CS114 Lecture 4

Some more about words
Probabilities
Ngrams

January 28, 2013
Professor Meteer

Thanks for Jurafsky & Martin & Prof. Pustejovksy for slides



From Counting to Probabilities

 Why count words
* A probability primer
* Ngrams and Language models



Word Prediction

e Guess the next word...

— ... | notice three guys standing on the ???

* There are many sources of knowledge that can
be used to inform this task, including arbitrary
world knowledge.

e But it turns out that you can do pretty well by
simply looking at the preceding words and
keeping track of some fairly simple counts.

1/27/14




Statistical Example

The preceding and following words lend valuable information to
the probability of the whole.

What is the missing word?

“I love 7

NOW what is the missing word?

“My favorite TV show was I love 7

© 2004518 nologies



Word Prediction

 We can formalize this task using what are called
N-gram models.

 N-grams are token sequences of length N.
* Qur earlier example contains the following 2-
grams (aka bigrams)

— (I notice), (notice three), (three guys), (guys
standing), (standing on), (on the)

* Given knowledge of counts of N-grams such as
these, we can guess likely next words in a
sequence.
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N-Gram Models

 More formally, we can use knowledge of the
counts of N-grams to assess the conditional
probability of candidate words as the next
word in a sequence.

* Or, we can use them to assess the probability
of an entire sequence of words.

— Pretty much the same thing as we’ll see...
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Applications

e |t turns out that being able to predict the next word
(or any linguistic unit) in a sequence is an extremely
useful thing to be able to do.

 As we’ll see, it lies at the core of the following
applications
— Automatic speech recognition
— Handwriting and character recognition
— Spelling correction
— Machine translation

— And many more.
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Counting

* Simple counting lies at the core of any
probabilistic approach. So let’s first take a look
at what we’re counting.

— He stepped out into the hall, was delighted to
encounter a water brother.

* 13 tokens, 15 if we include “” and “” as separate
tokens.

* Assuming we include the comma and period, how
many bigrams are there?
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Counting

* Not always that simple
— | do uh main- mainly business data processing

e Spoken language poses various challenges.
— Should we count “uh” and other fillers as tokens?

— What about the repetition of “mainly”? Should such do-overs
count twice or just once?

— The answers depend on the application.

* If we're focusing on something like ASR to support indexing for search,
then “uh” isn’t helpful (it’s not likely to occur as a query).

» But filled pauses are very useful in dialog management, so we might
want them there.

dl(
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Counting: Types and Tokens

e How about

— They picnicked by the pool, then lay back on the grass
and looked at the stars.
» 18 tokens (again counting punctuation)
* But we might also note that “the” is used 3 times,
so there are only 16 unique types (as opposed to
tokens).

* |In going forward, we’ll have occasion to focus on
counting both types and tokens of both words
and N-grams.
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Counting: Wordforms

e Should “cats” and “cat” count as the same
when we’re counting?

* How about “geese” and “goose”?

* Some terminology:

— Lemma: a set of lexical forms having the same
stem, major part of speech, and rough word sense

— Wordform: fully inflected surface form

e Again, we’ll have occasion to count both
lemmas and wordforms
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Counting: Corpora

* So what happens when we look at large bodies of text
instead of single utterances?

 Brown et al (1992) large corpus of English text
— 583 million wordform tokens
— 293,181 wordform types

* Google
— Crawl of 1,024,908,267,229 English tokens

— 13,588,391 wordform types

* That seems like a lot of types... After all, even large dictionaries of English have only
around 500k types. Why so many here?

eNumbers
eMisspellings
eNames

e Acronyms
ectc
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Language Modeling

e Back to word prediction

 We can model the word prediction task as the
ability to assess the conditional probability of
a word given the previous words in the

sequence
— P(w, [w,w,..w,_ )

e We'll call a statistical model that can assess
this a Language Model
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Introduction to Probability

e Experiment (trial)

— Repeatable procedure with well-defined possible
outcomes

e Sample Space (S)
* the set of all possible outcomes
* finite or infinite
— Example

