CS114 Lecture 14

Dependency Grammars and
Functional Unification Grammars

March 11, 2013
Professor Meteer

Slides from UPenn, Adapted from slides by
Kathy McCoy, University of Delaware

Another Earley Example

Spec > S CHART 1
S = NP VP SO Spec 2 S
S > VP S1 S—>.NPVP
NP = Det Noun 52.5.VP
NP = PrN S3 NP - . Det Noun
VP >V S4 NP > .PrN
VP = V NP S5 Det = . A
Det > a | the S6 Det = . the
Nz |000|<k | S7 PrN-=> . Mark
?D/rN%MI?/IrarIL i 8 VP .V
S9 VP> .VNP
S10 V- . Mark
S11 V- . read

0,0]
0,0]
0,0]
0,0]
0,0]
0,0]
0,0]
0,0]
0,0]
0,0]

0,0]

Predictor
Predictor

Predictor
Predictor

Predictor
Predictor
Predictor

Predictor
Predictor
Predictor
Predictor

CHART 1

SO
S1
S2
S3
S4
S5
S6
S7
S8
S9

Spec 2 S
S—>.NPVP
S—>.VP

NP - . Det Noun
NP = . PrN
Det—2> . A
Det 2 . the
PrN—> . Mark
VP2 .V

VP = .V NP

S10 V- . Mark
S11 V- .read

Chart 1:

[0,0]
[0,0]
[0,0]
[0,0]
[0,0]
[0,0]
[0,0]
[0,0]
[0,0]
[0,0]
[0,0]

S12 PrN-> Mark .
S13V > Mark .

S14VP > V.
S15S > VP .
S16 Spec 2 S

S17VP > V. NP
S18NP - PrN .
S19S - NP . VP

Mark read

0,1
0,1
0,1
0,1
0,1
0,1
0,1
01

520 NP = . Det Noun [1,1]

S21 NP = . PrN
S22 Det > . a
523 Det =2 . the
S24 PrN—> . Mark
S25 VP> .V
S26 VP 2> .V NP
527 V> . Mark

[1,1]
[1,1]
[1,1]
[1,1]
[1,1]
[1,1]
[1,1]

Scanner
Scanner

Completer
Completer
Completer

Completer
Completer
Completer

Predictor S17
Predictor S17
Predictor S20
Predictor S20
Predictor S21
Predictor S19
Predictor S19

S7
S10

S13
S14
S15

S13
S12
S18

Predictor S25,26

S28 V-2 . read ‘1|1| Predictor 525|26

Chart 2: Mark Read

Chart 2
S29V-> read . [1,2]Scanner
S30VP 2> V. [1,2]Completer S29
S31VP > V.NP [1,2]Completer S29
S32S > VP . [1,2]Completer S30
S33Spec 2 S. [1,2]Completer S32
S34S > NP VP, [0,2]Completer S19, S30
S35 Spec 2 S. [0,2] Completer S34
S35Spec > S. [1,2] Completer S34
S34S > NP VP, [0,2]Completer S19, S30
S30VP > V. [1,2]Completer S29
S29V-> read . [1,2]Scanner
S19S > NP . VP [0,1]Completer S18
S18NP - PrN . [0,1]Completer S12

S12 PrN-> Mark . [0,1]Scanner S7

Dependency Grammars

* |[n CFG-style phrase-structure grammars the
main focus is on constituents.

e But it turns out you can get a lot done with
just binary relations among the words in an
utterance.

* |n a dependency grammar framework, a parse
is a tree where
— the nodes stand for the words in an utterance

— The links between the words represent
dependency relations between pairs of words.
e Relations may be typed (labeled), or not.

3/10/14

Language Processing - Jurafsky and Martin

Well-formedness

A dependency graph is well-formed iff
— Single head: Each word has only one head.
— Acyclic: The graph should be acyclic.

— Connected: The graph should be a single tree with all
the words in the sentence.

— Projective: If word A depends on word B, then all
words between A and B are also subordinate to B (i.e.
dominated by B).

