CS114 Lecture 10
Parsing

March 5, 2014
Professor Meteer

Thanks for Jurafsky & Martin & Prof. Pustejovksy for slides



Announcements

* Industry Meet and Greet
— Tuesday March 11

e JBS: Summer 2014



PARSING

Grammar:

* Parsing is the process of S > NP VP
. . ] . S—> Aux NP VP
recognizing and assigning S > VP
NP - Det Nom
STRUCTURE Nom > Noun

| Nom = Noun Nom

* Parsing a string with a CFG: &
— Finding a derivation of the
NP

string consistent with the
grammar /\Nom

— The derivation gives us a PARSE .3, Det Noun
TREE | | |

Book that flight




PARSING AS SEARCH

* The main problem with parsing is the
existence of CHOICE POINTS

* Parsing Strategy

— Top down:

« Expectation Driven
« Start with “S”

— Bottom up:

« Data Driven
 Start with words/categories

e Search Strategy

— Determining the order alternatives are considered
» Depth first

. Briiiih firii



TOP-DOWN vs BOTTOM-UP

* TOP-DOWN:

— Only search among grammatical answers

— BUT: suggests hypotheses that may not be
consistent with data

— Problem: left-recursion

* BOTTOM-UP:

— Only forms hypotheses consistent with data

— BUT: may suggest hypotheses that make no sense
globally



NON-PARALLEL SEARCH

 Ifit's not possible to examine all alternatives
in parallel, it's necessary to make further
decisions:

— Whic
first (

— Whic
first

n node in the current search space to expand
oreadth-first or depth-first)

n of the applicable grammar rules to expand

— Which leaf node in a parse tree to expand next

(e.g.,

leftmost)



TOP-DOWN, DEPTH-FIRST,
LEFT-TO-RIGHT

: S /S\
NP VP NlP VP
PropN
[Does] [Does] [Does]
AUX| NP VP AUX [NP] VP AUX NP VP
Det Nom
[Does] Does [this] Does [this]



TOP-DOWN, DEPTH-FIRST,
LEFT-TO-RIGHT (I

Noun
Does this [flight] Does this [flight]
g S
T
Am AUX NP xip
Det/}om Det/\Nom Verb
Nclnm | Nc!un
Does this ﬂilght [include] Does this ﬂiflght [1nclude]




TOP-DOWN, DEPTH-FIRST,

S

Aux NP VP s

Det Nom [Verb| NP

Noun

Does this flight [include] L

NN

Noun Det| Nom

Does this flight include [a]

Noun

Det Nom Verb [NP

VP

T~

Does this flight include [a]

S
Aux NP VP

Det Nom Verb

Noun

Does this flight include

S N

NP

a

Det il\'om

[meal]




A T-D, D-F, L-R PARSER

function ToP-DOWN-PARSE(inpur, grammar) returns a parse tree

agenda + (Initial S tree, Beginning of input)
curreni-search-state + POP(agenda)
loop
if SUCCESSFUL-PARSE?(current-search-state) then
return TREE(current-search-state)
else
if CAT(NODE-To-EXPAND(current-search-staie)) 1s a POS then
if CAT(node-ro-expand)
C
POS(CURRENT-INPUT(current-search-state)) then
PUSE(APPLY-LEXICAL-RULE(current-search-state), agenda)
else
return reject
else
PUSH(APPLY-RULES(current-search-stare, grammar), agenda)
if agenda is empty then
return reject
else
current-search-state < NEXT(agenda)
end




LEFT-RECURSION

* A LEFT-RECURSIVE grammar may cause a 1-D,
D-F, L-R parser to never return

* Examples of left-recursive rules:
— NP > NP PP
—S—>SandS

— But also:
* NP = Det Nom
e Det > NP’ s



THE PROBLEM WITH
LEFT-RECURSION

NP — NP PP

S = S =

N N

S
Np VP NP VP
P

S .

AN
NP VP
AN
NP P NP PP
P PP

N

—.
N




Dynamic Programming

e We need a method that fills a table with
partial results that

— Does not do (avoidable) repeated work
— Does not fall prey to left-recursion

— Can find all the pieces of an exponential number
of trees in polynomial time.

