

CS114 Lecture 23 Review

NOTE: These slides are just a reminder of the topics. Use the course slides and the book for the details.

May 1, 2013

Professor Meteer

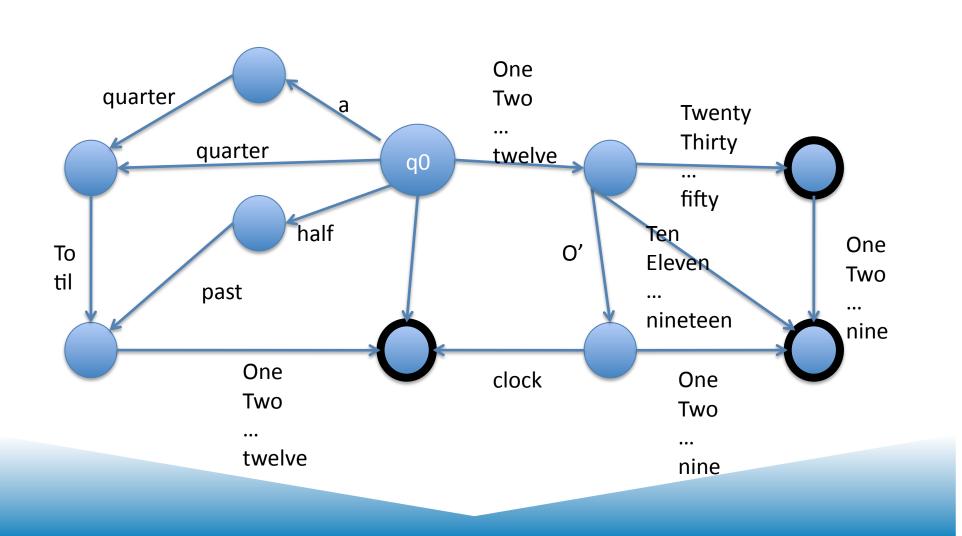
Review Part 1

- Linguistics: Morphology, POS
- Ambiguity
- FSAs
- Ngrams
 - What are some other applications? Spelling correction, text generation
- Viterbi algorithm and minimum distance
- Other applications of FSAs and HMMs

FSA's time of day

- Think about the data
 - One o'clock
 - Five twenty three
 - Quarter to nine
 - Six oh four
 - Half past twelve

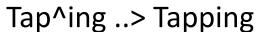
FSAs: Time of day

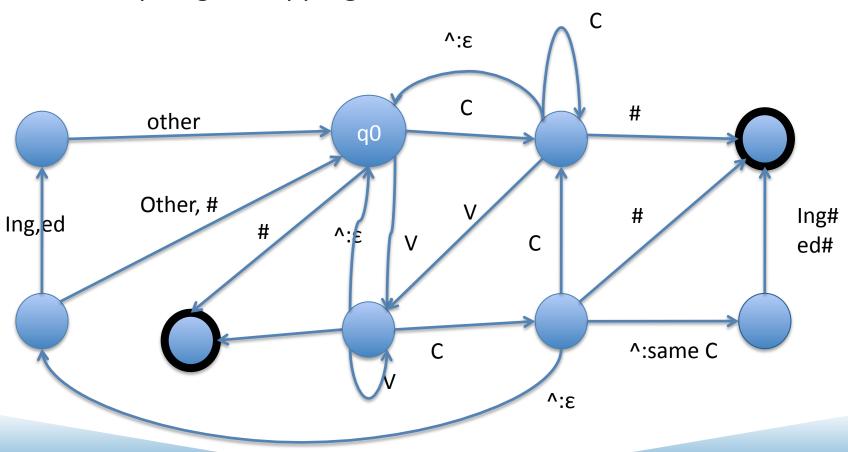


Doubling Consonants

- Look to the data
 - Tap, tapped, tapping, tape, taping
 - Bat, batted, batting, bate, bating

Transducer for doubling consonants





The Three Basic Problems for HMMs

Jack Ferguson at IDA in the 1960s

- Problem 1 (Evaluation):
 - Given the observation sequence $O=(o_1o_2...o_T)$, and an HMM model $\Phi=(A,B)$, how do we efficiently compute $P(O|\Phi)$, the probability of the observation sequence, given the model
- Problem 2 (Decoding):
 - Given the observation sequence $O=(o_1o_2...o_T)$, and an HMM model $\Phi=(A,B)$, how do we choose a corresponding state sequence $Q=(q_1q_2...q_T)$ that is optimal in some sense (i.e., best explains the observations)
- Problem 3 (Learning):
 - How do we adjust the model parameters $\Phi = (A,B)$ to maximize $P(O \mid \Phi)$?

