much smaller than the number of network weights, means that a neural
network can only modify itself in a highly constrained manner. Dataflow matrix machines address this problem
and have powerful and flexible self-modification facilities11.

Therefore, a dataflow matrix machine can be equipped with a variety of primitives which perform self-
modifications, and it can fruitfully learn various linear combinations and compositions involving those primi-
tives.

Self-modification facilities of dataflow matrix machines are not limited to the weight changes for the existing
connections in the network. The available primitives allow to modify the network topology as well. For
example, primitives allowing the network to control its own fractal-like growth by the means of cloning its own
subnetworks are available.

Therefore, this is a very promising architecture not only for methods of learning to learn better in a
traditional sense, but also for methods of learning to perform neural architecture search better.

A dataflow matrix machine can comfortably host an evolving population of other DMMs inside itself, so it
is an excellent environment for neuroevolution experiments and, in particular, for the experiments aiming to
learn to evolve better (or to evolve to evolve better).

In our software experiments, we used self-modification facilities to

• produce controlled wave patterns in the network matrix (see Appendix B.2 of our LearnAut 2017 paper,
https://arxiv.org/abs/1706.00648);

• create randomly initialized self-referential DMMs which generated interesting emerging behaviors12;

• edit a running network on the fly by sending it requests to edit itself (in particular, this enables live-
coding, but this is also quite open-ended, since it enables a population of networks to tell each other
to modify themselves; of course, the receiving network doesn’t have to follow an incoming instruction to
self-modify blindly, although in the most simple-minded case it would do so)13.

5 Further thoughts on interplay between AI-GAs and DMMs

5.1 Leveraging structuring capabilities of DMMs

One remark in the AI-GAs essay is that “it is likely that an AI-GA would produce a complex machine whose
inner workings we do not understand”, which is an undesirable property. In this sense, the ability of DMMs to
form compact and understandable neural machines with rich functionality is a big advantage, and so is their
ability to form modular, hierarchical network structures. It should be much easier to achieve machines which
we can understand along this path, compared to the usual mixture of very large traditional neural nets and
large amounts of conventional computer code.

The same set of properties of DMMs makes them good construction material for artificial virtual worlds and
artificial civilizations. Instead of having people or artificial agents implement artificial worlds in conventional
languages, and then define and use complicated APIs, we can simply build those worlds from DMMs. This
way, we achieve uniformity of our material in all Three Pillars of AI-GAs, and we have a good degree of control
of the extent to which the artificial worlds in question are alive and morphing vs. static and unchanging.

5.2 We expect DMMs to benefit from AI-GAs work

The prime vector of further DMM development is discovery of new DMM programming idioms and paradigms,
and also discovery of new self-modification and machine learning patterns. Currently, we are at the stage when
this work is being done manually, but eventually we expect this to become more and more automated.

11In DMMs, streams of network matrices can be handled by a single neuron, so a single neuron can emit the current network
matrix on each step, while accepting updates to that matrix from other neurons. The network matrix does not have to be rewritten
on each step, but can be changed incrementally.

12Section 1.2 of DMM technical report 11-2018. Dataflow matrix machines: recent experiments and notes for next steps.
November 2018. https://www.cs.brandeis.edu/∼bukatin/dmm-notes-2018.pdf

13see Section 1.1 of the same technical report

4

https://arxiv.org/abs/1706.00648
https://www.cs.brandeis.edu/~bukatin/dmm-notes-2018.pdf

We do expect a typical AI-GAs advance to be applicable to DMMs in this sense, and to result in novel
ways of composing and using DMMs. At some point, we expect the automated processes to match and exceed
our own abilities of being creative with DMM design and use. But even before that, a variety of modest
AI-GAs-related advances should produce interesting and unexpected DMM-related developments.

5.3 How much compute is needed for AI-GAs?

Jeff Clune writes: “The AI-GA philosophy is that via a compute-intensive, sample-inefficient outer loop opti-
mization process we can produce learning agents that are extremely sample efficient and that generalize well.”
He also writes: “AI-GAs will require extraordinary amounts of computation by today’s standards”.

