CS114 Lecture 10

Parsing and Partial Parsing

Thanks for Jurafsky & Martin & Prof. Pustejovksy for slides

4
e

Parsing

Parsing with CFGs refers to the task of assigning
proper trees to input strings

Proper here means a tree that covers all and only the
elements of the input and has an S at the top

- It doesn’t actually mean that the system can select the
correct tree from among all the possible trees

Partial parsing returns a set of constituents or small
trees

- Does not require a single S at the top _
I -

Processing - Jurafsky and

Top-Down and Bottom-Up

. Top-down

- Only finds trees that form sentences

_ Finds trees that don't match the words

Bottom-up
_ Only finds trees consistent with the words

_ Builds subtrees that can't combine to make

sentences _
e ——

Processing - Jurafsky and

Top-Down Search

. Sentences: trees rooted with S

. Start with S, expand nodes working
downwards

. Try to reach the right set of words

44
B ——

Processing - Jurafsky and

Top Down Space

|
\NP VP Aux NP VP VP/
S S S S S S
N N N
NP VP NP VP Aux NP VP Aux NP VP VP VP
N | RN
et Nom PropN Det Nom PropN V NP V

Processing - Jurafsky and

Bottom-Up Parsing

. Input must be matched exactly — very hard

. Start by combining words into small trees

. Work your way up, combining small trees into
larger trees

. Try to get a single tree rooted at S

4
R

Processing - Jurafsky and

Bottom-Up Search

Grammar: >
S (NP VP

SO Aux NP VP

S (VP

NP () Det Nom

Nom {) Noun

Nom () Noun Nom

Nom {) Nom PP o
NP {) Proper-Noun BOOk that ﬂlght
VP {) Verb

VP {) Verb NP

PP () Prep NP

Noun

4

essing

- Jurafsky and Martin

How to explore the search space?

- Which node to try to expand next
- Which grammar rule to use to expand a node

- Wrong choice leads to unsolvable problem

One approach is called backtracking.

_ Make a choice, if it works out then fine

_ If not then back up and make a different choice

4
I

Processing - Jurafsky and

Backtracking is not good enough

- Ambiguity

- Shared subproblems

4
B — °

Processing - Jurafsky and

Ambiguity

S S
NP p /\
| NP VP
Pronoun Verb/\NP | |
| | Pronoun
I o N | VP PP

Det Nominal I P
| /\ Verb NP 1N my pajamas

A Nominal PP | N
| /\ shot Det Nominal

Noun 1 My palamas | |
| Y paJ an Noun

elephant |
elephant

4
B —

Processing - Jurafsky and

The elephant is in the garden

S

mp
NP
7\
NP PP
T shot an elephant in my garden

October 2006 | 533180: aring igrihms p

| fired from the garden

/o

NP

NP PP

RN T

T shot an elephant in my garden

October 2006 | 533180: aring igrihms 12

Shared Sub-Problems

No matter what kind of search (top-down or
bottom-up or mixed) that we choose.

- Redoing work is wasted effort
- Naive backtracking means duplicated work.

- Dynamic Programming...

4
L

Processing - Jurafsky and

Parsing so far

«Goals

- Define a language
- A grammar defines a language L over token set (terminals)

- A parser determines whether a particular string of tokens is in
the language

- Determine the constituent structure of a string of
tokens (assuming it’s in the language)

- Determine the meaning (we’re not there yet)

4
I

« Information

_ Categories (nonterminals) of the tokens
- Which adjacent nonterminals form tokens (rules)

- What additional conditions must be met in order
for a constituent to be formed (e.g. features,
words)

4
I

Parsing Types

Next:

- Chunking
- Partial parsing
We'll come back to Parsing as Search

- CFGS

- Top down, bottom up

Motivation: Parsing is hard
Example (wsj_0001):

- Pierre Vinken, 61 years old, will join the board as a
nonexecutive director Nov. 29.

_ Mr. Vinken is chairman of Elsevier N.V., the Dutch
publishing group.

- Pierre/NNP Vinken/NNP,/, 61/CD years/NNS old/lJ,/,
will/MD join/VB the/DT board/NN as/IN a/DT
nonexecutive/JJ director/NN Nov./NNP 29/CD ./.

- Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN
Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/
VBG group/NN ./.

Parsing Problem

. Given grammar G and sentence A discover all
valid parse trees for G that exactly cover A

S
|
VP
////////\\\igg\
V
. Nom
Det |
book |
that N ‘
flight
18

October 2006 (533180 arsing Ao

Shallow (Chunk) Parsing

Goal: divide a sentence into a sequence of
chunks.

.Chunks are non-overlapping regions of a text
[1] saw [a tall man] in [the park].

.Chunks are non-recursive

_Cannot contain other chunks

.Chunks are non-exhaustive

e included.in-chunks

Chunk Parsing Examples

. Noun-phrase chunking:

[1] saw [a tall man] in [the park].

. Verb-phrase chunking:

The man who [was in the park] [saw me].

. Question answefing:

- What [Spanish explorer] discovered [the

Mississippi River]?

