CS114: Regular Expressions
and Automata

January 15, 2014
Lecture 2

Prof. Marie Meteer

Brandeis University

Models and Algorithms

* By models we mean the formalisms that are
used to capture the various kinds of linguistic

knowledge we need.

* Algorithms are then used to manipulate the
knowledge representations needed to tackle
the task at hand.

e State machines

* Rule-based approaches
* Logical formalisms

 Probabilistic models

Brandeis v eteer

Algorithms

 Many of the algorithms that we’ll study will turn
out to be transducers; algorithms that take one
kind of structure as input and output another.

e Unfortunately, ambiguity makes this process
difficult. This leads us to employ algorithms that

are designed to handle ambiguity of various
kinds

Paradigms

» State-space search

— To manage the problem of making choices during
processing when we lack the information needed to
make the right choice

* Dynamic programming

— To avoid having to redo work during the course of a
state-space search

e CKY, Earley, Minimum Edit Distance, Viterbi, Baum-Welch

e (Classifiers

— Machine learning based classifiers that are trained to
make decisions based on features extracted from the
local context

Brandeis v eteer

Languages and Grammars

* We can model a language with a grammar
— Production rules: LHS—> RHS
— NonTerminals indicate a production rule can be applied
— Terminals make up the “strings” (sentences) of the
language
 The grammar defines all the possible strings of
terminals in the language

— A “language” is generally an infinite number of finite
strings

— Any string can be “accepted”/parsed by the grammar
— The grammar can generate all the strings

Brandeis v eteer

The “Generative Power” of Grammars

 Chomsky defined a hierarchy of language
types distinguished by the characteristics of
the grammars that can generate them
— Finite State: A> Ab | b
— Content Free: A> AB|a| b
— Context Sensitive: bAc = bac
— Recursively enumerable: No restrictions

 Many other important properties

Brandeis v eteer

Chomsky Hierarchy

Non-recursively enumerable

Recursively-enumerable

Recursive

Context-sensitive

Context-free

Costas Brusch - RP

Regular Expressions and Text Searching

* Everybody does it
— Emacs, vi, perl, grep, etc..

* Regular expressions are a compact textual
representation of a set of strings representing
a language.

Brandeis v eteer

* Find me all instances of the word “the” in a
text (in perl)
— /the/

Misses capitalized examples

— /[tT]he/

* Returns other or theology

— /\b[tT]he\b/
— /["a-zA-Z][tT]he["a-zA-7]/
—/ ~ ["a-zA-Z] [tTlhe[”a-zA-Z]/

Brandeis v eteer

Errors

 The process we just went through was based
on two fixing kinds of errors

— Matching strings that we should not have matched
(there, then, other)

 False positives (Type |)
— Not matching things that we should have matched
(The)
* False negatives (Type Il)

Brandeis v eteer

Errors

 We'll be telling the same story for many tasks,
all semester. Reducing the error rate for an
application often involves two antagonistic
efforts:
— Increasing accuracy, or precision
* minimizing false positives
— Increasing coverage, or recall

* minimizing false negatives

Brandeis v eteer

Substitutions and Memory

e Substitutions
— s/colour/color/
— s/colour/color/g / <global change

— s/colour/color/i/ <case independent

 Memory (S1, S2, etc. refer back to matches)
— /the (.*)er they were, the Sler they will be/
— /the (.*)er they (.*), the Sler they $2/

Eliza [Weizenbaum, 1966]

e User: Men are all alike
e ELIZA: IN WHAT WAY

* User: They’re always bugging us about something
or other

e ELIZA: CAN YOU THINK OF A SPECIFIC EXAMPLE?
e User: Well, my boyfriend made me come here
 ELIZA: YOUR BOYFRIEND MADE YOU COME HERE
e User: He says I’'m depressed much of the time