While I am certain that AI-GAs will be capable of creatively using any amounts of computation available
to them (and will eventually be likely to generate new compute capability in the material world), I am less
sure that AI-GAs will necessarily require extraordinary amounts of computation by today’s standards.

The name of the game is to reduce the amount of compute from what it took the computer named Earth and
its Biosphere to produce something like us, to the amount of compute feasible to us at some point. But whether
we can only hope to cut the required computer time and memory to “extraordinary amounts of computation
by today’s standards”, or whether we can cut it more drastically and, perhaps, even to something already
computationally feasible today is difficult to predict.

The question here is: how huge must the outer loop computation be? The answer is not obvious at all, and
very much depends on us being inventive in all Three Pillars.

We are aware of the modes which are intermediate between manual engineering and fully automated evo-
lution. E.g. human-guided selection of animal breeds works quite rapidly, compared to unguided evolution by
natural selection, and the associated computation is much more compact, compared to unguided evolution.
Also, compositional pattern-producing networks require negligible computer resources to produce sophisti-
cated patterns via interactive evolution (of course, interactive evolution also recruits computational power of
participating humans).

There are also other ways to affect the speed of AI-generation in the mode of “weakly guided evolution”,
such as, for example, occasionally injecting a promising new type of “superneuron”, or a promising connectivity
pattern, which can then be automatically copied and modified.

So, this might be the only place where I don’t quite agree with the intuition from the AI-GAs essay. I don’t
think there is a meaningful lower bound on the compute required along this path, and I don’t think there is
any ground for the statement that this program can’t be successful with today’s computer resources.

Of course, the more resources the better, and it is important to have an approach which scales up gracefully
and can take advantage of as much compute as becomes available in the future.

5.4 Safety and ethical considerations

I have studied carefully the ”Safety and ethical considerations” section of the AI-GAs essay, and I generally
agree with what it says.

I gave a particular thought to the paragraph starting with sentence “It is fair to ask why should I write this
paper if I think AI-GA research is more dangerous, as I am attempting to inform people about it potentially
being a faster path to general AI and advocating that more people work on this path”14. I gave a lot of
consideration on how this line of thought might be applicable to the present essay. The AI-GAs essay is
published, and our own previous DMM-related work is published, but the present essay might constitute “the
next step”, and each time a potentially significant next step is done, the question of whether to make the
results public, and if yes, in what form, arises again and needs to be revisited.

On one hand, one might ask whether the advance is “natural” and looks inevitable within a relatively short
timeline. If we are talking about a very intricate and very non-obvious development, then one can imagine
that there are futures where this development is not present or does not become common knowledge. On the
other hand, if a development is very “natural” and feels “inevitable” and “already long overdue”, then the
question is really not whether this advance would be made public eventually (the terminology and personalities
involved might differ, but the substance remains more or less invariant and will become public knowledge at
some point). Rather, in that case, the question is what would be the timeline, and what will be the sequence
of its introduction: who will work with these new techniques first, what will they use them for at first, what
safeguards will they apply, etc.

14Section 4, page 20 of https://arxiv.org/abs/1905.10985

5

https://arxiv.org/abs/1905.10985

In the present case, I believe that both AI-GAs and DMMs, and also their interplay, are “natural, inevitable,
and already long overdue”. So, after some reflection, the approach I am taking is as follows. I am publishing
this particular essay as a “GitHub preprint”, and I also disseminate it in other relatively modest ways, but I
don’t want to advertise it too much at the moment.

I also try to emphasize approaches which bring human aesthetics into play early in the game. This is why
many of our DMM-related programming exercises are related to interactive visual animations, and that’s why
I hope that visual and audio-visual art will continue to be a prominent motif during our further near-future
explorations of AI-GAs, DMMs, and related topics, following the examples set by DeepDream, by compositional
pattern-producing networks, etc. The hope here is “to make the future AGIs more analog and less digital in
spirit, and more like us in this sense, in terms of their perception of the world, their aesthetics, and such”.