Shallow Parsing: Motivation

Locating information

_ e.g. index a document collection on its noun
phrases

lgnoring information

_ Generalize in order to study higher-level
patterns

- e.g. phrases involving “gave” in Penn treebank:

~ gave NP; gave up NP in NP; gave NP up; gave NP help; gave
NP to NP

- Sometimes a full parse has too muM

Representation

BIO (or 10B)
He||saw||(the||lbig||dog)|
PRP VBD DT JJ NN
BEGIN| |OUTSIDE| | BEGIN | | INSIDE | | INSIDE

Comparison with Full Syntactic

Parsing often an intermediate stage

_ later stages draw on the parse for their own purposes
Full parsing sufficient, often not necessary

_ Often more information than we need
Shallow parsing is an easier problem

S
Less structure, no recursion e

Chunks and Constituency

Constituents: [[a tall man] [in [the park]]].

Chunks: [a tall man] in [the park].

. A constituent is part of some higher unit in the
hierarchical syntactic parse

. Chunks are not constituents

_ Constituents are recursive

- Chunks do not cross major constituent -

boundaries ‘Whi?)

Chunk Parsing in NLTK

. Chunk parsers usually ignore lexical content

- Only need to look at part-of-speech tags
. Possible steps in chunk parsing

_ Chunking, unchunking

_ Chinking

~ Merging, splitting

4
I

Chunking

Define a regular expression that matches
the sequences of tags in a chunk

A simple noun phrase chunk regexp:

(Note that <NN.*> matches any tag starting with NN)

<DT>? <JJ>* <NN.*>
Chunk all matching subsequences:

the/DT little/JJ cat/NN sat/VBD on/IN the/DT mat/NN

[the/DT little/Js cat/NN] sat/VBD on/IN [the/DT mat/NN]

. If matching subsequences overlap, first 1 -
iets irioriti

Unchunking

Remove any chunk with a given pattern

_ e.g., unChunkRule(‘<NN | DT>+, ‘Unchunk NNDT’)
_ Combine with Chunk Rule <NN|DT|JJ>+
Chunk all matching subsequences:

- Input:
the/DT little/JJ cat/NN sat/VBD on/IN the/DT mat/NN

- Apply chunk rule
[the/DT little/JJ cat/NN] sat/VBD on/IN [the/DT mat/NN]

- Apply unchunk rule

[the/DT little/JJ cat/NN] sat/VBD on/IN the/DTLm_

Chinking

A chink is a subsequence of the text that is not a chunk.

Define a regular expression that matches the sequences
of tags in a chink

A simple chink regexp for finding NP chunks:
(<VB.?>|<IN>)+

First apply chunk rule to chunk everything

- Input: the/DT little/JJ cat/NN sat/VBD on/IN the/DT mat/NN
_ ChunkRule('<.*>+' ‘Chunk everything’)

[the/DT little/JJ cat/NN sat/VBD on/IN the/DT mat/NN]
- Apply Chink rule above:

[the/DT little/1) cat/NN] sat/VBD on/IN [the/DT mat/NN]

Merging

Combine adjacent chunks into a single chunk

- Define a regular expression that matches the sequences of tags
on both sides of the point to be merged

Example:

- Merge a chunk ending in JJ with a chunk starting with NN

MergeRule(‘<JJ>’, ‘<NN>’, ‘Merge adjs and nouns’)

[the/DT little/JJ] [cat/NN] sat/VBD on/IN the/DT mat/NN
[the/DT little/J) cat/NN] sat/VBD on/IN the/DT mat/NN

M" ' ' imerging

Cascaded Chunking

. Goal: create chunks that include other chunks

Examples:

- PP consists of preposition + NP

- VP consists of verb followed by PPs or NPs

44
e

Cascaded Chunking

find NP chunks
»>>> rule = ChunkRule(r’<DT>?<JJ>*<NN.*>’, ’‘'Chunk NPs’)
»>>> parser = RegexpChunkParser ([rule], chunk node='NP’,

. top node=’S’, TREE='NP-CHUNKS’, SUBTOKENS='"WORDS’)
>>> text tok = Token (WORDS=s.leaves())
>>> parser.parse (text tok)

find VP chunks
»>>> rule = ChunkRule(r’<VB.*><.,*>*’, ’“"Chunk VPs’)
»>> parser = RegexpChunkParser ([rule], chunk node=’'VP’,
top node=’'S’, SUBTOKENS=’'NP-CHUNKS’)
>>> parser.parse(text tok)
»>>> print text tok[’TREE’]
(S:
(NP: <the/DT> <little/JJ> <cat/NN=>)
(VP: <gat/VBD> <on/IN> (NP: <the/DT> <mat/NN=)))

4
e

Next Assignment

- Use the nltk chunker and write chunking rules and
apply it to the Treebank data.

- Evaluate your performance on the "tagged"
treebank data (which is already chunked).

- There are 200 sentences. Develop the grammar
using the first 150 sentences and test on the last
50 sentences.

4
I

Example

Werite rules using POS to
produce the chunks

Section 7.3, NLTK book
Evaluate performance

Definitely > 70% f-
measure, shoot for
>90%

[A/DT form/NN]

of/IN

[asbestos/NN]

once/RB used/VBN to/TO make/VB
[Kent/NNP]

[cigarette/NN filters/NNS]
has/VBZ caused/VBN

[a/DT high/JJ percentage/NN]
of/IN

[cancer/NN deaths/NNS]