* Two popular methods

— CKY
— Earley



The CKY (Cocke-Kasami-Younger) Algorithm

* Requires the grammar be in Chomsky Normal
Form (CNF)

— All rules must be in following form:
e A>BC
* A>w
 Any grammar can be converted automatically
to Chomsky Normal Form



Converting to CNF

 Rules that mix terminals and non-terminals

— Introduce a new dummy non-terminal that covers the
terminal

* INFVP->to VP replaced by:

e INFVP->TO VP
* TO->to

* Rules that have a single non-terminal on right (“unit
productions”)

— Rewrite each unit production with the RHS of their
expansions

* Rules whose right hand side length >2

— Introduce dummy non-terminals that spread the right-
hand side



Sample Grammar

S NP VP Det > | a | the

S—> Aux NP VP Noun—> book | saw | mark
S—> VP Verb = book | saw

NP = NP PP Proper-Noun = Mark

NP - Det Noun Aux—> Did | Has

NP = PrN Prep—> to | on | near

VP 2>V

VP 2 V NP

VP =2 V NP PP

PP = Prep NP



Automatic Conversion to CNF

S — NPVP
S — Aux NP VP

S — VP

NP — Det Nominal

NP — Proper-Noun

NP — Pronoun

Nominal — Noun
Nominal — Noun Nominal
Nominal — Nominal PP

S — NPVP

S — XIVP

X1 — Aux NP

S — book | include | prefer
S — Verb NP

S — VPPP

NP — Det Nominal

NP — TWA | Houston

NP — I| she| me
Nominal — book | flight | meal | money
Nominal — Noun Nominal
Nominal — Nominal PP

VP — Verb VP — book | include | prefer
VP — Verb NP VP — Verb NP
VP — VP PP VP — VP PP
PP — Prep NP PP — Prep NP
Figure 10.15  Original LO Grammar and its conversion to CNF




Back to CKY Parsing

e Given rulesin CNF

e Consider the rule A -> BC

— If there is an A in the input then there must be a B
followed by a C in the input.

— |f the A goes from i to j in the input then there
must be some k st. i<k<j
* le. The B splits from the C someplace.



CKY

* So let’s build a table so that an A spanning
fromitojin the inputis placed in cell [i,j] in
the table.

* S0 a non-terminal spanning an entire string
will sit in cell [0, n]

* |f we build the table bottom up we’ll know
that the parts of the A must go from i to k and
from k to |



CKY

 Meaning that for a rule like A -> B C we should
look for a B in [i,k] and a Cin [k,j].

* |n other words, if we think there might be an A
spanning i,j in the input... AND

* A->BCisaruleinthe grammar THEN

* There must be a Bin [i,k] and a Cin [k,j] for
some i<k<j

* So just loop over the possible k values



CKY Table

o
* : 5 i)
‘Filling the
[i,j1th|cell in ety
the CKY table _li

_ [n.n] _



0 Book 1 the 2 flight 3 through 4 Houston 5

S=> NPVP
S>X1VP
X1 > AUX NP

S = Verb NP
S VP PP

Nom - book | flight | meal

Nom - Nom PP

the

flight

through Houston

. VP

Det - the | a | this

NP = Det Nom
NP = twa housto
PP = Prep NP

Prep = through | in | at
VP = Verb

VP - Verb NP

Verb = book | fly | list

[

1.3]

1.4]

v-

2.3

4]

L E

[3.4]

%

4.5]




CKY Algorithm

function CKY-PARSE(words, grammar) returns table

for j «+—from 1 to LENGTH(words) do
table[j—1,j1+—{A | A — words[j] € grammar }
for i« from j — 2 downto 0 do
fork—i+1toj—1do
table[i j] + table[i j] U
{4 |4 — BC € grammar,
B € tableli K.
C € tablelk,j] }




 We arranged the loops to fill the table a
column at a time, from left to right, bottom to
top.

— This assures us that whenever we’re filling a cell,

the parts needed to fill it are already in the table
(to the left and below)

— Are there other ways to fill the table?