* ELIZA: | AM SORRY TO HEAR THAT YOU ARE
DEPRESSED

Brandeis v eteer

Eliza-style regular expressions

* Step 1: replace first person with second person references
s/\bl(’'m| am)\b /YOU ARE/g
s/\bmy\b /YOUR/g
s/\bmine\b /YOURS/g

* Step 2: use additional regular expressions to generate replies
s/.* YOU ARE (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/
s/.* YOU ARE (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/
s/.* all .*/IN WHAT WAY/
s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

* Step 3: use scores to rank possible transformations

Brandeis v eteer

Summary on REs so far

* Regular expressions are perhaps the single
most useful tool for text manipulation

* Dumb but ubiquitous Eliza: you can do a lot
with simple regular-expression substitutions

Three Views

* Three equivalent formal ways to look at what

we’re up to
Regular Expressions
Regular
Languages
Finite State Automata Regular Grammars

Brandeis v eteer

Finite State Automata

* Regular expressions can be viewed as a textual
way of specifying the structure of finite-state
automata.

* FSAs and their probabilistic relatives are at the
core of much of what we’ll be doing all
semester.

* They also capture significant aspects of what
linguists say we need for morphology and
parts of syntax.

FSAs as Graphs

e Let’s start with the sheep language
/baa+!/

AR AR

Final state
State

Transition

Sheep FSA

* We can say the following things about this
machine

— It has 5 states

— b, 3, and ! are in its alphabet
— (s the start state

— g, Iis an accept state

a
) N b a a ()|
It has 5 transitions @ @ @

Brandeis CS114 2013 Meteer

But Note

* There are other machines that correspond
to this same Ianguage

* More on this one later

Brandeis CS114 2013 Meteer

More Formally

* You can specify an FSA by enumerating the
following things.

— The set of states: Q

— A finite alphabet: 2

— A start state

— A set of accept/final states

— A transition function that maps Qx2 to Q

Brandeis v eteer

About Alphabets

 Don’t take term alphabet word too narrowly;
it just means we need a finite set of symbols in
the input.

* These symbols can and will stand for bigger
objects that can have internal structure.

Dollars and Cents

one six ten sixty eleven sixteen
two seven twenty seventy twelve seventeen
three eight thirty eighty thirteen eighteen
four nine forty ninety fourteen nineteen
five i

one six ten sixty eleven sixteen
two seven twenty seventy twelve seventeen
three eight thity eighty thirteen eighteen
four nine forty ninety fourteen nineteen
ifteen

cents

dollars

twenty sixty one six twenty sixty
thirty seventy two seven thirty seventy
forty eighty three eight forty eighty three eight
fifty ninety four nine fifty ninety four nine
five five

Yet Another View

* The guts of FSAs can b la 1 |e

ultimately be 0 1
represented as tables >

1
2,3
If you're in state 1

and you’re looking at 3 4
an a, go to state 2 4

aa! I

Brandeis v eteer

(2

* Recognition is the process of determining if a
string should be accepted by a machine

e Or...it's the process of determining if a string
is in the language we’re defining with the
machine

e Or...it’s the process of determining if a regular
expression matches a string

* Those all amount the same thing in the end

* Traditionally, (Turing’s notion) this process is
depicted with a tape.

Brandeis CS114 2013 Meteer

e Simply a process of starting in the start state
 Examining the current input
* Consulting the table

* Going to a new state and updating the tape
pointer.

* Until you run out of tape.

Brandeis v eteer

Input tape

D-Recognize

function D-RECOGNIZE(fape, machine) returns accept or reject

index < Beginning of tape
current-state < Initial state of machine
loop
if End of input has been reached then
if current-state 1s an accept state then
return accept
else
return reject
elsif rransition-table[current-state,tape[index]] 1s empty then
return reject
else
current-state «— transition-table[current-state,tape[index] |
index < index + 1
end

Brandeis v eteer

* Deterministic means that at each point in
processing there is always one unique thing to
do (no choices).

* D-recognize is a simple table-driven
Interpreter

* The algorithm is universal for all unambiguous
regular languages.