Hidden Markov Models

- States $Q = q_1, q_2...q_{N_1}$
- Observations $O = o_1, o_2...o_{N}$:
 - Each observation is a symbol from a vocabulary $V = \{v_1, v_2, ..., v_V\}$
- Transition probabilities
 - Transition probability matrix $A = \{a_{ii}\}$

$$a_{ij} = P(q_t = j \mid q_{t-1} = i) \quad 1 \le i, j \le N$$

- Observation likelihoods
 - Output probability matrix $B=\{b_i(k)\}$

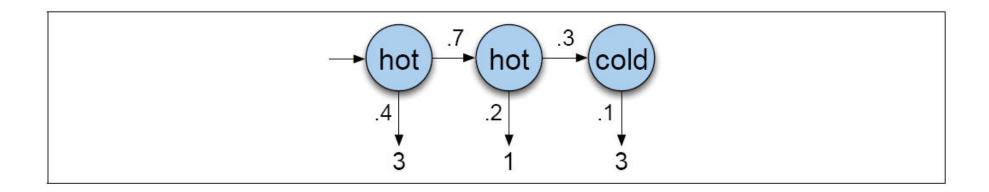
$$b_i(k) = P(X_t = o_k \mid q_t = i)$$

• Special initial probability vector π

$$\pi_i = P(q_1 = i) \quad 1 \le i \le N$$

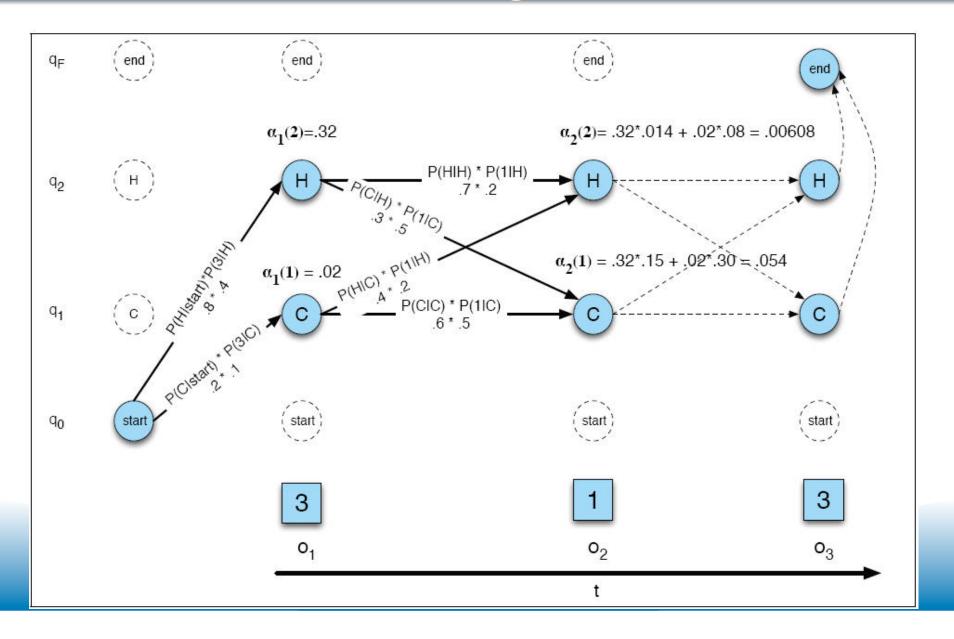
Joint probability

The computation of the joint probability of the ice cream events 3 - 1 - 3 and the hidden state sequence Hot Hot Cold



To find the most likely you would have to compute the probability for every sequence of hidden states. Too slow!

