CS114: Finite State Automata,
Words, Transducers

January 22, 2014

Prof. Marie Meteer

Brandeis University

Additional slides courtesy of Jurafsky & Martin, James Pustejovsky and , Ray Mooney

Assignment 1: Sentence pivots

* Background

— The theory of “given” and “new” says that the first part of
a sentence grounds it in the context (the “given” part) and
the second provides information (the “new” part)

— One study looked at how to find the “pivot” between given
and new based on the syntactic structure of the sentence

* “Modeling Conversational Speech for Speech Recognition” Meteer
& lyer, 1997

— The goal was to see if the vocabulary and language model
for these two parts was different

e Task (part 1)

— Write a program that uses lexical and part of speech
information to split a sentence into its given and new parts

— Base the split on finding the “first strong verb”

Programming goals

* Get used to Python and NLTK data

 Write a modularized program that separates the
declarative rules from the control structure

 Write a program that is meant to be one component in
a larger sequence
— Use internal data structures that can be further modified

— Separate “read” and “write” functions from the core
program since you may not always be writing out the
result

— Put all content specific information in declarative rules so
they can be changed for different types of input

Pivot point: After the first strong verb

* Before the pivot, after the pivot, no pivot

— A.1: Uh/UH,/, do/VBP you/PRP have/VB a/DT pet/NN
Randy/NNP ?/.

— B.2: Uh/UH,/, yeah/UH,/, currently/RB we/PRP have/VBP
a/DT poodle/NN ./.

— A.3: A/DT poodle/NN,/, miniature/JJ or/CC,/, uh/UH ,/,
full/)) size/NN ?/.

— B.8: Well/UH,/, um/UH ,/, |/PRP would/MD n't/RB,/, uh/
UH,/, I/PRP definitely/RB would/MD n't/RB dispute/VB
that/IN

— B.22: And/CC I/PRP think/VBP,/, uh/UH ,/, having/VBG
listened/VBN to/IN you/PRP relative/JJ to/IN the/DT
economy/NN thing/NN

 Don’t worry about the theory. Just find the
first strong verb

* Follow the programming guidelines

* Keep your rules out of the control structure—
you’ll be looking at other kinds of data going
forward on the same task

* Finite-state methods are particularly useful in dealing with a
lexicon

* Many devices, most with limited memory, need access to
large lists of words

* And they need to perform fairly sophisticated tasks with those
lists

 So we’ll first talk about some facts about words and then
come back to computational methods

1/22/14 6

English Morphology

 Morphology is the study of the ways that
words are built up from smaller meaningful

units called morphemes

* We can usefully divide morphemes into two
classes
— Stems: The core meaning-bearing units

— Affixes: Bits and pieces that adhere to stems to
change their meanings and grammatical functions

1/22/14 7

English Morphology

* We can further divide morphology up into two
broad classes

— Inflectional
— Derivational

1/22/14 8

Word Classes

* By word class, we have in mind familiar
notions like noun and verb

 We’ll go into the gory details in Chapter 5

* Right now we’re concerned with word classes
because the way that stems and affixes
combine is based to a large degree on the
word class of the stem

1/22/14 9

Inflectional Morphology

* |Inflectional morphology concerns the
combination of stems and affixes where the
resulting word:

— Has the same word class (PoS) as the original

— Serves a grammatical/semantic purpose that is
 Different from the original
* But is nevertheless transparently related to the original

1/22/14 10

Nouns and Verbs in English

* Nouns are simple
— Markers for plural and possessive

* Verbs are only slightly more complex
— Markers appropriate to the tense of the verb

1/22/14 11

Regulars and Irregulars

* |tis a little complicated by the fact that some
words misbehave (refuse to follow the rules)
— Mouse/mice, goose/geese, ox/oxen
— Go/went, fly/flew

* The terms regular and irregular are used to
refer to words that follow the rules and those
that don’t

1/22/14

12

Regular and Irregular Verbs

* Regulars...
— Walk, walks, walking, walked, walked

* Irregulars
— Eat, eats, eating, ate, eaten
— Catch, catches, catching, caught, caught
— Cut, cuts, cutting, cut, cut

1/22/14 13

Verb forms: Not just affixes

* Progressive: be ---ing
e Perfect: have ---ed
 Modality expressed as a word

— Should, would, could

e Tense affects the first element in the verb
group (unless it’s a modal)

FSA for Verb Group Parts of Speech

| could have danced all night: MD VB VBN

| was dancing when the lights went out: VBD VBG
We danced the night away: VBD

| would have been dancing, but MD VB VBN VBG
He has danced his whole life: VBZ VBN

She dances four times a week: VBZ

He loves to dance: VBZ TO VB
She might dance with him: MD VB

Inflectional Morphology

* So inflectional morphology in English is fairly
straightforward

* Except that it is highly ambiguous
— Same endings used for multiple things

* Plural nouns, present tense 3" person verbs, possessive
* Past, perfect, passive

 And complicated by the fact that are
irregularities

— Too many conquerors

1/22/14 16

Derivational Morphology

* Derivational morphology is the messy stuff
that no one ever taught you.