So the approach I am taking at this point is trying to moderately influence the issues of who will work
with these new techniques first and what will they use them for at first, while recognizing that one can only
do so much in this sense, when we are taking about things which are as “natural, inevitable, and already long
overdue” as the material in this essay seems to be.

A Appendix: current state of DMM research

Here I describe what has been done by me and my colleagues, and what I am working on actively at the
moment. The key DMM resources (reference paper, reference slide deck, reference open-source implementation,
and GitHub Pages site) are listed in Section 3. The aim of this Appendix is to informally complement those
resources to assist readers who might be considering the possibility of actually using DMMs in their work.

The contrast between very flexible DMMs of maximal generality and subclasses of rigid DMMs will be made
throughout this section. It is easier to work with rigid subclasses within the most popular machine learning
frameworks existing today, such as PyTorch. However, looking further into the future, we should aim for
working with very flexible DMMs of maximal generality. The machine learning frameworks which are actually
tailored for this degree of flexibility, such as Julia Flux, started to emerge lately.

A.1 DMMs as a programming platform

We have explored a number of DMM programming techniques and examples in recent years15.
More efforts should be applied towards creating new DMM programming techniques and examples.
We believe in pluralism of DMM programming styles. Traditional programming architectures support a

large variety of programming styles: imperative, object-oriented, functional, logical, dataflow, and many others.
We think that programming in the DMM paradigm will also support a diversity of programming styles. Some
of those programming styles might be fairly conservative modifications of programming styles available in
the realm of discrete programs (e.g. there is a lot of affinity to various stream-based architectures, such as
traditional dataflow or more modern functional reactive programming). Other DMM programming styles to
be discovered in the future might be entirely novel.

We also hope to get extra ideas for new DMM programming paradigms from implementing DMMs as
embedded domain-specific languages (for example, our current reference open-source implementation is a DSL
embedded into Clojure).

A.2 Research-grade implementations of DMMs as a programming platform

The reference research-grade16 open-source implementation is in Clojure. It is a very flexible architecture based
on immutable streams of flexible tensors with tree-shaped indices and unbounded network size (countable-sized
address space). Because of immutability, the common data substructures are shared in memory.

We also have a more traditional open-source implementation of a subclass of rigid DMMs, pure lightweight
dataflow matrix machines, based on mutable streams of network-sized matrices and networks of fixed finite
size. This research-grade implementation is done in Processing17. This architecture is much more familiar to

15The maps of DMM programming techniques and examples currently present in DMM literature and in code are located at
https://github.com/anhinga/2020-notes/tree/master/programming-overview

16“Research-grade” here means that we are trying to maintain sufficient software quality to enable complete understanding of
this software and to facilitate its further use by people, and we try to support this software within reason and to provide timely
response to issues, but we are not trying to create a widely used “professional” open-source implementation yet.

17See Section 1 of [DMM technical report 11-2018. Dataflow matrix machines: recent experiments and notes for next steps.
November 2018. https://www.cs.brandeis.edu/∼bukatin/dmm-notes-2018.pdf] for experiments with self-modifying DMMs in
both of these implementations.

6

https://github.com/anhinga/2020-notes/tree/master/programming-overview
https://www.cs.brandeis.edu/~bukatin/dmm-notes-2018.pdf

the neural net community, and is straightforward to translate to the commonly used ML frameworks.
We started exploratory efforts for research-grade open-source implementations in Python and in Julia. We

would like to eventually integrate DMMs into PyTorch and into Julia Flux. In the context of this exploratory
effort, we started to use multiple kinds of linear streams within one dataflow matrix machine18, whereas our
existing Clojure and Processing implementations are based on having a single sufficiently expressive kind of
linear streams19.

A.3 Design work for DMMs as a machine learning platform

While we have performed a number of experiments with self-modifying neural machines (DMMs), and while
the class of DMMs includes known neural networks as subclasses, our group has only done preliminary design
work for future machine learning experiments with DMMs.

