

CS114 Lecture 18 Semantic Roles

March 31, 2014 Professor Meteer

Thanks for Jurafsky & Martin & Prof. Pustejovksy for slides

What are semantic roles and what is their history?

- A lot of forms of traditional grammar (Sanskrit, Japanese, ...) analyze in terms of a rich array of semantically potent case ending or particles
 - They're kind of like semantic roles
- The idea resurfaces in modern generative grammar in work of Charles ("Chuck") Fillmore, who calls them Case Roles (Fillmore, 1968, The Case for Case).
 - They're quickly renamed to other words, but various:
 - Semantic roles
 - Thematic roles
 - Theta roles
 - A predicate and its semantic roles are often taken together as an argument structure

Okay, but what are they?

- An event is expressed by a predicate and various other dependents
- The claim of a theory of semantic roles is that these other dependents can be usefully classified into a small set of semantically contentful classes
 - And that these classes are useful for explaining lots of things

Common semantic roles

- Agent: initiator or doer in the event
 - Sue killed the rat.
- Patient: affected entity in the event; undergoes the action
- Theme: object in the event undergoing a change of state or location, or of which location is predicated
 - The ice melted
- Experiencer: feels or perceive the event
 - Bill likes pizza.
- Stimulus: the thing that is felt or perceived

Common semantic roles

- Goal:
 - Bill ran to Copley Square.
- Recipient (may or may not be distinguished from Goal):
 - Bill gave the book to Mary.
- Benefactive (may be grouped with Recipient):
 - Bill cooked dinner for Mary.
- Source:
 - Bill took a pencil <u>from the pile</u>.
- Instrument:
 - Bill ate the burrito with a plastic spork.
- Location:
 - Bill sits <u>under the tree</u> on Wednesdays

Common semantic roles

Try for yourself!

- 1. The submarine sank a troop ship.
- 2. Doris hid the money in the flowerpot.
- 3. Emma noticed the stain.
- 4. We crossed the street.
- 5. The boys climbed the wall.
- 6. The chef cooked a great meal.
- 7. The computer pinpointed the error.
- 8. A mad bull damaged the fence on Jack's farm.
- 9. The company wrote me a letter.
- 10. Jack opened the lock with a paper clip.

Linking of thematic roles to syntactic positions

- John opened the door
- AGENT THEME
- The door was opened by John
- THEME AGENT
- The door opened
- THEME
- John opened the door with the key
- AGENT THEME INSTRUMENT

Deeper Semantics

- From the WSJ...
 - He melted her reserve with a husky-voiced paean to her eyes.
 - If we label the constituents He and her reserve as the Melter and Melted, then those labels lose any meaning they might have had.
 - If we make them Agent and Theme then we can do more inference.

Problems

- What exactly is a role?
- What's the right set of roles?
- Are such roles universals?
- Are these roles atomic?
 - I.e. Agents
 - Animate, Volitional, Direct causers, etc
- Can we automatically label syntactic constituents with thematic roles?

Syntactic Variations

Yesterday, Kristina hit Scott with a baseball

Scott was hit by Kristina yesterday with a baseball

Yesterday, Scott was hit with a baseball by Kristina

With a baseball, Kristina hit Scott yesterday

Yesterday Scott was hit by Kristina with a baseball

Kristina hit Scott with a baseball yesterday

Agent, hitter

Thing hit

Instrument

Temporal adjunct

Syntactic Variations (as trees)

Semantic Role Labeling – Giving Semantic Labels to Phrases

- [AGENT John] broke [THEME the window]
- [THEME The window] broke
- [AGENT Sotheby's] .. offered [RECIPIENT the Dorrance heirs]
 [THEME a money-back guarantee]
- [AGENT Sotheby's] **offered** [THEME a money-back guarantee] to [RECIPIENT the Dorrance heirs]
- [THEME a money-back guarantee] offered by [AGENT Sotheby's]
- [RECIPIENT the Dorrance heirs] will [ARM-NEG not]
 be offered [THEME a money-back guarantee]

Why is SRL Important – Applications

- Question Answering
 - Q: When was Napoleon defeated?
 - Look for: [PATIENT Napoleon] [PRED defeat-synset] [ARGM-TMP *ANS*]
- Machine Translation

```
English (SVO)

[AGENT The little boy]

[PRED kicked]

[THEME the red ball]

[ARGM-MNR hard]

[Farsi (SOV)

[AGENT pesar koocholo] boy-little

[THEME toop germezi] ball-red

[ARGM-MNR moqtam] hard-adverb

[PRED zaad-e] hit-past
```

- Document Summarization
 - Predicates and Heads of Roles summarize content
- Information Extraction
 - SRL can be used to construct useful rules for IE

Application: Semantically precise search

Query: afghans destroying opium poppies

Some History

- Minsky 74, Fillmore 1976: frames describe events or situations
 - Multiple participants, "props", and "conceptual roles"
- Levin 1993: verb class defined by sets of frames (meaningpreserving alternations) a verb appears in
 - {break,shatter,..}: Glass X's easily; John Xed the glass, ...
 - Cut is different: The window broke; *The window cut.
- FrameNet, late '90s: based on Levin's work: large corpus of sentences annotated with *frames*
- PropBank: addresses tragic flaw in FrameNet corpus

Levin's Verb Classes

- Beth Levin analyzed thousands of verbs and defined hundreds of classes
- Underlying hypothesis:
 - verbal meaning determines syntactic realizations
- Examples

Touch: kiss, sting

Hit: Bash, hammer, tap

Cut: chip, hack, scratch

Break: back, split, tear.