— Quasi-systematic
— Irregular meaning change
— Changes of word class

1/22/14 17

Derivational Examples

* Verbs and Adjectives to Nouns

-ation computerize computerization

-ee appoint appointee

-er kill killer

-ness fuzzy fuzziness

Nouns and Verbs to Adjectives

-al computation computational
-able embrace embraceable
-less clue clueless

1/22/14

18

Example: Compute

* Many paths are possible...

e Start with compute
— Computer -> computerize -> computerization
— Computer -> computerize -> computerizable

e But not all paths/operations are equally good
(allowable?)
— Computer -> *Computeree ?? *Computerness??

— Clue
* Clue -> *clueable
e Clueless, Clueful?
* Unkempt, kempt?, kemptify (meaning to comb one’s hair)

1/22/14 i)

Why care about morphology?

e ‘Stemming’ in information retrieval

— Might want to search for “going home” and find
pages with both “went home” and “will go home”

* Morphology in machine translation

— Need to know that the Spanish words quiero and
qguieres are both related to querer ‘want’

* Morphology in spell checking

— Need to know that misclaim and antiundoggingly
are not words despite being made up of word
parts

Can’t just list all words

* Turkish

* Uygarlastiramadiklarimizdanmissinizcasina
— (behaving) as if you are among those whom we
could not civilize
e " Uygar civilized” + las become’ + tir cause’ +
ama not able’ + dik ‘past’ + lar ‘plural’+ imiz
‘D1pl’ + dan ‘abl’ + mis ‘past’ + siniz 2pl’ +
casina ‘as if’

What we want

* Something to automatically do the following
kinds of mappings:

* Cats cat +N +PL

* Cat cat +N +SG

* Cittes city +N +PL

* Merging merge +V +Present-participle
» Caught catch +V +past-participle

Morpholgy and FSAs

 We'd like to use the machinery provided by
FSAs to capture these facts about morphology
— Accept strings that are in the language
— Reject strings that are not

— And do so in a way that doesn’t require us to in
effect list all the words in the language

1/22/14 23

Start Simple

* Regular singular nouns are ok

* Regular plural nouns have an -s on the end
— Note in speech there are three variants

* —S, -Z, OF —IX-Z
e Cats, dogs, bushes

* |rregulars are ok as is

1/22/14 24

Simple Rules

reg-noun plural -s

Irreg-pl-noun

Irreg-sg-noun

1/22/14 25

Now Plug in the Words

0 X S
@
f
ca ‘q
@ @
9 o 0 S e

Derivational Rules

@ -ize/V ‘ -ation/N @

'Eﬂt)lf?//\‘ _|t "lllll) -EBF/PQ
ad j-ous s/ N
verbj -ly/Adv
-ive/A

Iy/Adv

-atlve/ . -fuI/A
noun, o
If everything is an accept

state how do things ever
get rejected?

1/22/14

Parsing/Generation vs. Recognition

* We can now run strings through these machines to
recognize strings in the language
* But recognition is usually not quite what we need

— Often if we find some string in the language we might like to
assign a structure to it (parsing)

— Or we might have some structure and we want to produce a
surface form for it (production/generation)

 Example
— From “cats” to “cat +N +PL”

1/22/14 28

Finite State Transducers

 The simple story
— Add another tape
— Add extra symbols to the transitions

— On one tape we read “cats”, on the other we write
“cat +N +PL”

1/22/14 29

L exical é cla|t |[+N[+PI f

Surfaceé cla|t]|s f

Applications

* The kind of parsing we’re talking about is
normally called morphological analysis
* |t can either be

e An important stand-alone component of many

applications (spelling correction, information
retrieval)

e Orsimply a link in a chain of further linguistic
analysis

1/22/14

31

The Details

e Of course, its not as easy as
e “cat +N +PL” <-> “cats”

* As we saw earlier there are geese, mice and oxen

e But there are also a whole host of spelling/

pronunciation changes that go along with inflectional
changes

e (Cats vs Dogs
* Fox and Foxes

1/22/14 32

Multi-Tape Machines

* To deal with these complications, we will add
more tapes and use the output of one tape
machine as the input to the next