— To change the machine, you simply change the
table.

Brandeis v eteer

* Crudely therefore... matching strings with regular
expressions (a la Perl, grep, etc.) is a matter of

— translating the regular expression into a machine (a
table) and

— passing the table and the string to an interpreter

Brandeis v eteer

Recognition as Search

* You can view this algorithm as a trivial kind of
state-space search.

e States are pairings of tape positions and state
numbers.

* Operators are compiled into the table

* Goal state is a pairing with the end of tape
position and a final accept state

e |tis trivial because?
No ambiguity

Brandeis v eteer

Generative Formalisms

* Formal Languages are sets of strings composed
of symbols from a finite set of symbols.

* Finite-state automata define formal languages
(without having to enumerate all the strings in

the language)

* The term Generative is based on the view that
you can run the machine as a generator to get
strings from the language.

Generative Formalisms

* FSAs can be viewed from two perspectives:

— Acceptors that can tell you if a string is in the
language

— Generators to produce all and only the strings in
the language

Brandeis v eteer

&
L
=
&
. -
Q
)
D
&
-
O
Z

Non-Determinism cont.

* Yet another technique
— Epsilon transitions

— Key point: these transitions do not examine or
advance the tape during recognition

Equivalence

* Non-deterministic machines can be
converted to deterministic ones with a fairly
simple construction

 That means that they have the same power;
non-deterministic machines are not more
powerful than deterministic ones in terms of

the languages they can accept

Brandeis v eteer

ND Recognition

 Two basic approaches (used in all major
implementations of regular expressions)

1. Either take a ND machine and convertittoa D
machine and then do recognition with that.

2. Or explicitly manage the process of recognition
as a state-space search (leaving the machine as

is).

Brandeis v eteer

Non-Deterministic Recognition: Search

* Ina ND FSA there exists at least one path through
the machine for a string that is in the language
defined by the machine.

* But not all paths directed through the machine for
an accept string lead to an accept state.

* No paths through the machine lead to an accept
state for a string not in the language.

Brandeis v eteer

Non-Deterministic Recognition

* So success in hon-deterministic recognition
occurs when a path is found through the
machine that ends in an accept.

* Failure occurs when all of the possible paths
for a given string lead to failure.

@ @ @ .
OO COCOCO0C0O0CO00O0C0O080O00 0000000080000 008080/

ganoon

OO O00O00O0000080 00000 O 0080000 O 0 a1

o q; 4, d, d;3 (4

Brandeis v eteer

1 idblalalalt | [|3

a
@ | b 4 O a !
2 STolalalalil T 13 ‘ ‘ . .

(\
\qL

d

\

\

3 s Iblalalalt]l [[3

/\

/E\
[
\TZ/'
|
\

4 é.bla a|a|!| | |§ é|b|a|a|_a|!| | |§6
o | @
‘\V/X\

S < Iblalalalt T T T3 < lblalalalt[[[3 7

| @

\
{Tblalalalt [.15 8

Brandeis v eteer

e States in the search space are pairings of tape
positions and states in the machine.

* By keeping track of as yet unexplored states, a
recognizer can systematically explore all the
paths through the machine given an input.

Brandeis v eteer

Why Bother?

* Non-determinism doesn’t get us more formal
power and it causes headaches so why
bother?

— More natural (understandable) solutions

Brandeis v eteer

Non-determinism

 Three ways to handle this:
— Backup
— Look ahead
— Parallelism
* “Recognition” is search
— Breadth first
— Depth First
* Deterministic & nondeterministic equivalent
— NFSA generally much cleaner

— DFSA can have many more states
— See textbook for discussion

Another FSA Example:

Verb Groups in English

MD Modal Could, would, will, might, ...