Conative
 Jean moved the table
 *Jean moved at the table

- Body-part possessor ascension
 Janet broke Bill's finger
 *Janet broke Bill on the finger
- Middle
 Bread cuts easily
 Cats touch easily

Alternation	Touch	Hit	Cut	Break
Conative	N	Υ	Υ	N
Body part possessor ascension	Υ	Y	Y	N
Middle	N	N	Υ	Υ

Frames in Framenet

From Baker, Fillmore, Loew, 1998

Figure 1:A subframe can inherit elements and semantic from it's parent

```
frame(TRANSPORTATION)
frame_elements(MOVER(s), MEANS, PATH)
scene(MOVER(s) move along PATH by MEANS)
frame(DRIVING)
inherit (TRANSPORTATION)
frame_elements(DRIVER (=MOVER), VEHICLE(=MEANS), RIDER(S) (=
MOVER(S)), CARGO (=MOVER(S)))
scenes(DRiVER starts VEHICLE, DRIVER controls VEHICLE. DRIVER
stops VEHICLE)
```

frame(RIDING_I)

inherit (TRANSPORTATION)

frame_elements(RiDER(s) (=MOVER(S)), VEHICLE (=MEANS))

scenes(RiDER enters VEHICLE, VEHICLE carries RIDER along PATH, RIDER leaves VEHICLE)

Frame Element Groups

Figure 2: Examples of Frame Element Groups and Annotated Sentences

FEG	Annotated Example
D	[D Kate] drove [P home] in a stupor.
D, V	A pregnant woman lost her baby after she fainted as she waited for a bus and fell into the path of [V a lorry] driven [D by her uncle].
D,P	And that was why [D I] drove [P eastwards along Lake Geneva].
D, R, P	Now [D Van Checle] was driving [R his guest] [P back to the station].
D, V, P	[D CummingJ had a fascination with most forms of transport, driving [V his Rolls] at high speed [P around the streets of London].
D+R, P	[D WeJ drive [P home along miles of empty freeway].
V, P	Over the next 4 days, [V the Rolls Royces] will drive [P down to Plymouth], following the route of the railway.

FrameNet [Fillmore et al. 01]

Methodology for FrameNet

- 1. Define a frame (eg DRIVING)
- 2. Find some sentences for that frame
- 3. Annotate them
- 4. If (remaining funding == 0) then exit; else goto step 1.
- Corpora
 - FrameNet I British National Corpus only
 - FrameNet II LDC North American Newswire corpora
- Size
 - >8,900 lexical units, >625 frames, >135,000 sentences

http://framenet.icsi.berkeley.edu

Annotations in PropBank

- Based on Penn TreeBank
- Goal is to annotate every tree systematically
 - so statistics in the corpus are meaningful
- Like FrameNet, based on Levin's verb classes (via VerbNet)
- Generally more data-driven & bottom up
 - No level of abstraction beyond verb senses
 - Annotate every verb you see, whether or not it seems to be part of a frame

Some verb senses and "framesets" for propbank

Frameset: decline.01 "go down incrementally"

Arg1: entity going down

Arg2: amount gone down by, EXT

Arg3: start point Arg4: end point

Ex: ... [$_{arg1}$ its net income] declining [$_{arg2}$ EXT 42%][$_{arg4}$ to \$121 million dollars] [$_{argM-TMP}$ in the first 9 months of 1989].

Frameset: decline.02 "demure.reject"

Arg0: agent

Arg1: rejected thing

Ex: $[_{arg0}$ A spokesman] declined $[_{arg1}$ "trace" to elaborate]

FrameNet vs PropBank

Framenet annotation

[buyer Chuck] bought [goods a car] [seller from Jerry] [payment for \$1000].

[seller Jerry] sold [goods a car] to [buyer Chuck] [payment for \$1000].

[goods A car] was sold [buyer to Chuck] [seller by Jerry]. [buyer Chuck] was sold [goods a car] [seller by Jerry].

Propbank Annotation

[Arg0 Chuck] bought [Arg1 a car] [Arg2 from Jerry] [Arg3 for \$1000].

[Arg0 Jerry] sold [Arg1 a car] to [Arg2 Chuck] [Arg3 for \$1000].

[Arg1 A car] was sold [Arg2 to Chuck] [Arg0 by Jerry].

[Arg2 Chuck] was sold [Arg1 A car] [Arg0 by Jerry].