March 10, 2014

Comparison

* Dependency structures explicitly represent
— Head-dependent relations (directed arcs)
— Functional categories (arc labels)
— Possibly some structural categories (parts-of-speech)

* Phrase structure explicitly represent
— Phrases (non-terminal nodes)
— Structural categories (non-terminal labels)

— Possibly some functional categories (grammatical
functions)

March 10, 2014

Dependency Relations

Argument Dependencies

Description

nsubj
csubj
dobj
iobj
pobj

nominal subject
clausal subject
direct object
indirect object
object of preposition

Modifier Dependencies

Description

tmod

appos
det

Prep.

temporal modifier
appositional modifier
determiner
prepositional modifier

3/10/14

Language Processing - Jurafsky and Martin

Dependency Parse

hid
/N
nsubj dobj
¥ Y
They letter
/N
det on
r'd 4
the sheﬁ
det
'Y
the

They hid the letter on the shelf

3/10/14

Language Processing - Jurafsky and Martin

Dependency Tree with Labels

JJ. NNS IN DT NNS VBD VBG NNS
Red figures on the screens indicated falling stocks

L] L] j

varg

March 10, 2014

Dependency Parsing

 The dependency approach has a number of
advantages over full phrase-structure parsing.

— Deals well with free word order languages where
the constituent structure is quite fluid

— Parsing is much faster than CFG-bases parsers

— Dependency structure often captures the syntactic
relations needed by later applications

* CFG-based approaches often extract this same
information from trees anyway.

3/10/14

Language Processing - Jurafsky and Martin

Dependency Parsing

* There are two modern approaches to
dependency parsing

— Optimization-based approaches that search a
space of trees for the tree that best matches some
criteria

— Shift-reduce approaches that greedily take actions
based on the current word and state.

3/10/14

Language Processing - Jurafsky and Martin

Parsing Methods

* Three main traditions
— Dynamic programming
* CYK, Eisner, McDonald

— Constraint satisfaction
 Maruyama, Foth et al., Duchier

— Deterministic search

* Covington, Yamada and Matsumuto, Nivre

March 10, 2014

Dynamic Programming

* Basic ldea: Treat dependencies as constituents.
e Use, e.g., CYK parser (with minor modifications)

mdicated

indicated falling stocks / \

[W indicated stocks
/' \

falling stocks

arsing (P. Mannem) March 10, 2014

Example

mliniiniEiEE

_ROOT _ Red figures on the screen indicated falling stocks

-

March 10, 2014

Example

mliniiniEiEE

_ROOT _ Red figures on the screen indicated falling stocks

-

Spans:

T ml

{Red ﬁgures} {indicated falling stocks }

March 10, 2014 Dependetres mannem)

17

Assembly of correct parse

mliniiniEiEE

ROOT Red figures on the screen indicated falling stocks

Start by combining adjacent words to minimal spans

o

{Red figures } { figures on} { on the }

March 10, 2014

Assembly of correct parse

mliniiniEiEE

_ROOT _ Red figures on the screen indicated falling stocks

Combine spans which overlap in one word; this word must
be governed by a word in the left or right span.

[ml

{on the} + {the screen } —> {on the screen }

March 10, 2014

Assembly of correct parse

mliniiniEiEE

_ROOT _ Red figures on the screen indicated falling stocks

Combine spans which overlap in one word; this word must
be governed by a word in the left or right span.

e 1

{ figures on } + {on the screen } —> {ﬁgures on the screen }

March 10, 2014

Assembly of correct parse

mliniiniEiEE

_ROOT _ Red figures on the screen indicated falling stocks

Combine spans which overlap in one word; this word must
be governed by a word in the left or right span.
Invalid span

ﬁmm

Red figures on the screen }

March 10, 2014 Dependerres tannem) -

Assembly of correct parse

mliniiniEiEE

_ROOT _ Red figures on the screen indicated falling stocks

Combine spans which overlap in one word; this word must
be governed by a word in the left or right span.

ﬁ ml

{indicated falling} + { falling stocks } — {indicated falling stocks }

March 10, 2014 Dependerres tannem) -

Features and Unification

Capturing Grammatical Features

A Simple Context Free Grammar Fragment

NP = Det N
NP = PropN

Det = a, the, this, those

N = book, dog, books, dogs
PropN = John, Mary

V = sneezed, visited, gave
eat, eats

S—=> NP VP

CIS 530 - Intro to NLP

VP 2>V
(John sneezed)

VP =2 V NP
(John visited Mary)

VP - V NP NP
(John gave Mary a book)

VP - V NP PP
(John gave a book to Mary)

24

Agreement

Determiner/Noun Agreement Our grammar also generates
* This dog *This dogs

 Those dogs * *Those dog
Subject/Verb Agreement Our grammar also generates
e This dog eats * *This dog eat

 Those dogs eat * *Those dogs eats

CIS 530 - Intro to NLP 25

Encoding Number Agreement in CFGs

NPsing 9 Detsmg Nsing
NP, >Det;, N,
VP, > Vo NPge
VP, >V, NP,
VPsing 9 Vsmg smg
VPsing 2 Vsmg NPpI
smg 9 NPsmg Psmg
Sp > NP, VP,

CIS 530 - Intro to NLP

etging 2 this
Detp - those

s.ng ~ dog
o 2 dogs

V.. _ = eats

smg

p , > eat

26

Subcategorization

* Sneeze: John sneezed
*John sneezed [the book],,

* Find: Please find [a flight to NY],
*Please find

* Give: Give [me],p[a cheaper fare],
*Give [with a flight]pp

* Prefer: | prefer [to leave earlier];o.p
*| prefer [United has a flight].