VB Verb base Eat

VBD \Verb, past tense Ate (with any subject) (I ate, he ate ...)
VBZ Verb, 3sng, pres He eats (only he, she, it)

VBP Verb, non-3sng, pres | eat, We eat, they eat, you eat

VBG Verb, gerund | am eating (always with a form of “is”)
VBN Verb, past participle | have eaten (always with a form of “have”)
TO “to” “to” when marking a verb as in “to eat”

FSA for Verb Groups

| could have danced all night: MD VB VBN

| was dancing when the lights went out: VBD VBG
We danced the night away: VBD

| would have been dancing, but MD VB VBN VBG
He has danced his whole life: VBZ VBN

She dances four times a week: VBZ

He loves to dance: VBZ TO VB
She might dance with him: MD VB

Compositional Machines

 Formal languages are just sets of strings

* Therefore, we can talk about various set
operations (intersection, union, concatenation)

 This turns out to be a useful exercise

1/15/14

Concatenation

Intersection

* Accept a string that is in both of two specified
languages

* An indirect construction...
— A”B =~(~A or ~B)

(See details in SLP Ch 2)

1/14/14 52

Languages and Grammars

 We can model a language with a grammar
— Production rules: LHS—=> RHS
— NonTerminals indicate a production rule can be applied
— Terminals make up the “strings” (sentences) of the
language
 The grammar defines all the possible strings of
terminals in the language

— A “language” is generally an infinite number of finite
strings

— Any string can be “accepted”/parsed by the grammar
— The grammar can generate all the strings

Brandeis v eteer

Not all languages are regular

* So what happens to the languages which
are not regular?

« Can we still come up with a language
recognizer?

—i.e., something that will accept (or reject)

strings that belong (or do not belong) to the
language”?

Context-Free Languages

« Alanguage class larger than the class of regular
languages

« Supports natural, recursive notation called “context-free
grammar”

* Applications:
— Parse trees, compilers

— XML Context-

free
(PDA/CFG)

An Example

« A palindrome is a word that reads identical from both
ends

— E.g., madam, redivider, malayalam, 010010010
« LetL={w |wis abinary palindrome}
* Is L regular?

— No.

— Proof:

* Let w=0ON10QN

« By Pumping lemma, w can be rewritten as xyz, such that xykz is also L (for
any k=0)

» But |xy|<N and y#e

e ==> y=0+

« ==> xykz will NOT be in L for k=0

» ==> Contradiction

But the language of palindromes...

Is a CFL, because it supports recursive
substitution (in the form of a CFG)

 This is because we can construct a “qgrammar”

like this:
1. A==>¢
2_ ==> O - _
3 —=> 1 E/>Termma|
P .4' ==>0A ariable or non-terminal
roductions A ==> 1A1

How does this grammar work?

How does the CFG for

palindromes work?

An input string belongs to the language (i.e.,
accepted) iff it can be generated by the CFG

« Example: 01110
» G can generate this input string as follows:

=>01A10
=> 01110

Context-Free Grammar: Definition

* A context-free grammar G=(V,T,P,S), where:
— V: set of variables or non-terminals
— T: set of terminals (this is equal to the alphabet)

— P: set of productions, each of which is of the form V
==>aq4|a,]...
» Where each o, is an arbitrary string of variables and terminals
— S ==> start variable

CFG for the language of binary palindromes:
_ G=({A}’{O’1}’P’A)
—P: A==>0A0|1A1]0[|1]e

More examples

» Parenthesis matching in code
* Syntax checking

* In scenarios where there is a general need for:
— Matching a symbol with another symbol, or

— Matching a count of one symbol with that of another
symbol, or

— Recursively substituting one symbol with a string of
other symbols

Tag-Markup Languages

* Roll ==> <ROLL> Class Students </ROLL>
e Class ==> <CLASS> Text </CLASS>

e Text ==> Char Text | Char

e Char==>a|b|...|z|A|B]|..|Z

« Students ==> Student Students | ¢

o Student ==> <STUD> Text </STUD>

Chomsky Hierarchy

Non-recursively enumerable

Recursively-enumerable

Recursive

Context-sensitive

Context-free

Costas Brusch - RP