* coin toss experiment
* possible outcomes: S = {heads, tails}

— Example
* die toss experiment
* possible outcomes: S ={1,2,3,4,5,6}



Introduction to Probability

e Definition of sample space depends on what
we are asking

— Sample Space (S): the set of all possible outcomes
— Example

 die toss experiment for whether the number is even or
odd

* possible outcomes: {even,odd}
* not{1,2,3,4,56}



More Definitions

* Events
— an event is any subset of outcomes from the sample space
* Example

— die toss experiment
— let A represent the event such that the outcome of the die toss
experiment is divisible by 3
— A= {31 6}
— Ais a subset of the sample space S={1,2,3,4,5,6}
* Example

— Draw a card from a deck
» suppose sample space S = {heart,spade,club,diamond} (four suits)
» Jlet A represent the event of drawing a heart
» let B represent the event of drawing a red card
* A ={heart}
* B ={heart,diamond}



Definition of Probability

* The probability law assigns to an event a
nonnegative number

— Called P(A) or the probability A

* That encodes our knowledge or belief
about the collective likelihood of all the
elements of A



Laws of Probability

* Probability law must satisfy certain properties
— Nonnegativity
 P(A) >=0, for every event A
— Additivity
* If A and B are two disjoint events, then the probability
of their union satisfies: P(A U B) = P(A) + P(B)
— Normalization

* The probability of the entire sample space S is equal to
1,

e j.e. P(S)=1.



An example

* Experiment involving 3 coin tosses
* Qutcomeis a 3-long stringof Hor TS
={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
* Assume each outcome is equi-probable
— “Uniform distribution”
 What is probability of the event that exactly 2 heads
occur?
A ={HHTHTH,THH}
P(A) = P({HHT})+P({HTH})+P({THH})
=1/8+1/8+1/8
=3/8



In Summary

Number of outcomes corresponding to event E

P(E) =
Total number of outcomes

* Probability of drawing a spade from 52 well-
shuffled playing cards:

.25



Probabilities of two events

* |f two events A and B are independent
— Then
* P(A and B) = P(A) x P(B)
* |f flip a fair coin twice
— What is the probability that they are both heads?
* |f draw a card from a deck, then put it back,
draw a card from the deck again

— What is the probability that both drawn cards are
hearts?

25 x .25 = .0625



How about non-uniform probabilities?

A biased coin,
— twice as likely to come up tails as heads,
— is tossed twice

What is the probability that at least one head occurs?
 Sample space = {hh, ht, th, tt}

* Sample points/probability for the event:
ht1/3x2/3 =2/9
hh 1/3 x1/3=1/9
th2/3x1/3=2/9
tt2/3x2/3=4/9

* Answer: 5/9 = =0.56 (sum of weights in red)



Moving toward language

 What'’s the probability of drawing a 2 from a

deck of 52 cards with four 2s?

4 1

P(drawing a two) = —5~ = 73~ = .077

 What'’s the probability of a random word
(from a random dictionary page) being a verb?

P(drawing a verb) = #of ways to get a verb
all words




Probability and part of speech tags

 What’s the probability of a random word (from a
random dictionary page) being a verb?

P(picking a verb) = #of ways to get a verb
all words

* How to compute each of these
— All words = just count all the words in the dictionary

— # of ways to get a verb: number of words which are
verbs!

— If a dictionary has 50,000 entries, and 10,000 are
verbs.... P(V) is 10000/50000 = 1/5 = .20




Conditional Probability

* Given an experiment, a corresponding sample
space S, and a probability law

e Suppose we know that the outcome is within
some given event B

 We want to quantify the likelihood that the
outcome also belongs to some other given
event A.

 We need a new probability law that gives us
the conditional probability of A given B P(A|B)



Conditional Probability

* Back to cards:
— P(king) =4 /52=1/13
— P(red) =26/52 =1/2
 What is the probability that a card is a king if |

know that it is red?
— P(king | red) = Plking Nred) — 1,26 1
P(red) 26/52 13




Conditional Probability

e Let A and B be events

* p(B|A) =the probability of event B occurring
given event A occurs

* Definition: p(B|A) = p(A N B) / p(A)

* Notation & Notes
— p(A,B) =p(A N B)
— p(A,B) = P(B,A)

—p(A|B) = p(A N B)/ p(B)
— p(A,B) = p(A|B) * P(B)




Independence

 Whatis P(A,B) if A and B are independent?
 P(A,B)=P(A) - P(B) iff A,B independent.
— P(heads,tails) = P(heads) - P(tails) =.5-.5=.25

— Note: P(A|B)=P(A) iff A,B independent
— Also: P(B|A)=P(B) iff A,B independent



An Example

 What's the probability of a patient with a stiff
neck having meningitis?