0 Book 1 the 2 flight 3 through 4 Houston 5

Book the flight  through Houston

.o\'lnPi‘\(:rbl [S VP X2 VP
E?' A| A A A

oo s

1.2] Eé'l [1.4]
inal,

%[.3

g-l

N
<

2,3] 4]

[2.4]

sl
\J



0 Book 1 the 2 flight 3 through 4 Houston 5

S=> NPVP
S>X1VP
X1 > AUX NP

S = Verb NP
S VP PP

Nom - book | flight | meal

Nom - Nom PP

the

flight

through Houston

. VP

Det - the | a | this

NP = Det Nom
NP = twa housto
PP = Prep NP

Prep = through | in | at
VP = Verb

VP - Verb NP

Verb = book | fly | list

[

1.3]

1.4]

v-

2.3

4]

L E

[3.4]

%

4.5]




> S

AN N\
N\ \
/ \ /\ NP/ \PP

WP VAN

John called Sue from Denver John called Sue from Denver




Example 1

S->NP VP T(o,sg NP(4,5)
\ /

VP ->V NP v
VP -> VP PP P(3,4) Denver
NP -> NP PP NP(2,3) |from
PP->P NP V(2,3)
NP -> John V(1,2) Sue
NP -> Sue NP(0,1)
NP -> Denver
V -> called John
V -> sue

P ->from

called




Example 2

S->NP VP
NP -> NP PP
VP ->V NP%
VP -> VP PP
PP ->P NP%
NP -> John
NP -> Sue
NP -> Denver
V -> called

V ->sue

P ->from

IfP(B,S)—»NP
?->VP P Denver
?->NPP
VP(1,3)—+V>NP from
N
?->NPV |V Sue
NP called
John




Example 3

S->NP VPX
VP ->V NP %
NP -> NP PP%
VP -> VP PP%
PP->P NP

NP -> John

NP -> Mary NP
> Denver

V -> called
P->from

VP NP(2,5—pPP(3,5) |NP
P(1,5)}—
?PVP P Denver
?-*NPP
5(0,3)— '\/15(1,3)_'V,"KIP from
l?*NPV V(12 |sue
NP called
John
1 2 3




Example 4

S-> NP VPx%
VP ->V NP
NP -> NP PP
VP -> VP PP
PP ->P NP
NP -> John
NP -> Sue
NP -> Denver
V -> called

V ->sue

P ->from

S(0,5) —s| VP NP(2,5—PP(3,5) |NP

S(0,5) —| VRS
?XiVP P Denver
?-XNPP

4(d,3) vf(1,3)—ﬁp from

?¢'>NPV W (1,2) |Sue

A\

NP called

John

1 2 3




Back to Ambiguity

e Did we solve it?

* No...

— Both CKY and Earley will result in multiple S structures
for the [0,n] table entry.

— They both efficiently store the sub-parts that are
shared between multiple parses.

— But neither can tell us which one is right.

— Not a parser —a recognizer

* The presence of an S state with the right attributes in the
right place indicates a successful recognition.

* But no parse tree... no parser

* That’s how we solve (not) an exponential problem in
polynomial time



Converting CKY from Recognizer to Parser

* With the addition of a few pointers we have a
parser

 Augment each new cell in chart to point to
where we came from.



Problem (minor)

* We said CKY requires the grammar to be
binary (ie. In Chomsky-Normal Form)

 We showed that any arbitrary CFG can be
converted to Chomsky-Normal Form so
that’s not a huge deal

* Except when you change the grammar the
trees come out wrong

* All things being equal we’d prefer to leave
the grammar alone.



Earley Parsing

* Allows arbitrary CFGs

 Where CKY is bottom-up, Earley is top-down

* Fills a table in a single sweep over the input
words

— Table is length N+1; N is number of words

— Table entries represent

* Completed constituents and their locations
* In-progress constituents
* Predicted constituents




* The table-entries are called states and are
represented with dotted-rules.

