

CS114 Lecture 14 Probabilistic Parsing Continued

March 17, 2014 Professor Meteer

Thanks for Jurafsky & Martin & Prof. Pustejovksy for slides

Problems with PCFGs

- The probability model we're using is just based on the rules in the derivation...
 - Doesn't use the words in any real way
 - Doesn't take into account where in the derivation a rule is used

Solution

- Add lexical dependencies to the scheme...
 - Infiltrate the predilections of particular words into the probabilities in the derivation
 - I.e. Condition the rule probabilities on the actual words

Heads

- To do that we're going to make use of the notion of the head of a phrase
 - The head of an NP is its noun
 - The head of a VP is its verb
 - The head of a PP is its preposition

(It's really more complicated than that but this will do.)

Example (right)

Attribute grammar

Example (wrong)

How?

- We used to have
 - $-VP \rightarrow VNPPP$ P(rule|VP)
 - That's the count of this rule divided by the number of VPs in a treebank
- Now we have
 - VP(dumped)-> V(dumped) NP(sacks)PP(in)
 - P(r|VP ^ dumped is the verb ^ sacks is the head of the NP ^ in is the head of the PP)
 - Not likely to have significant counts in any treebank

Declare Independence

- When stuck, exploit independence and collect the statistics you can...
- We'll focus on capturing two things
 - Verb subcategorization
 - Particular verbs have affinities for particular VPs
 - Objects affinities for their predicates (mostly their mothers and grandmothers)
 - Some objects fit better with some predicates than others

Subcategorization

Condition particular VP rules on their head...
 so

```
r: VP -> V NP PP P(r|VP)
Becomes
P(r | VP ^ dumped)
```

What's the count?

How many times was this rule used with (head) dump, divided by the number of VPs that dump appears (as head) in total

Preferences

- Subcat captures the affinity between VP heads (verbs) and the VP rules they go with.
- What about the affinity between VP heads and the heads of the other daughters of the VP
- Back to our examples...

Example (right)

Example (wrong)

Preferences

- The issue here is the attachment of the PP. So the affinities we care about are the ones between dumped and into vs. sacks and into.
- So count the places where dumped is the head of a constituent that has a PP daughter with into as its head and normalize
- Vs. the situation where sacks is a constituent with into as the head of a PP daughter.

Preferences (2)

- Consider the VPs
 - Ate spaghetti with gusto
 - Ate spaghetti with marinara
- The affinity of gusto for eat is much larger than its affinity for spaghetti
- On the other hand, the affinity of marinara for spaghetti is much higher than its affinity for ate

Preferences (2)

 Note the relationship here is more distant and doesn't involve a headword since gusto and marinara aren't the heads of the PPs.

Summary

- Context-Free Grammars
- Parsing
 - Top Down, Bottom Up Metaphors
 - Dynamic Programming Parsers: CKY. Earley
- Disambiguation:
 - PCFG
 - Probabilistic Augmentations to Parsers
 - Treebanks

Other Issues with PCFGs

A Case of Coordinated Ambiguity

Conjunction

Rules

 $NP \rightarrow NP CC NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow NNS$

 $PP \rightarrow IN NP$

 $NP \rightarrow NNS$

 $NP \rightarrow NNS$

NNS \rightarrow dogs

 $N \rightarrow in$

NNS → houses

 $CC \rightarrow and$

NNS \rightarrow cats

Rules

 $NP \rightarrow NP CC NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow NNS$

 $PP \rightarrow IN NP$

 $NP \rightarrow NNS$

 $NP \rightarrow NNS$

NNS \rightarrow dogs

 $N \rightarrow in$

NNS → houses

 $CC \rightarrow and$

NNS \rightarrow cats

Here the two parses have identical rules, and therefore have identical probability under any assignment of PCFG rule probabilities

Structural Preferences: Close Attachment

- Example:
 - A. President of (a company in Africa)
 - B. (President of a company) in Africa
- Both parses have the same rules, therefore receive same probability under a PCFG
- "Close attachment" (structure A) is twice as likely in Wall Street Journal text.

