CS114 Lecture 13b
Probabilistic Parsing

March 12, 2013
Professor Meteer

Thanks for Jurafsky & Martin & Prof. Pustejovksy for slides



Why NLP is difficult:

Newspaper headlines

 Ban on Nude Dancing on Governor's Desk

* lIraqi Head Seeks Arms

e Juvenile Court to Try Shooting Defendant

e Teacher Strikes Idle Kids

e Stolen Painting Found by Tree

* Local High School Dropouts Cut in Half
 Red Tape Holds Up New Bridges

e Clinton Wins on Budget, but More Lies Ahead
 Hospitals Are Sued by 7 Foot Doctors

* Kids Make Nutritious Snacks



Probabilistic CFGs

* The probabilistic model
— Assigning probabilities to parse trees

* Getting the probabilities for the model
e Parsing with probabilities

— Slight modification to dynamic programming
approach

— Task is to find the max probability tree for an input



Probability Model

e Attach probabilities to grammar rules

* The expansions for a given non-terminal sum
tol

VP -> Verb .55
VP ->Verb NP .40

VP ->Verb NP NP .05
— Read this as P(Specific rule | LHS)




PCFG

S — NPVP .80] || Det — that[.05] | the[.80] | a[.15
S . Aux NP VP .15] || Noun . book .10]
S — VP | 05] || Noun — flights 50
NP — Det Nom .20] || Noun — meal .40
NP — Proper-Noun .35] || Verb — book .30
NP — Nom 05] || Verb — include 30
NP — Pronoun .40] || Verb — want .40
Nom — Noun .75] ||Aux — can .40
Nom — Noun Nom .20] ||Aux — does .30
Nom — Proper-Noun Nom [.05] || Aux — do .30
VP — Verb .55] || Proper-Noun — TWA .40
VP — Verb NP .40] || Proper-Noun — Denver .40
VP — Verb NP NP .05] || Pronoun — you[.40] | I[.60]




(a) S (b) S

Aux NP VP Aux NP VP
7 R 7
Nom

Nom Nom

Pro PNoun Noun Pro PNoun Nc!un

can you  book TWA flights can you  book TWA flights

Rules P Rules P
S — Aux NP VP .15 S — Aux NPVP .15
NP — Pro 40 NP — Pro 40
VP — VNPNP 05 VP — V NP 40
NP — Nom 05 NP — Nom .05
NP — PNoun 35 Nom — PNoun Nom .05
Nom — Noun 75 Nom — Noun 75
Aux — Can 40 Aux — Can 40
NP — Pro 40 NP — Pro 40
Pro — you 40 Pro — you 40
Verb — book .30 Verb — book 30
PNoun — TWA 40 Pnoun — TWA 40

_)

_ Noun flights S50 Noun — flights S0 |



Probability Model (1)

e A derivation (tree) consists of the set of
grammar rules that are in the tree

* The probability of a tree is just the product of
the probabilities of the rules in the derivation.



Probability model

P(T.5) = | p(r,)
neTl
e P(T,S) = P(T)P(S|T) = P(T); since P(S|T)=1

P(T;) = .15%.40%.05%.05%.35%.75%.40 % .40 % .40
.30 % .40 % .50
1.5%10°°

P(T,) = .15%.40% .40%.05%.05%.75 % .40 % .40 * .40
*.30 % .40 * .50

_ — 1.7x10°° .



Probability Model (1.1)

* The probability of a word sequence P(S) is the
probability of its tree in the unambiguous
case.

* |t's the sum of the probabilities of the trees in
the ambiguous case.



Getting the Probabilities

* From an annotated database (a treebank)

— So for example, to get the probability for a
particular VP rule just count all the times the rule
is used and divide by the number of VPs overall.



HEERERLE

((s
(NP-SBJ (DT That)

(JJ cold) (, )
(JJ empty) (NN sky) )
(VP (VBD was)
(ADJP-PRD (JJ full)
(PP (IN of)
(NP (NN fire)
(CC and)
(NN 1light) ))))

(« +) )
(a)

((S

(NP-SBJ The/DT flight/NN )
(VP should/MD

(VP arrive/VB
(PP-TMP at/IN
(NP eleven/CD a.m/RB ))
(NP-TMP tomorrow/NN )))))

(b)




Probabilistic Grammar Assumptions

We’'re assuming that there is a grammar to be
used to parse with.

We’re assuming the existence of a large robust
dictionary with parts of speech

We’re assuming the ability to parse (i.e. a parser)
Given all that... we can parse probabilistically



Typical Approach

e Bottom-up (CKY) dynamic programming
approach

* Assign probabilities to constituents as they are
completed and placed in the table

* Use the max probability for each constituent
going up



What’s that last bullet mean?

e Say we’re talking about a final part of a parse
— S->ONPiVPj

The probability of the S is...
P(S->NP VP)*P(NP)*P(VP)

The green stuff is already known. We're doing
bottom-up parsing



Max

* | said the P(NP) is known.

 What if there are multiple NPs for the span of
text in question (0 to i)?

* Take the max (where?)



Problems with PCFGs

* The probability model we’re using is just
based on the rules in the derivation...
— Doesn’t use the words in any real way

— Doesn’t take into account where in the derivation
a rule is used



* Add lexical dependencies to the scheme...

— Infiltrate the predilections of particular words into
the probabilities in the derivation

— |.e. Condition the rule probabilities on the actual
words



* To do that we're going to make use of the
notion of the head of a phrase

— The head of an NP is its noun
— The head of a VP is its verb

— The head of a PP is its preposition

(It’s really more complicated than that but this will
do.)