CIS 530 - Intro to NLP

27

Possible CFG Solution

WITH:
REPLACE:

* VP 9 Vlntrans
* VP2V « VPOV, NP
* VP> VNP © VP>V, ..o NPPP
« VP> VNPPP ¢ V.. sneeze
"o . V.. > find

* Vianepp 2 8iVe

CIS 530 - Intro to NLP

28

Encoding Number Agreement + Subcats...

* VP 9 Vlntrans/sing ¢ Vlntrans/sing 9 SNEEZES
* VP 9 VIntrans/pl ¢ VIntrans/pl 9 SNeeze

* VP 9 VTrans/sing NP * VTrans/sing 9 finds

- VP> VTrans/pl NP * VTrans/pl 2 find

© VP VTrans+PP/sing NP PP * VTrans+PP/sing > gives

© VP VTrans+PP/pI NP PP * VTrans+PP/pI > give

n

But what about “I sneeze”, “you sneeze”, “he sneezes”....

CIS 530 - Intro to NLP 29

Features, informally

View both words and grammar non-terminals as
complex objects, each of which has a set of
associated property-value pairs (called features)
that can be manipulated.

* Det [num =sg] = this
e Det [num = pl] = those
* N [num =sg] =2 dog

* N [num =pl] > dogs

Then a grammar can contain:
NP = Det N but only if Det [num] = N [num]

CIS 530 - Intro to NLP

30

Feature Agreement

OK:
NP = Det N but only if Det [num] = N [num]

Better:
NP 2 Det [num =a] N [num = a]

Best:
NP [num = a] =2 Det [num =a] N [num = a]
as well as
S =2 NP [num = a] VP [num = o]

CIS 530 - Intro to NLP

31

Features and Feature Structures

* \We can encode these properties by
associating what are called feature

structures with grammatical constituents.

e A feature structure is a set of feature-value

pairs where:

— features are atomic symbols

— values are either atomic symbols or

Feature, Value,

Feature, Value,

Feature, Value,

(recursively embedded) feature structures

CIS 530 - Intro to NLP

32

Example Feature Structures

E/umber SG :I

Number SG
Person 3

C Ccat NP
Number SG
Person 3

CIS 530 - Intro to NLP 33

Bundles of Features

e Feature Values can be feature structures
themselves.

* This is useful when certain features commonly
co-occur, as humber and person.

" Cat NP]
Number SG
Agreement
B _F’erson 3

CIS 530 - Intro to NLP 34

Feature Structures as DAGs

CAT NP

AGREEMENT

PERSON

CIS 530 - Intro to NLP 35

Reentrant Structure

* Multiple features in a feature structure can
share the same value. In this case they share
structure, not just have the same value.

Cat S) =
- Number SG
Agreement 1 Person 3

Head

Subject [Agreement 1 \

e Numerical indices indicate the shared value.

CIS 530 - Intro to NLP 36

Feature Paths

* |t will also be useful to talk about paths
through feature structures. As in the paths

* <HEAD AGREEMENT NUMBER>
* <HEAD SUBJECT AGREEMENT NUMBER>

Cat S — ——
— ljltlfmber SG
Agreement|_Person 3

Head —
B Subject Eé\greement 1_-|

0 - Intro to NLP

37

Unification |

Key operations on feature structures
1. check the compatibility of two structures
2. merge the information in two structures

We can do both with a single operation called
Unification.

Unifying two feature structures produces a new
feature structure that is more specific (has more
information) than, or is identical to, each of the
input feature structures.

0 - Intro to NLP

38

The Unification Operation:

e Two feature structures can be unified if the
component features that make them up are
compatible.

[number sg] U [number sg| = [number sg]|
[number sg] U [number pl] = fails!

e Structures are compatible if they contain no
features that are incompatible.

* |f so, unification returns the union of all feature/
value pairs.