* So to handle irregular spelling changes we’ll
add intermediate tapes with intermediate
symbols

1/22/14

33

Multi-Level Tape Machines

L exical é flo|x |[+N|+PI f
Intermediate é flo|lx|M|s|# f
Surface § flo|x|e|s f

 We use one machine to transduce between the
lexical and the intermediate level, and another to
handle the spelling changes to the surface tape

1/22/14 34

Lexical to Intermediate Level

O X +P|
D——@— ;
f S#
f t +N
B2 (5)—(6)—+S9
C a t € 4
0

g 0 0 S e +N +Sg
RO OO O O ORar ¢
O—0O—=0O0O0—C0O—#
e e S e €

1/22/14 35

Intermediate to Surface

e The add an “e” rule as in fox"s#t <-> foxes#t

Deterministic or Nondeterministic?

1/22/14 36

Foxes

Lexical § | f [o | x [+N[+P ;

T ©OOOO@

Intermediate § flo|x|MN|s|# f

Te-insert O> <0> <0 1X2xX3><4> <0

Surfacezwf"ovx els g

1/22/14 .

Cascades

* This is an architecture that we’ll see again and
again
e Overall processing is divided up into distinct
rewrite steps

 The output of one layer serves as the input to the
next

 The intermediate tapes may or may not wind up
being useful in their own right

1/22/14 38

More about Words

* Tokenization: Can’t just take words for granted
— Finding the words
— Sentence segmentation
— Word segmentation

e Spell check and Edit Distance

* Segmenting words and sentences in running
text

 Why not just periods and white-space?

— Mr. Sherwood said reaction to Sea Containers’
proposal has been "very positive." In New York
Stock Exchange composite trading yesterday, Sea
Containers closed at $62.625, up 62.5 cents.

— “I said, ‘what’re you? Crazy?’ “ said Sadowsky. “I
can’t afford to do that.”

 Words like: cents. said, positive.” Crazy?

One can’t segment on punctuation alone

 Word-internal punctuation
— m.p.h
— Ph.D.
— AT&T
— 01/02/06
— Google.com
— 555,500.50

e Expanding clitics
— What're -> what are
— I'm->1am

e Multi-token words

— New York
— Rock ‘n’ roll

Sentence Segmentation

e |, ?relatively unambiguous

* Period “” is quite ambiguous
— Sentence boundary
— Abbreviations like Inc. or Dr.

* General idea:
— Build a binary classifier:

on»

e Looks at a “.

* Decides EndOfSentence/NotEQOS
* Could be hand-written rules, or machine-learning

Word Segmentation in Chinese

 Some languages don’t have spaces
— Chinese, Japanese, Thai, Khmer

* Chinese:
— Words composed of characters

— Characters are generally 1 syllable and 1
morpheme.

— Average word is 2.4 characters long.

— Standard segmentation algorithm:
* Maximum Matching (also called Greedy)

Maximum Matching Word Segmentation

* Given a wordlist of Chinese, and a string.
— 1) Start a pointer at the beginning of the string

— 2) Find the longest word in dictionary that
matches the string starting at pointer

— 3) Move the pointer over the word in string
—4)Goto 2

* How about speech recognition?

English example (Palmer 00)

e the table down there

* thetabledownthere Theta bled own there

* Works astonishingly well in Chinese
* Far better than this English example suggests

 Modern algorithms better still: probabilistic
segmentation

Spell-checking and Edit Distance

e Non-word error detection:
— detecting “graffe”

* Non-word error correction:
— figuring out that “graffe” should be “giraffe”

* Context-dependent error detection and
correction:
— Figuring out that “war and piece” should be peace

Non-word error detection

* Any word not in a dictionary
 Assume it’s a spelling error
* Need a big dictionary!

* What to use?

— FST dictionary!!
 But what issues did we raise with earlier?
e Can we use it for all kinds of morphology?

Isolated word error correction

* How do | fix “graffe”?

— Search through all words:
— graf
— craft
— grail
— giraffe

— Pick the one that’s closest to graffe
— What does “closest” mean?
— We need a distance metric.

— The simplest one: edit distance.
e (More sophisticated probabilistic ones: noisy channel)

Edit Distance

e The minimum edit distance between two
strings

* |sthe minimum number of editing operations
— Insertion

— Deletion
— Substitution

e Needed to transform one into the other

Minimum Edit Distance

I NTE *NTTION

* B X ECUTTION
d s s i s

* |f each operation has cost of 1
* Distance between these is 5
* |f substitutions cost 2 (Levenshtein)

e Distance between these is 8

How to come up with the minimum?