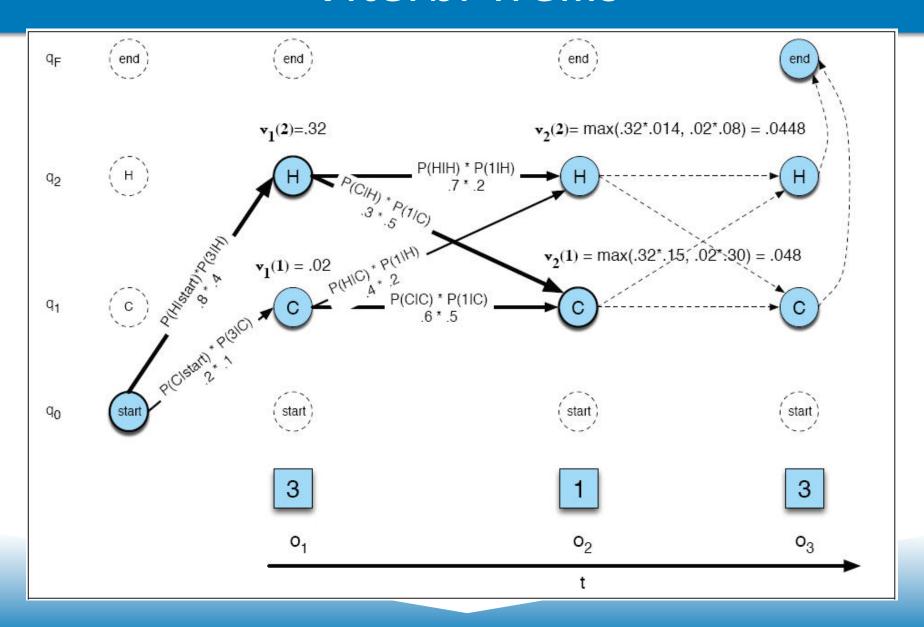
Dynamic Programming: Forward Algorithm



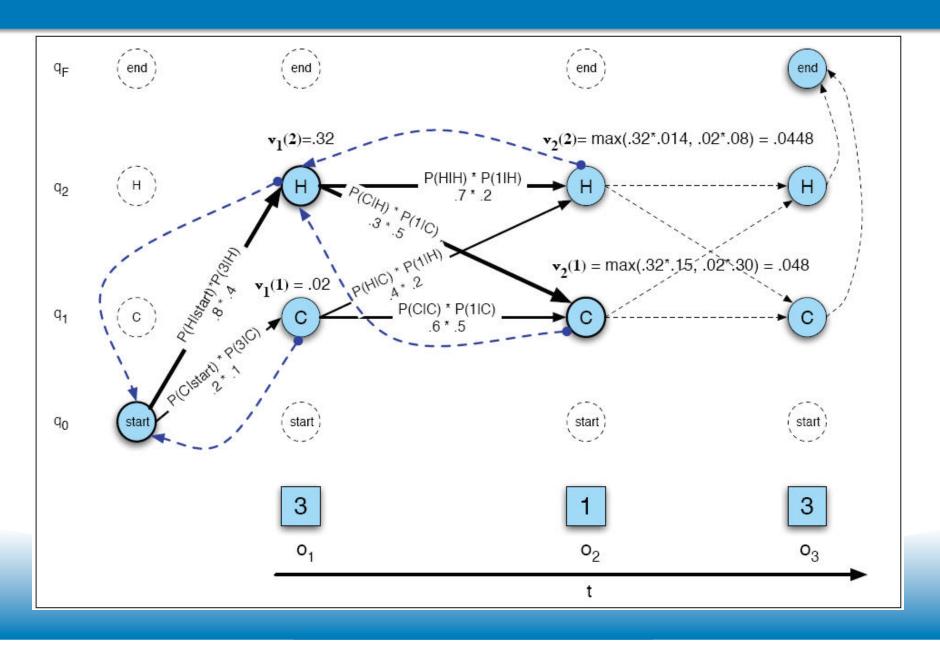
Viterbi Summary

- Create an array
 - With columns corresponding to inputs
 - Rows corresponding to possible states
- Sweep through the array in one pass filling the columns left to right using our transition probs and observations probs
- Dynamic programming key is that we need only store the MAX prob path to each cell, (not all paths).