S->-VP A VP is predicted
NP -> Det - Nominal An NP is in progress
VP ->V NP - A VP has been found



States/Locations

* |t would be nice to know where these things are
in the input so...
S->-VP[0,0] A VP is predicted at the
start of the sentence
NP -> Det - Nominal [1,2] An NP isin progress; the
Det goes from 1 to 2

VP ->V NP - [0,3] A VP has been found
starting at 0 and ending at 3



Graphically

VP ->V NP .

S ->.VP

NP -> Det . Nominal




* As with most dynamic programming
approaches, the answer is found by looking in

the table in the right place.

* In this case, there should be an S state in the
final column that spans from 0 to n+1 and is
complete.

 |f that’s the case you’re done.
—S—> o - [0,n+1]



Earley Algorithm

* March through chart left-to-right.

* At each step, apply 1 of 3 operators
— Predictor
* Create new states representing top-down expectations

— Scanner

* Match word predictions (rule with word after dot) to
words

— Completer

* When a state is complete, see what rules were looking
for that completed constituent



Earley’s example 1

Predict - Scan- Complete

John called Sue from Denver

PREDICT SCAN COMPLETE
f’\l: ' N:;’FF’,P NP -> . John , NP -> John .

ke S->NP. VP
NP'->. John NP -> NP . PP

NP -> . Sue
NP -> . Denver

Rules not predicted

P->.VNP

VP ->.VP PP NOTE TO SELF:
PP->.P NP Put in spans
V -> . called

V ->. sue




Earley’s example 2

John called Sue from Denver

PREDICT SCAN COMPLETE

S->NP.VP V -> . called V -> called .
NP -> NP . PP VP-> V.NP
VP ->.V NP

VP ->.VP PP

PP ->.P NP

V -> . called

V ->, sue

P->.from



Earley’s example 3

John called Sue from Denver

PREDICT SCAN

S->NP.VP

NP -> NP . PP NP ->. Sue
VP -> V.NP

VP ->.VP PP

PP->.P NP

NP ->. Joh

NP ->. Sue

NP -> . Denver

COMPLETE

NP -> Sue.
VP -> VNP.
VP-> VP. PP
S->NP VP




S->NP.VP
NP -> NP . PP
VP -> V.NP
VP -> VP . PP
PP->.P NP
P->.from

NP ->. John
NP -> . Sue
NP -> . Denver

Earley’s example 4

John called Sue from Denver

P->.from

NP -> . Denver

S->NP.VP
NP -> NP . PP
VP -> VP .PP
PP-> P.NP
P-> from.

NP -> Denver .
PP-> P NP.
NP -> NP PP.
VP -> VP PP.
VP -> V NP.
S->NP VP.




Predictor

* @Given a state
— With a non-terminal to right of dot
— That is not a part-of-speech category
— Create a new state for each expansion of the non-terminal

— Place these new states into same chart entry as generated
state, beginning and ending where generating state ends.

— So predictor looking at
« S->.VP[0,0]

— resultsin
VP ->. Verb [0,0]
VP ->.Verb NP [0,0]



Scanner

* Given a state
— With a non-terminal to right of dot
— That is a part-of-speech category
— If the next word in the input matches this part-of-speech
— Create a new state with dot moved over the non-terminal

— So scanner looking at
VP ->.Verb NP [0,0]

— If the next word, “book”, can be a verb, add new state:
* VP ->Verb.NP[0,1]

— Add this state to chart entry following current one

— Note: Earley algorithm uses top-down input to disambiguate
POS! Only POS predicted by some state can get added to
chart!



Completer

* Applied to a state when its dot has reached right
end of role.

e Parser has discovered a category over some span of
iInput.

* Find and advance all previous states that were
looking for this category
— copy state, move dot, insert in current chart entry
* @Given:
— NP -> Det Nominal . [1,3]
— VP -> Verb. NP [0,1]

 Add
— VP ->Verb NP . [0,3]



Earley: how do we know we are done?

* How do we know when we are done?

* Find an S state in the final column that spans
from O to n+1 and is complete.

 |f that’s the case you’re done.
—S—>o - [0,n+1]



* So sweep through the table from 0 to n+1...