* Try all possibilities

I NTENTTI ON
EXECUTTION
ddddddddd 11i1i1ii3i1i3i1i13i-=18
I NTENT I ON

FE X BE CUT I ON
S S S s s = 10

Distance Matrix Computation

N 9
0] 8
Insertion: Add 1

L7 T

I
T 6
N 5
E 4

Substitution: Add O if same, 2 if diff —

N

i

Deletion: Add 1

Distance Matrix

Distance Matrix

7 8 9 10 (11 | 10 | 9 8 9
6 7 8 9 10 | 9 8 9 10
5 6 7 8 9 8 9 10 | 11
4 5 6 7 8 9 10 | 11 | 10
3 4 5 6 7 8 9 10 | 9
4 5 6 7 8 7 8 9 8
3 4 5 6 7 8 7 8 7
2 3 4 5 6 7 6 7 8
1 2 3 4 5 6 7 8 9
E X E C U T I O N

Distance Matrix with shortest path

0] 8 7 8 9 10 (11 | 10 | 9 8 9

E 4 3 4 5 6 7 8 9 10 | 9

Another example

G H T
R I T
D D D I I I
1 1 1 1
G H T
T E
S S D
2 2 1
G H T
T E
D D I
1 0 1

Edit Distance

Minimum Edit Distance Algorithm

* Create Matrix

* |nitialize 1 —length in LH column and bottom
row

* For each cell

— Take the minimum of:

* Deletion: +1 from left cell
* |Insertion: +1 from cell below

» Substitution: Diagonal +0 if same +2 if different

— Keep track of where you came from

Example

e Minimum of: T]>°
H | 4
— 141 (left right)
G | 3
— 1+1 (bottom up) ,\\2
— 0+0 (diagonal) R | 1 1
I
e Minimumofi— [# |0 | 1 |2 |3 |4
| R | T | E

— 0+1 (left right)
— 2+1 (bottom up)
— 142 (diagonal)

Answer to Right-Rite

H 4
G 3
I 2
R 1 21 OI 2
0 1 2 3 4
R I T E
In each box X, Y, Z values are Minimum is highlighted
X: From left: Insert-add one from left box in red with arrow to source
Y: Diagonal, Compare-0 if same, 2 if different NOTE: All boxes will have arrows.
Z: From below: Delete-add one from lower box | didn’t show them all.

Onli one iath back to root.

Answer to Right-Rite

H 4
G 3
I 2 3,3,1 2,0,2
[|
R 1 20 2¥T 133
/ R
0 1 2 3 4
R I T E
In each box X, Y, Z values are Minimum is highlighted
X: From left: Insert-add one from left box in red with arrow to source
Y: Diagonal, Compare-0 if same, 2 if different NOTE: All boxes will have arrows.
Z: From below: Delete-add one from lower box | didn’t show them all.

Onli one iath back to root.

Answer to Right-Rite

T 5 6,6,4 5,5, 5 6,2, 4 35,5
| &
H 4 5,53 1| 4,42 3,3,3 4,4, 4
]]
G 3 442%] 3317 222 33 3
l l
| > 331 Y 202V 133 2 4 4
i+ =
R 1 20,2 13,3 2.4 4 355
/ <=
0 1) 3 4
" R | T E

In each box X, Y, Z values are
X: From left: Insert-add one from left box
Y: Diagonal, Compare-0 if same, 2 if different
Z: From below: Delete-add one from lower box

Onli one iath back to root.

Minimum is highlighted
in red with arrow to source

NOTE: All boxes will have arrows.

| didn’t show them all.

Answer to Right-Rite

T 5 6,6,4 5,5, 5 6,2, 4 35,5
| &
H 4 5,53 1| 4,42 3,3,3 4,4, 4
]]
G 3 442%] 3317 222 33 3
l l
| > 331 Y 202V 133 2 4 4
i+ =
R 1 20,2 13,3 2.4 4 355
/ <=
0 1) 3 4
" R | T E

In each box X, Y, Z values are
X: From left: Insert-add one from left box
Y: Diagonal, Compare-0 if same, 2 if different
Z: From below: Delete-add one from lower box

Onli one iath back to root.

Minimum is highlighted
in red with arrow to source

NOTE: All boxes will have arrows.

| didn’t show them all.

* Minimum Edit Distance

* A “dynamic programming” algorithm

* We will see a probabilistic version of this
called “Viterbi”