Viterbi Trellis



Viterbi Trellis with Backtrace



Error Analysis: Confusion Matrix

•	IN	JJ	NN	NNP	RB	VBD	VBN
IN	_	.2			.7		
JJ	.2	_	3.3	2.1	1.7	.2	2.7
NN		8.7	_				.2
NNP	.2	3.3	4.1	_	.2		
RB	2.2	2.0	.5		_		
VBD		.3	.5			_	4.4
VBN		2.8				2.6	_

- See what errors are causing problems
 - Noun (NN) vs ProperNoun (NNP) vs Adj (JJ)
 - Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)

Semantics for a sentence

LIST FLIGHTS ORIGIN

Show me flights from Boston

DESTINATION DEPARTDATE

to San Francisco on Tuesday

DEPARTTIME

morning

HMMs for semantics

- Idea: use an HMM for semantics, just as we did for ASR (and part-of-speech tagging, etc)
- Hidden units:
 - Semantic slot names
 - Origin
 - Destination
 - Departure time
- Observations:
 - Word sequences

Hidden Markov Model Tagging

- Using an HMM to do POS tagging is a special case of Bayesian inference
 - Foundational work in computational linguistics
 - Bledsoe 1959: OCR
 - Mosteller and Wallace 1964: authorship identification
- It is also related to the "noisy channel" model that's the basis for ASR, OCR and MT

HMM model of semantics – Pieraccini et al (1991)

- Input is the set of words
- Output is the set of semantic states



Good-Turing

- Notation: N_x is the frequency-of-frequency-x
 - $So N_{10} = 1$
 - Number of fish species seen 10 times is 1 (carp)
 - $-N_{1}=3$
 - Number of fish species seen 1 is 3 (trout, salmon, eel)
- To estimate total number of unseen species

- Use number of species (words) we've seen once
$$-c_0^* = c_1 \quad p_0 = N_1/N \qquad c^* = (c+1)\frac{N_{c+1}}{N_c}$$

 All other estimates are adjusted (down) to give probabilities for unseen

Good-Turing Intuition

- Notation: N_x is the frequency-of-frequency-x
 - So $N_{10}=1$, $N_1=3$, etc
- To estimate total number of unseen species
 - Use number of species (words) we've seen once

$$-c_0^*=c_1$$
 $p_0=N_1/N$ $p_0=N_1/N=3/18$

 P_{GT}^* (things with frequency zero in training) = $\frac{N_1}{N}$

 All other estimates are adjusted (down) to give probabilities for unseen

$$c^* = (c+1) \frac{N_{c+1}}{N_c}$$

$$P(eel) = c*(1) = (1+1) 1/3 = 2/3$$

Could just spread 1s over 0s

Carp	10	10
Perch	3	3
WF	2	2
Trout	1	1
Salmon	1	1
Eel	1	1
Catfish	0	1
Bass	0	1
TOTAL	18	

- Prob of things that occurred once
- $1\18 + 1\18 + 1\18 = 3\18$
- Add one to zero counts
- Spread probability over 1s and 0s
- 3/18 / 5 = .066

GT Fish Example

- OR use the 1s for 0s (3/18 spread over2 species)
- AND Look at the things that happened 2s to share with 1s
 - C(whitefish) = 2 happened once
 - Discount 1s by 2/3
- LOTS OF ALTERNATIVES! Just estimates

	unseen (bass or catfish)	trout
С	0	1
MLE p	$p = \frac{0}{18} = 0$	$\frac{1}{18}$
c^*		$c^*(\text{trout}) = 2 \times \frac{N_2}{N_1} = 2 \times \frac{1}{3} = .67$
$\mathrm{GT}~p_{\mathrm{GT}}^{*}$	$p_{\text{GT}}^*(\text{unseen}) = \frac{N_1}{N} = \frac{3}{18} = .17$	$p_{\text{GT}}^*(\text{trout}) = \frac{.67}{18} = \frac{1}{27} = .037$

Review

- Major topics for this section
 - Syntax
 - Parsing
 - Semantics
 - Lexical Semantics
- Use the slides to indicate what's important and the book to describe it in more detail
 - If it's in the book and not in the slides it won't be on the test
 - but slides are bullet points and picture—use the book to know how to talk about these points

Syntax

- Know your basic phrase types
 - VP does not mean Vice President
- Terms to know
 - Derivation
 - Overgenerate
 - Syntactic grammars
 - Dependency grammars
 - Verb subcategorization

Parsing Types

- CFGS
 - Top down, bottom up
 - CKY
 - Earley's algorithm
- Probabalistic CFGs
- Unification Grammars
- Chunking
- Partial parsing