— Meningitis causes a stiff neck in 50% of cases
* p(S|M) =1/2

— The probability of having meningitis
* p(M) = 1/50,000

— The probability of having a stiff neck

* p(S)=1/20

— P(M]S) = P(S|M)P(M) _ % *1/50,000 _ 1/5000

P(S) 1/20

From Artificial Intelligence, Russel & Norvig, Prentice Hall, 1999



Bayes Theorem

P(A|B)P(B)

P(B | A) = ”

* Swap the conditioning

e Sometimes it’s easier to estimate one kind of
dependence than another



Language Modeling

e Back to word prediction

 We can model the word prediction task as the
ability to assess the conditional probability of
a word given the previous words in the

sequence
— P(w, [w,w,..w,_ )

e We'll call a statistical model that can assess
this a Language Model
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Language Modeling

* How might we go about calculating such a
conditional probability?

— One way is to use the definition of conditional
probabilities and look for counts. So to get

— P(the | its water is so transparent that)
* By definition that’s

P(its water is so transparent that the)

P(its water is so transparent that)
We can get each of those from counts in a large corpus.
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Very Easy Estimate

* How to estimate?
— P(the | its water is so transparent that)

P(the | its water is so transparent that) =
Count(its water is so transparent that the)
Count(its water is so transparent that)
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Very Easy Estimate

* According to Google those counts are 5/9.

— Unfortunately... 2 of those were to these slides...
So maybe it’s really

—3/7

— In any case, that’s not terribly convincing due to
the small numbers involved.

(actually, it’s 11,900 / 17,900 or .66)
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Language Modeling

* Unfortunately, for most sequences and for
most text collections we won’t get good
estimates from this method.

— What we're likely to get is 0. Or worse 0/0.

* Clearly, we'll have to be a little more clever.
— Let’s use the chain rule of probability

— And a particularly useful independence
assumption.
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The Chain Rule

Recall the definition of conditional probabilities

P(A™ B)
* Rewriting: P(A]B) = P(B)

P(A™B)=P(A| B)P(B)
* For sequences...
— P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)
* |n general
— P(X,X9,X5,...X,)) = P(X{)P(X; [ X{)P(X5 ] X1,%5)...P(X, | X .. X, 1)
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The Chain Rule

P(wy) = P(wl)P(w2|w1)P(W3|w%)...P(w,.,|w’1’—1)

n
TT1POwelwi™)
k=1

P(its water was so transparent)=
P(its)*
P(water|its)*
P(was|its water)*
P(so|its water was)*
P(transparent|its water was so)
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Unfortunately

 There are still a lot of possible sentences

* |n general, we’ll never be able to get enough
data to compute the statistics for those longer
prefixes

— Same problem we had for the strings themselves
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Independence Assumption

* Make the simplifying assumption
— P(lizard |
the,other,day,|,was,walking,along,and,saw,a) =
P(lizard|a)
* Or maybe
— P(lizard |
the,other,day,|,was,walking,along,and,saw,a) =
P(lizard|saw,a)
* That is, the probability in question is
independent of its earlier history.
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Independence Assumption

* This particular kind of independence assumption is
called a Markov assumption after the Russian
mathematician Andrei Markov.

sz A PLAvYER”  MEMORPASIL
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Markov Assumption

So for each component in the product replace with the
approximation (assuming a prefix of N)

P(wn lwy~ = P(Wnlwn N +1

Bigram version

Pw, Iw/™ =~ Pw, lw )
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Estimating Bigram Probabilities

 The Maximum Likelihood Estimate (MLE)

count(w,_,,w;)

Pw.lw, )=
Wi Wi count(w_,)
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An Example

* <s>|am Sam </s>
e <s>Sam |am </s>
* <s>|do not like green eggs and ham </s>

P(I|<s>)=35=.67 P(sam|<s>)=1=.33 Plam|I)=
P(</s>|Sam) = % =0.5 P(Sam|am)= % =.5 P(do|I)=