Structural Preferences: Close Attachment

Previous example:

- John was believed to have been shot by Bill
- Here the low attachment analysis (Bill does the shooting) contains same rules as the high attachment analysis (Bill does the believing), so the two analyses receive same probability.

Adding "Heads"

 Each context-free rule has one "special" child that is the head of the rule, e.g.,

```
S => NP VP
VP => Vt NP
NP => DT NN NN
```

A core idea in syntax

```
(e.g., see X-bar Theory, Head-Driven Phrase Structure Grammar)
```

- Some intuitions:
 - The central sub-constituent of each rule.
 - The semantic predicate in each rule.

Rules which Recover Heads: An Example for NPs

- If rule contains NN, NNS, or NNP
 - Choose rightmost NN, NNS or NNP
- Else if rule contains NP
 - Choose leftmost NP
- Else if rule contains a JJ
 - Choose rightmost JJ
- Else if rule contains a CD
 - Choose right most CD
- Else choose the rightmost child

NP=> DT NNP NN

NP => DT NN NNP

NP => NP PP

NP => DT JJ

NP => CD

Parameters in a Lexicalized PCFG

- An example parameter in a PCFG:
- $q(S \rightarrow NP VP)$
- An example parameter in a Lexicalized PCFG:
 ^(S(saw) → 2 NP(man) VP(saw))

Parsing with Lexicalized CFGs

- The new form of grammar looks just like a Chomsky normal form CFG, but with potentially huge set of words.
- Crucial observation: Any rules which contain a lexical item that is not one of $w_1...$ w_n , can be safely discarded.
- The result: we can parse in $O(n^5|N|^3)$ time.
 - n: length of sentence
 - N: set of nonterminals

Other Important Details

- Need to deal with rules with more than two children,
 VP(told)→V(told) NP(him) PP(on) SBAR(that)
- Need to incorporate parts of speech (useful in smoothing)
 VP-V(told) → V(told) NP-PRP(him) PP-IN(on) SBAR-COMP(that)
- Need to encode preferences for close attachment
 - John was believed to have been shot by Bill
- Further reading:
 - Michael Collins. 2003. Head-Driven Statistical Models for Natural Language Parsing. In Computational Linguistics.

Evaluation:

Representing Trees as Constituents

Label	Start point	End point
NP	1	2
NP	4	5
VP	3	5
S	1	5

Precision and recall

Label	Start	End point
	point	
	pomic	
NP	1	2
NP	4	5
	•	
NP	4	8
PP	6	8
	_	_
NP	7	8
VP	3	8
	_	
S	1	8

Label	Start	End noint
Labei		End point
	point	
NP	1	2
NP	4	5
PP	6	8
NP	3	8
VP	3	8
S	1	8

- G = number of constituents in gold standard = 7
- P = number in parse output = 6
- C = number correct = 6
- Recall = C/G = 6/7 = 87%
- Precision = C/P = 6/6 = 100%

Results

- Training data: 40,000 sentences from the Penn Wall Street Journal treebank. Testing: around 2,400 sentences from the Penn Wall Street Journal treebank.
 - Results for a PCFG: 70.6% Recall, 74.8% Precision
 - Magerman (1994): 84.0% Recall, 84.3% Precision
- Results for a lexicalized PCFG: 88.1% recall, 88.3% precision (from Collins (1997, 2003))
- More recent results: 90.7% Recall/91.4%
 Precision (Carreras et a I., 2008); 91.7% Recall,
 92.0% Precision (Petrov 2010); 91.2% Recall,
 91.8% Precision (Charniak and Johnson, 2005)

- Linguistic characteristics, relative to English
 - Ample derivational and inflectional morphology
 - Freer word order
 - Verb position differs in matrix/embedded clauses
 - Main ambiguities similar to English
- Most used corpus: Negra
 - ~400,000 words newswire text
 - Flatter phrase structure annotations (few PPs!)
 - Explicitly marked phrasal discontinuities
- Newer Treebank: TueBaDz
 - ~470,000 words newswire text (27,000 sentences)
 - [Not replacement; different group; different style]