Example (right)

Attribute grammar

S(dumped)
NP(WMmped)
INNS(workers) VBD(dMackS)\PP(into)
NNS(sacks) P(im(bin)
DT@ANN(bin)
workers dumped sacks into a bin




Example (wrong)

S(dumped)
NP(Workers)/\VP(dumped)
NNS(workers) VBD(dm.acks)
NP(smm@
T T
NNS(sacks) P(into) NP(bin)
DT(\NN(bin)
workers dumped sacks into ?L bi‘l’l




e We used to have

—VP->V NP PP P(rule|VP)

e That’s the count of this rule divided by the number of
VPs in a treebank

* Now we have
— VP(dumped)-> V(dumped) NP(sacks)PP(in)

— P(r|VP A dumped is the verb ” sacks is the head of
the NP " in is the head of the PP)

— Not likely to have significant counts in any
treebank



Declare Independence

 When stuck, exploit independence and collect
the statistics you can...

 We'll focus on capturing two things

— Verb subcategorization
 Particular verbs have affinities for particular VPs

— Objects affinities for their predicates (mostly their
mothers and grandmothers)

* Some objects fit better with some predicates than
others



Subcategorization

e Condition particular VP rules on their head...
SO

r: VP->V NP PP P(r|VP)
Becomes
P(r | VP A~ dumped)

What’s the count?

How many times was this rule used with (head)
dump, divided by the number of VPs that dump
appears (as head) in total



Preferences

e Subcat captures the affinity between VP heads
(verbs) and the VP rules they go with.

 What about the affinity between VP heads
and the heads of the other daughters of the
VP

* Back to our examples...



Example (right)

S(dumped)
NP(WMmped)
INNS(workers) VBD(dMackS)\PP(into)
NNS(sacks) P(im(bin)
DT@ANN(bin)
workers dumped sacks into a bin




Example (wrong)

S(dumped)
NP(workers)/\VP(dumped)
NNS(workers) VBD(dm.acks)
NP(S&CkS)/\PP(iI’ItO)
T T
NNS(sacks) P(into) NP(bin)
DT(\NN(bin)
workers dumped sacks into ?L bi‘n




Preferences

e The issue here is the attachment of the PP. So
the affinities we care about are the ones
between dumped and into vs. sacks and into.

* So count the places where dumped is the
head of a constituent that has a PP daughter
with into as its head and normalize

e \/s. the situation where sacks is a constituent
with into as the head of a PP daughter.



Preferences (2)

* Consider the VPs
— Ate spaghetti with gusto
— Ate spaghetti with marinara

* The affinity of gusto for eat is much larger
than its affinity for spaghett

* On the other hand, the affinity of marinara for
spaghetti is much higher than its affinity for
ate



Preferences (2)

* Note the relationship here is more distant
and doesn’t involve a headword since
gusto and marinara aren’t the heads of

the PPs.
Vp(ate)

Vp (ate)
Vp(ate) Pp(with) M)
/ y np Pp(with)
Vo P N

Ate spaghetti with gusto  Ate spaghetti with marinara




Summary

e Context-Free Grammars

* Parsing
— Top Down, Bottom Up Metaphors
— Dynamic Programming Parsers: CKY. Earley

* Disambiguation:
— PCFG

— Probabilistic Augmentations to Parsers
— Treebanks



Other Issues with PCFGs



Other Issues with PCFGs

A Case of Coordinated Ambiguity

NP NP
/NP NP NP CC NP
NP NP CC NP NP PP
N | | | /\ NS
NNS ~ NNS NNS NNSIN - NNS
Dogs in houses and cats Dogs in houses and cats

Slides adapted from Collins NLP



Conjunction

Rules Rules

NP = NP CC NP NP = NP CC NP
NP = NP PP NP = NP PP
NP = NNS NP = NNS

PP > IN NP PP - IN NP
NP = NNS NP = NNS

NP = NNS NP = NNS
NNS - dogs NNS - dogs

N = in N = in

NNS - houses NNS - houses
CC = and CC - and

NNS -2 cats NNS -2 cats

Here the two parses have identical rules, and therefore have identical
probability under any assignment of PCFG rule probabilities

Slides adapted from Collins NLP



Structural Preferences: Close Attachment

 Example:
A. President of (a company in Africa)
B. (President of a company) in Africa

* Both parses have the same rules, therefore
receive same probability under a PCFG

e "Close attachment" (structure A) is twice as
likely in Wall Street Journal text.

Slides adapted from Collins NLP



Structural Preferences: Close Attachment

* Previous example:
— John was believed to have been shot by Bill

* Here the low attachment analysis (Bill does
the shooting) contains same rules as the high
attachment analysis (Bill does the believing),
so the two analyses receive same probability.

Slides adapted from Collins NLP



Adding “Heads”

* Each context-free rule has one "special" child that
is the head of the rule, e.g.,
S=>NP VP
VP => V/t NP
NP => DT NN NN
* A coreidea in syntax

(e.g., see X-bar Theory, Head-Driven Phrase Structure
Grammar)

e Some intuitions:
— The central sub-constituent of each rule.
— The semantic predicate in each rule.

Slides adapted from Collins NLP



Rules which Recover Heads:

An Example for NPs

* If rule contains NN, NNS, or NNP

— Choose rightmost NN, NNSor NNP \5__ 5T NNP NN

e Else if rule contains NP NP => DT NN NNP
— Choose leftmost NP NP => NP PP
. . NP => DT JJ
e Else if rule contains a JJ NP => DT

— Choose rightmost JJ

 Else if rule contains a CD
— Choose right most CD

* Else choose the rightmost child