(W% [P IS [0
|

W O

~J

~1
CW,_Ny1Wn)

1—1
C(W:-;—NH)

dNQG
1/27/14 Language Processing - Jurafsky and Martin




Maximum Likelihood Estimates

 The maximum likelihood estimate of some parameter of a
model M from a training set T

— Is the estimate that maximizes the likelihood of the training set T given
the model M

* Suppose the word Chinese occurs 400 times in a corpus of a
million words (Brown corpus)

* What is the probability that a random word from some other
text from the same distribution will be “Chinese”

* MLE estimate is 400/1000000 = .004

— This may be a bad estimate for some other corpus

 Butitis the estimate that makes it most likely that “Chinese”
will occur 400 times in a million word corpus.
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Berkeley Restaurant Project Sentences

* can you tell me about any good cantonese restaurants close
by

* mid priced thai food is what i’m looking for
e tell me about chez panisse

e can you give me a listing of the kinds of food that are
available

* ’m looking for a good place to eat breakfast
* when is caffe venezia open during the day

1/27/14

Language Processing - Jurafsky and Martin




Bigram Counts

* Out of 9222 sentences
— Eg. “I want” occurred 827 times

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
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Bigram Probabilities

* Divide bigram counts by prefix unigram counts

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
1 want | to eat chinese | food | lunch | spend

1 0.002 033 |0 0.0036 | O 0 0 0.00079
want 0.0022 | 0O 0.66 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | O 0.00171 0.28 0.00083 | O 0.0025 | 0.087
eat 0 0 0.00271 0 0.021 0.0027 { 0.056 |0
chinese || 0.0063 | 0 0 0 0 0.52 0.0063 | 0
food 0.014 0 0.014 |0 0.00092 | 0.0037 | 0 0
lunch 0.0059 | 0O 0 0 0 0.0029 | O 0
spend || 0.0036 | O 0.0036 | O 0 0 0 0
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Bigram Estimates of Sentence Probabilities

e P(<s>| want english food </s>) =
P(i]<s>)*
P(want|I)*
P(english|want)*
P(food|english)*
P(</s>|food)*
=.000031
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Kinds of Knowledge

= As crude as they are, N-gram probabilities capture a
range of interesting facts about language.

 P(english|want) =.0011
* P(chinese|want) = .0065
 P(to|want) =.66

* P(eat | to)=.28
 P(food | to)=0

 P(want | spend)=0

e P(i]|<s>)=.25

World knowledge
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Google N-Gram Release

All Our N-gram are Belong to You
By Peter Norvig - 8/03/2006 11:26:00 AM

Posted by Alex Franz and Thorsten Brants, Google Machine Translation
Team

Here at Google Research we have been using word n-gram models for a
variety of R&D projects, such as statistical machine translation, speech
recognition, spelling correction, entity detection, information extraction,

and others. While such models have usually been estimated from training
10 share this enormous dataset with everyone. We processed

1,024 908,267,229 words of running text and are publishing the counts
forall 1,176,470,663 five-word sequences that appear at least 40 times.
There are 13,588,391 unique words, after discarding words that appear
less than 200 times.

Available through LDC:
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogld=LDC2006T13
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Google N-Gram Release

* serve as the incoming 92

e serve as the incubator 99

* serve as the independent 794

* serve as the index 223

e serve as the indication 72

e serve as the indicator 120

e serve as the indicators 45

* serve as the indispensable 111
* serve as the indispensible 40
e serve as the individual 234
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Google 4-grams

* Highest
— serve as the initial 5331
— serve as the inspiration 1390
— serve as the input 1323
— serve as the information 838
— serve as the independent 794

* |Lowest

— serve as the informational 41
— serve as the inlet 41
— serve as the indispensible 40



Google Caveat

* Remember the lesson about test sets and training
sets... Test sets should be similar to the training
set (drawn from the same distribution) for the
probabilities to be meaningful.

* So... The Google corpus is fine if your application
deals with arbitrary English text on the Web.

* If not then a smaller domain specific corpus is
likely to yield better results.
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