German results

 Dubey and Keller [ACL 2003] present an unlexicalized PCFG outperforming Collins on NEGRA – and then get small wins from a somewhat unusual sister-head model, but...

```
LPrec LRec F1

D&K PCFG Baseline 66.69 70.56 68.57

D&K Collins 66.07 67.91 66.98

D&K Sister-head all 70.93 71.32 71.12
```

```
LPrec LRec F1
Stanford PCFG Baseline72.72 73.64 73.59
Stanford Lexicalized 74.61 76.23 75.41
```

See also [Arun & Keller ACL 2005, Kübler & al. EMNLP 2006

Prominent ambiguities

PP attachment

Prominent ambiguities

Sentential complement vs. relative clause

Dependency grammars

- Phrase structure grammar is concerned with how words and sequences of words combine to form constituents.
- A distinct and complementary approach, dependency grammar, focuses instead on how words relate to other words
- Dependency is a binary asymmetric relation that holds between a head and its dependents.

Dependency grammars

- Dependency graph: labeled directed graph
 - nodes are the lexical items
 - labeled arcs represent dependency relations from heads to dependents
- Can be used to directly express grammatical functions as a type of dependency.

Dependency grammars

- Dependency structure gives attachments.
- In principle, can express any kind of dependency
- How to find the dependencies?

Idea: Lexical Affinity Models

- Link up pairs with high mutual information
 - Mutual information measures how much one word tells us about another.
 - The doesn't tell us much about what follows
 - I.e. "the" and "red" have small mutual information
 - United ?

Problem: Non-Syntactic Affinity

- Words select other words (also) on syntactic grounds
- Mutual information between words does not necessarily indicate syntactic selection.

a new year begins in new york

congress narrowly passed the amended bill

Idea: Word Classes

- Individual words like congress are entwined with semantic facts about the world.
- Syntactic classes, like NOUN and ADVERB are bleached of word-specific semantics.
- Automatic word classes more likely to look like DAYS-OF-WEEK or PERSON-NAME.
- We could build dependency models over word classes. [cf. Carroll and Charniak, 1992]

- A sentence is parsed by relating each word to other words in the sentence which depend on it.
- The idea of dependency structure goes back a long way
 - To Pāṇini's grammar (c. 5th century BCE)
- Constituency is a new-fangled invention
 - 20th century invention
- Modern work often linked to work of L. Tesniere (1959)
 - Dominant approach in "East" (Eastern bloc/East Asia)
- Among the earliest kinds of parsers in NLP, even in US:
 - David Hays, one of the founders of computational linguistics, built early (first?) dependency parser (Hays 1962)

Dependency structure

- Words are linked from head (regent) to dependent
- Warning! Some people do the arrows one way; some the other way (Tesniere has them point from head to dependent...).
- Usually add a fake ROOT so every word is a dependent

Relation between CFG to dependency parse

- A dependency grammar has a notion of a head
- Officially, CFGs don't
- But modern linguistic theory and all modern statistical parsers (Charniak, Collins, Stanford, ...) do, via handwritten phrasal "head rules":
 - The head of a Noun Phrase is a noun/number/adj/...
 - The head of a Verb Phrase is a verb/modal/....
- The head rules can be used to extract a dependency parse from a CFG parse (follow the heads).
- A phrase structure tree can be got from a dependency tree, but dependents are flat (no VP!)

Propagating head words

Small set of rules propagate heads

Extracted structure

NB. Not all dependencies shown here

 Dependencies are inherently untyped, though some work like Collins (1996) types them using the phrasal categories

Dependency Conditioning Preferences

Sources of information:

- bilexical dependencies
- distance of dependencies
- valency of heads (number of dependents)

Probabilistic dependency grammar: generative model