Proposition Bank (PropBank) [Palmer et al. 05]

- Transfer sentences to propositions
 - Kristina hit Scott → hit(Kristina, Scott)
- Penn TreeBank → PropBank
 - Add a semantic layer on Penn TreeBank
 - Define a set of semantic roles for each verb
 - Each verb's roles are numbered

```
...[A0 the company] to ... offer [A1 a 15% to 20% stake] [A2 to the public] ...[A0 Sotheby's] ... offered [A2 the Dorrance heirs] [A1 a money-back guarantee] ...[A1 an amendment] offered [A0 by Rep. Peter DeFazio] ... ...[A2 Subcontractors] will be offered [A1 a settlement] ...
```

Proposition Bank (PropBank) Define the Set of Semantic Roles

- It's difficult to define a general set of semantic roles for all types of predicates (verbs).
- PropBank defines semantic roles for each verb and sense in the frame files.
- The (core) arguments are labeled by numbers.
 - A0 Agent; A1 Patient or Theme
 - Other arguments no consistent generalizations
- Adjunct-like arguments universal to all verbs
 - AM-LOC, TMP, EXT, CAU, DIR, PNC, ADV, MNR, NEG, MOD,
 DIS

Proposition Bank (PropBank) Frame Files

- hit.01 "strike"
 - ❖ A0: agent, hitter; A1: thing hit;

A2: instrument, thing hit by or with

[AO Kristina] hit [AO Scott] [AO With a baseball] yesterday.

AM-TMP *Time*

- look.02 "seeming"
 - ❖ A0: seemer; A1: seemed like; A2: seemed to

 $[A_0]$ It looked $[A_2]$ to her like $[A_1]$ he deserved this.

- deserve.01 "deserve"
 - A2: in evaluation for

A2: in-exchange-for

It looked to her like [A0 he] deserved [A1 this].

Proposition:
A sentence and a target verb

Proposition Bank (PropBank) Add a Semantic Layer

[A0 Kristina] hit [A1 Scott] [A2 with a baseball] [AM-TMP yesterday].

Proposition Bank (PropBank) Add a Semantic Layer – Continued

[A1] The worst thing about him] **said** [A0] Kristina [C-A1] is his laziness.

Proposition Bank (PropBank) Final Notes

- Current release (Mar 4, 2005): Proposition Bank I
 - Verb Lexicon: 3,324 frame files
 - Annotation: ~113,000 propositions
 http://verbs.colorado.edu/~mpalmer/projects/ace.html
- Alternative format: CoNLL-04,05 shared task
 - Represented in table format
 - Has been used as standard data set for the shared tasks on semantic role labeling

http://www.lsi.upc.es/~srlconll/soft.html

Example

- 1. faces("the \$1.4B robot spacecraft", "a six-year journey to explore Jupitor...")
- 2. 2. explore("the \$1.4B robot spacecraft" "Jupiter ...")

The	-	(A0*	(A0*
\$1.4	-	*	*
billion	-	*	*
robot	-	*	*
spacecraft	-	*)	*)
faces	face	(V*)	*
а	-	(A1*	*
Six-year	-	*	*
journey	-	*	*
to	-	*	*
explore	expore	*	(V*)
Jupiter		*	(A1*
		*)	*))

Example

- 1. lie("he",...)
- leak("he", "information obtained from ... he supervised")
- obtain(X, "information", "from a wiretap he supervised")
- 4. supervise("he", "a wiretap")

Не	-	(A0*)	(A0*)	*	*
is	-	*	*	*	*
accused	-	*	*	*	*
of	-	*	*	*	*
lying	lie	(V*)	*	*	*
under	-	*	*	*	*
oath	-	*	*	*	*
and	-	*	*	*	*
of	-	*	*	*	*
leaking	leak	*	(V*)	*	*
information	-	*	*	*	*
obtained	obtain	*	*	(V*)	*
from	-	*	*	*	*
а	-	*	*	*	(A1*
wiretap	-	*	*	*	*
he	-	*	*	*	(A0*)
supervised	supervise	*	*	*	(V*)

Information Extraction versus Semantic Role Labeling

Characteristic	IE	SRL
Coverage	narrow	broad
Depth of semantics	shallow	shallow
Directly connected to application	sometimes	no

Evaluation Measures

Correct: [AO The queen] **broke** [A1 the window] [AM-TMP yesterday]

Guess: [A0 The queen] broke the [A1 window] [AM-LOC yesterday]

Correct	Guess
{The queen} →A0	{The queen} →A0
{the window} →A1	{window} →A1
{yesterday} ->AM-TMP	{yesterday} ->AM-LOC
all other → NONE	all other → NONE

- Precision , Recall, F-Measure $\{tp=1, fp=2, fn=2\}$ p=r=f=1/3
- Measures for subtasks
 - Identification (Precision, Recall, F-measure) $\{tp=2, fp=1, fn=1\}$ p=r=f=2/3
 - Classification (Accuracy) acc = .5 (labeling of correctly identified phrases)
 - Core arguments (Precision, Recall, F-measure) $\{tp=1,fp=1,fn=1\}$ p=r=f=1/2