— New predicted states are created by starting top-
down from S

— New incomplete states are created by advancing
existing states as new constituents are discovered

— New complete states are created in the same way.



Earley

* More specifically...
1. Predict all the states you can upfront

2. Read a word
1. Extend states based on matches
2. Add new predictions
3. Goto 2

3. Look at N+1 to see if you have a winner



* Book that flight

* We should find... an S from 0 to 3 that is a
completed state...



Example

Chart[0] SO 7y — 8§
S1 S — eNPJVP
S2 S — eAux NP VP

S3 S — eoVP

S4 NP — e Pronoun

S5 NP — e Proper-Noun
S6 NP — e Det Nominal
S7T VP — e Verb

S8 VP — e Verb NP

S9 VP — e Verb NP PP
S10 VP — e Verb PP

S11 VP — ¢ VPPP

0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
0.0]
[0.0]

Dummy start state

Predictor
Predictor

Predictor
Predictor

Predictor
Predictor
Predictor
Predictor

Predictor
Predictor

Predictor



Example

Chart[1] S12 Verb — book e
S13 VP — Verbe
S14 VP — Verb e NP
S15 VP — Verb ¢ NP PP
S16 VP — Verb ¢ PP
S17 S — VPe
S18 VP — VPe PP
S19 NP — e Pronoun
S20 NP — e Proper-Noun
S21 NP — e Det Nominal
S22 PP — e Prep NP

Scanner
Completer
Completer

Predictor
Predictor
Completer
Completer
Predictor
Predictor
Predictor
Predictor



Example

Chart[2] S23 Det — thate (2] Scanner
S24 NP — Det ¢ Nominal B A Completer
S25 Nominal — e Noun 22| Predictor
S26 Nominal — e Nominal Noun [2.2] Predictor
S27 Nominal — e Nominal PP [2.2] Predictor
Chart[3] S28 Noun — flight e [2.3] Scanner
S29 Nominal — Noun e 23] Completer
S30 NP — Det Nominal e HEE] Completer
S31 Nominal — Nominal e Noun [2.3] Completer
S32 Nominal — Nominal e PP [2.3] Completer
S33 VP — Verb NP e 1):3] Completer
S34 VP — Verb NP e PP 0.3 Completer
S35 PP — e Prep NP 3.3 Predictor
S36 S — FVPe 0.3 Completer




Details

 What kind of algorithms did we just describe
(both Earley and CKY)

— Not parsers — recognizers

* The presence of an S state with the right attributes in
the right place indicates a successful recognition.

* But no parse tree... no parser

* That’s how we solve (not) an exponential problem in
polynomial time



Back to Ambiguity

e Did we solve it?



Ambiguity

NP/\VP /S\

| /\ NP VP

PI' o1noun \rerb NP |
| | Pronoun
I VP PP

I I
Shof et Nominal I e oy o~
| A Verb NP 1N my pajamas
4 Nominal PP | e

I /\ Shot Det Noma.l

Noun  in my pajamas | .I
an Noun

elephant

elephant



Converting Earley from Recognizer to Parser

* With the addition of a few pointers we have a
parser

 Augment the “Completer” to point to where
we came from.



Augmenting the chart with structural information

Step
S8
S9
S10
S11
S12
S13

Dotted rule
Verb = book ¢
VP = Verb ¢

SD>VPe

VP > Verb ¢ NP

NP > e
NP > o

Det Nom
PropN

Span
[0,1]
[0,1]
[0,1]
[0,1]
[1,1]
[1,1]

Step
Scanner
Completer
Completer
Completer
Predictor

Predictor

Backpointer

S8

S9

S8
S11
S11



Retrieving Parse Trees from Chart

* All the possible parses for an input are in the table

* We just need to read off all the backpointers from
every complete S in the last column of the table

 Find all theS->X. [O,N+1]
* Follow the structural traces from the Completer

e Of course, this won’t be polynomial time, since there
could be an exponential number of trees

* So we can at least represent ambiguity efficiently



How to do parse disambiguation

* Probabilistic methods
* Augment the grammar with probabilities

* Then modify the parser to keep only most
probable parses

* And at the end, return the most probable
parse