Semantics

- Synonyms vs. Similar vs. Related
- Wordnet
- Word Sense Disambiguation
 - Feature vectors
 - Collocational vs. bag of words
- Similarity metrics
 - Thesaurus-based vs. distributional
 - Context vectors
- Entropy and Mutual Information

Weighting: Mutual Information

Mutual information: between 2 random variables X and Y

$$I(X,Y) = \sum_{x} \sum_{y} P(x,y) \log_2 \frac{P(x,y)}{P(x)P(y)}$$

 Pointwise mutual information: measure of how often two events x and y occur, compared with what we would expect if they were independent:

$$I(x,y) = \log_2 \frac{P(x,y)}{P(x)P(y)}$$

Mutual information intuition

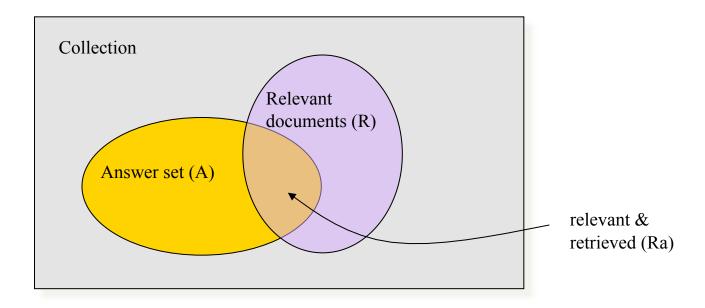
Objects of the verb drink

Object	Count	PMI assoc	Object	Count	PMI assoc
bunch beer	2	12.34	wine	2	9.34
tea	2	11.75	water	7	7.65
Pepsi	2	11.75	anything	3	5.15
champagne	4	11.75	much	3	5.15
liquid	2	10.53	it	3	1.25
beer	5	10.20	<some amount=""></some>	2	1.22

Evaluation

- Precision and recall
- Intrinsic and extrinsic
- Inter-annotator agreement

Classic IR Terminology



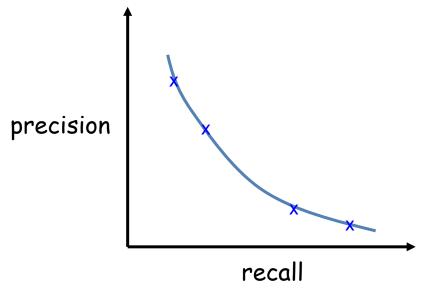
- Recall is the fraction of the relevant documents which has been retrieved Recall = |Ra| / |R|
- Precision is the fraction of the retrieved documents which is relevant Precision = |Ra| / |A|

Evalutation Metrics from IR

- Precision = number of relevant items retrieved
 - number of items retrieved
- Recall = number of relevant items retrieved
 - number of relevant items in collection
- Aim to maximize both, but compromises are needed.
- Relevance is highly subjective
 - doesn't allow for "quite relevant", "not very .."
 - assesses relevance of a doc. to query put to system, not to the information need the user has.

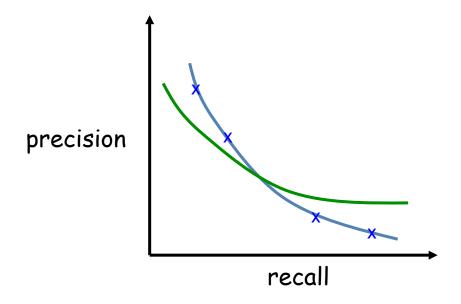
Precision/ Recall Curves

- There is a tradeoff between Precision and Recall
- So measure Precision at different levels of Recall



Precision/ Recall Curves (Cont.)

 Difficult to determine which of these two hypothetical results is better:



F-Measure: The Harmonic Mean

• The harmonic mean combines Recall & Precision into a single number ranging from 0 to 1:

$$F(j) = \frac{2}{\frac{1}{r(j)} + \frac{1}{P(j)}}$$

P(j) - precision of j-th document in ranking; r(j) - recall of j-th document in ranking;

- If F(j) = 0 no relevant docs have been retrieved;
- If F(j) = 1 all ranked docs are relevant;
- The harmonic mean assumes high value only when both recall & precision are high.