Some of the dichotomies here are between gradient-based methods and gradient-free methods, and also
between GPU acceleration and just using CPU cores.

For moderate scale experiments, one can simply use derivative-free methods and CPU cores. For example, as
a derivative-free method, one can use the modern incarnation of evolution strategies, introduced by researchers
from OpenAI20 and further elucidated by researchers from Uber AI Labs21.

We have also started to do exploratory work towards using an adaptive “population coordinate descent”
derivative-free schema. The essence of that schema is to maintain an evolving population of directions which
forms an overdefined coordinate system and to use an adaptive probability distribution/adaptive sampling
schema to repeatedly sample a direction for the next step of coordinate descent22.

However, looking forward, one really wants to have an option of using gradient-based methods and GPU/TPU
acceleration. The most popular machine learning frameworks, such as PyTorch, are a nice fit for rigid sub-
classes of DMMs. However, they are oriented towards standard tensors (multidimensional arrays of a fixed
number of dimensions and fixed sizes along each of those dimensions), and using them for the more flexible
variety of DMMs based on flexible tensors with tree-shaped indices is non-trivial23.

A better fit might be a machine learning framework, designed from start with the degree of flexibility we
would like to have here. In particular, Julia Flux, “the ML library that doesn’t make you tensor”, might be
a good fit for our use case24. Its incredibly flexible Zygote differentiable programming system is particularly
impressive25.

18Multiple kinds of linear streams within single DMM first appear in Michael Bukatin, Steve Matthews, Andrey Radul, Dataflow
matrix machines as programmable, dynamically expandable, self-referential generalized recurrent neural networks, May 2016.
https://arxiv.org/abs/1605.05296

19Streams of V-values are used in the Clojure implementation and streams of rectangular matrices of a fixed size are used in
the Processing implementation.

20Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, Ilya Sutskever, Evolution Strategies as a Scalable Alternative to Rein-
forcement Learning, March 2017. https://arxiv.org/abs/1703.03864

21Xingwen Zhang, Jeff Clune, Kenneth Stanley, On the Relationship Between the OpenAI Evolution Strategy and Stochastic
Gradient Descent, December 2017. https://arxiv.org/abs/1712.06564

22This work is still in its exploratory design stage: https://github.com/anhinga/population-of-directions
23A design sketch for one possible way of flattening and reshaping tree-shaped indices to fit the ”fixed number of dimensions/fixed

size” framework can be found here:
https://github.com/anhinga/2019-design-notes/blob/master/automated-synthesis/flattening-of-v-values.md

24https://github.com/FluxML/Flux.jl; the reference paper for Julia Flux is Michael Innes et al., Fashionable Modelling with
Flux, November 2018, https://arxiv.org/abs/1811.01457

25Michael Innes, Don’t Unroll Adjoint: Differentiating SSA-Form Programs, October 2018, https://arxiv.org/abs/1810.07951
and Michael Innes et al., A Differentiable Programming System to Bridge Machine Learning and Scientific Computing, July 2019,
https://arxiv.org/abs/1907.07587

7

https://arxiv.org/abs/1605.05296
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1712.06564
https://github.com/anhinga/population-of-directions
https://github.com/anhinga/2019-design-notes/blob/master/automated-synthesis/flattening-of-v-values.md
https://github.com/FluxML/Flux.jl
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1810.07951
https://arxiv.org/abs/1907.07587

	Introduction
	Problems with traditional neural nets as a programming platform
	DMM architecture
	Future applications of the DMM architecture
	Conventional programming and program synthesis
	Self-modification, learning to learn, and neuroevolution

	Further thoughts on interplay between AI-GAs and DMMs
	Leveraging structuring capabilities of DMMs
	We expect DMMs to benefit from AI-GAs work
	How much compute is needed for AI-GAs?
	Safety and ethical considerations

	Appendix: current state of DMM research
	DMMs as a programming platform
	Research-grade implementations of DMMs as a programming platform
	Design work for DMMs as a machine learning platform

