Propositional Logic

CS 112 Fall 2006

Types of Knowledge

- Procedural, e.g.: functions Such knowledge can only be used in one way -- by executing it
- Declarative, e.g.: constraints It can be used to perform many different sorts of inferences

Logic

Logic is a declarative language to:

- Assert sentences representing facts that hold in a world W (these sentences are given the value true)
- Deduce the true/false values to sentences representing other aspects of W

Logic in general

- Logics are formal languages for representing information such that conclusions can be d r a w n
- Syntax defines the sentences in the language
- Semantics define the "meaning" of sentences;
 - i.e., define truth of a sentence in a world

Connection World-Representation

Examples of Logics

♦ First-order predicate calculus (∀x) (∃y) Mother(y,x)

Logic of Belief

B(John,Father(Zeus,Cronus))

Model

A model of a sentence is an assignment of a truth value – true or false – to every atomic sentence such that the sentence evaluates to true.

Model of a KB

Let KB be a set of sentences

A model m is a model of KB iff it is a model of all sentences in KB, that is, all sentences in KB are true in m.

Satisfiability of a KB

A KB is satisfiable iff it admits at least one model; otherwise it is unsatisfiable

 $KB1 = \{P, \neg Q \land R\} \text{ is satisfiable}$ $KB2 = \{\neg P \lor P\} \text{ is satisfiable}$ $KB3 = \{P, \neg P\} \text{ is unsatisfiable}$ valid sentenceor tautology

Logical Entailment

- $\$ α : arbitrary sentence
- ♦ KB entails α written KB $\models \alpha$ iff every model of KB is also a model of α

• Alternatively, KB $\models \alpha$ iff

- {KB, $\neg \alpha$ } is unsatisfiable
- KB $\Rightarrow \alpha$ is valid

Inference Rule

- An inference rule {ξ, ψ} μφ consists of 2 sentence patterns ξ and ψ called the conditions and one sentence pattern φ called the conclusion
- If ξ and ψ match two sentences of KB then the corresponding φ can be inferred according to the rule

Inference

- I: Set of inference rules
- KB: Set of sentences
- Inference is the process of applying successive inference rules from I to KB, each rule adding its conclusion to KB

Example: Modus Ponens

 $\{ \alpha \Rightarrow \beta, \alpha \} \vdash \beta$ $\{\xi, \psi\} \vdash \varphi$

From

Battery-OK ∧ Bulbs-OK ⇒ Headlights-Work Battery-OK ∧ Bulbs-OK Infer

Headlights-Work

→ Connective symbol (implication)

Logical entailment

 $KB \models \alpha$ iff $KB \Rightarrow \alpha$ is valid

⊢ Inference

Soundness

- An inference rule is sound if it generates only entailed sentences
- All inference rules previously given are sound, e.g.:

modus ponens: $\{\alpha \Rightarrow \beta, \alpha\} \vdash \beta$

◆ The following rule: { $\alpha \Rightarrow \beta$, β} ⊢ α is unsound, which does not mean it is useless (an inference rule for *abduction*, outside scope of this course)

Is each of the following a sound inference rule?

$$\{\alpha \Rightarrow \beta, \neg \alpha\} \vdash \neg \beta$$

$$\{\alpha \Rightarrow \beta, \neg \beta\} \vdash \neg \alpha$$

Completeness

- A set of inference rules is complete if every entailed sentences can be obtained by applying some finite succession of these rules
- Modus ponens alone is not complete, e.g.:

from $A \Rightarrow B$ and $\neg B$, we cannot get $\neg A$

Proof

The proof of a sentence α from a set of sentences KB is the derivation of α by applying a series of sound inference rules

Proof

The proof of a sentence α from a set of sentences KB is the derivation of α by applying a series of sound inference rules

1.	Battery-OK \wedge Bulbs-OK \Rightarrow Headlights-Work	
2.	Battery-OK ∧ Starter-OK ∧ ¬Empty-Gas-Tank ⇒ Engine-Starts	
3.	Engine-Starts $\land \neg$ Flat-Tire \Rightarrow Car-OK	
4.	Headlights-Work	
5.	Battery-OK	
6.	Starter-OK	
7.	¬Empty-Gas-Tank	
8.	¬Car-OK	
9.	Battery-OK 🗚 Starter-OK	by 5,6
10.	Battery-OK 🗚 Starter-OK 🗚 ¬Empty-Gas-Tank	by 9,7
11.	Engine-Starts	by 2,10
12.	Engine-Starts ⇒ Flat-Tire	by 3,8
13.	Flat-Tire	by 11,12

Inference Problem

Given:

- KB: a set of sentence
- $_{v} \alpha$: a sentence

Answer:

• $KB \models \alpha$?

Deduction vs. Satisfiability Test

 $KB \models \alpha$ iff $\{KB, \neg \alpha\}$ is unsatisfiable

Hence:

- Deciding whether a set of sentences entails another sentence, or not
- Testing whether a set of sentences is satisfiable, or not are closely related problems