Top Level

- Lexical Semantics, word sense disambiguation
- Corpus analysis and annotation
- Discourse: Coreference
- Features
- Classifiers
- Discourse Structure

Discourse - Coreference

- Coreference
 - Kinds of reference phenomena
 - Constraints on co-reference
 - Anaphora Resolution
 - Hobbs
 - Loglinear
 - Coreference

Some terminology

- Reference: Process by which speakers use words
 Victoria Chen and she to denote a particular person
 - Referring expression: Victoria Chen, she
 - Referent: the actual entity (but as a shorthand we might call "Victoria Chen" the referent).
 - Victoria Chen and she "corefer"
 - Antecedent: Victoria Chen
 - Anaphor: she

Coreference Example

 Victoria Chen, Chief Financial Officer of Megabucks Banking Corp since 2004, saw her pay jump 20%, to \$1.3 million, as the 37-yearold also became the Denver-based financialservice company's president. It has been ten years since she came to Megabucks from rival Lotsabucks.

Coreference resolution

- Victoria Chen, Chief Financial Officer of Megabucks Banking Corp since 2004, saw her pay jump 20%, to \$1.3 million, as the 37-year-old also became the Denver-based financial-service company's president. It has been ten years since she came to Megabucks from rival Lotsabucks.
 - {Victoria Chen, Chief Financial Officer of Megabucks Banking Corp, her, the 37-year-old, the Denver-based financial-services company's president, she}
 - {Megabucks Banking Corp., the Denver-based financial-services company, Megabucks}
 - {her pay}
 - {Lotsabucks}

A loglinear model

- Supervised machine learning
- Train on a corpus in which each pronoun is labeled with the correct antecedent
- In order to train: We need to extract
 - Positive examples of referent-pronoun pairs
 - Negative example of referent-pronoun pairs
 - Feature for each one
- Then we train model to predict 1 for true antecedent and 0 for wrong antecedents

Features

- Strict gender (T/F)
 - e.g. male pronoun Pro_i with male antecedent NP_i
- Compatible gender (T/F)
 - e.g. male pronoun Pro_i with antecedent NP_j of unknown gender
- Strict number (T/F)
 - e.g. singular pronoun with singular antecedent
- Compatible number (T/F)
 - e.g. singular pronoun with antecedent of unknown number

Features

- Strict gender (T/F)
 - e.g. male pronoun Pro_i with male antecedent NP_i
- Compatible gender (T/F)
 - e.g. male pronoun Pro_i with antecedent NP_j of unknown gender
- Strict number (T/F)
 - e.g. singular pronoun with singular antecedent
- Compatible number (T/F)
 - e.g. singular pronoun with antecedent of unknown number

Features

- Machine learning paradigm
 - Target and features
- Applications
 - POS tagging, parsing, speech recognition
 - Word sense disambiguation
 - Semantic role labeling
- Types of features
 - Boolean, multivaried

KeyWords Detector: tf-idf

- The tf-idf weight (term frequency-inverse document frequency) is a a statistical measure used to evaluate how important a word is to a document in a collection or corpus.
- The importance increases proportionally to the number of times a word appears in the document (term frequency) but is offset by the frequency of the word in the corpus (inverse document frequency).
- We are using tf-idf score as a main tool for keywords detection
 - For example, word "time" has a very high document frequency (df), which converts to a low idf count and overall low tf-idf score of this word
 - On the other hand, multiword "bubba_watson" has much lower df, and, correspondingly, higher idf and tf-idf
- It's a very good technique, but it can produce lousy keywords in two cases:
 - it never (or rarely) seen a word before, like "twiloightandtheb"
 - there are no interesting words in the document

Topic Model Example:

```
central => |General English:0.0195193|
bank => |commercials:0.317051|
central bank => |business news:0.93075|
home => |General English:0.0234851|
depot => |business news:0.829389|
home_depot => |business_news:0.958285|weather: 0.305589|
critic => |political_news:0.326691|world_news: 0.0618789|
```

Corpus analysis and annotation

- LDC: Treebank, etc.
- Corpus creation process
 - Defining guidelines
 - Training and test
- Corpus evaluation
 - Inter-annotator agreement
 - Precision and recall

Discourse Structure

- Discourse Structure
 - Textiling
- Cohesion
- Coherence
 - Hobbs coherence relations
 - Rhetorical Structure Theory