CIS 530 - Intro to NLP

39

The Unification Operation

[Number sg] U [Number []] = [Number sg]

[Number sg) U [Person 3] = | Numoer %9

Person 3

CIS 530 - Intro to NLP 40

The Unification Operation

_Agreement[Number sg]
Subject [Agreement [Number sq]]

U

[Subject [Agreement [Person 3]]]

Agreement[Number sqg]

Number sg
Subject | Agreement

| Person 3

to NLP 41

The Unification Operation

[Head [Subject [Agreement [Number pl]]]]

U
Cat S _ =
_ imber sg
Agreement |1 Person 3
Head - -
B Subject Agreementl: 1]

= Fail!

CIS 530 - Intro to NLP 42

Properties of Unification

* Monotonic: if some description is true of a
feature structure, it will still be true after
unifying it with another feature structure.

* Order independent (commutative): Unifying a
set of feature structures in any order yields
the same result.

CIS 530 - Intro to NLP

43

Features, Unification, and Grammars

To incorporate all this into grammars:

 Each constituent has a feature-structure
associated with it

 Each grammar rule has a (potentially empty)
set of unification constraints associated with
it.

— The set of unification constraints must be satisfied
for the rule to be satisfied.

CIS 530 - Intro to NLP 44

Unification Constraints

Xy 2 X{ o X, } Grammar rule
< X; feature path >

= atomic value Set of constraints
< X; feature path >

=< X, feature path >

CIS 530 - Intro to NLP 45

Agreement

NP = Det Nominal
< Det AGREEMENT > =< Nominal AGREEMENT >
< NP AGREEMENT > =< Nominal AGREEMENT >

Noun > flight
< Noun AGREEMENT NUMBER > =SG

Noun - flights
< Noun AGREEMENT NUMBER > = PL

Nominal = Noun
< Nominal AGREEMENT > =< Noun AGREEMENT >

Det = this
< Det AGREEMENT NUMBER > =SG

CIS 530 - Intro to NLP 46

Unification and Parsing

e Assume we’ve augmented our grammar with
sets of unification constraints.

* What changes do we need to make to a parser to
make use of them?

1. Build feature structures and associate each with a
subtree

2. Unify feature structures as subtrees are created from
smaller subtrees

3. Block ill-formed constituents

CIS 530 - Intro to NLP 47

Unification and Earley Parsing

With respect to an Earley-style parser...

* Build feature structures (represented as DAGS)
and associate them with states in the chart

* Unify feature structures as states are advanced in
the chart

* Block ill-formed states from entering the chart

CIS 530 - Intro to NLP 48

Building Feature Structures

* Features of most grammatical categories are
copied from head child to parent

— (e.g., from V to VP, Nom to NP, N to Nom)

VP 2> V NP
< VP HEAD > =<V HEAD >

S—> NP VP
< NP HEAD AGREEMENT > =< VP HEAD AGREEMENT>
<S HEAD_> =< VP HEAD >

S [head |1 |]
NP [head [agreement | > []
VP [head 1 [agreement P il

CIS 530 - Intro to NLP 49

Augmenting States with DAGs

 We just add a new field to the representation
of the states

S—2> .NP VP, [0,0], Dag

CIS 530 - Intro to NLP 50

Example
« NP - Det. Nominal [0,1], DAG1

np [head |1 |]

det [head [agreement | 2 | [numper sg]]]
Nominal [head | 1 |[agreement 1] 2

Nominal =2 Noun ., [1,2], DAG2

Nominal [head | 1]

noun [head 1 | [agreement [number sg]]]

CIS 530 - Intro to NLP 51

Figure 15.2

CAT

® S

AGREEMENT

SUBJECT

AGREEMENT

PERS

Sg

Unifying States and Blocking

 Keep much of the Earley Algorithm the same.

 We want to unify the DAGs of existing states
as they are combined as specified by the
grammatical constraints.

e Alter COMPLETER —when a new state is
created, first make sure the individual DAGs
unify. If so, then add the new DAG (resulting
from the unification) to the new state.

0 - \LP

Unification for Semantics

style:barbed _wire 7]
object: color:red
line_ob label:" Barbed Wire"
create | l m:’f’“‘] J
Figue & Featum Stnacum for barbed wisy'
 [style: barbed _ wire
object color: red
line obiilabel:"Barbed Wire™
coordlist: .
| [(95301,94360),
Wocuto: (95305,94365),
create._linek (95310,94380)) |

Figure 12: Feature Stuctuse for Multimodal Line Creation

