CS114 Lecture 5

Ngrams

January 29, 2014
Professor Meteer

Thanks for Jurafsky & Martin & Prof. Pustejovksy for slides

Probabilities of two events

* Joint probability
— If two events A and B are independent then
 P(Aand B)=P(A) x P(B)
— What is the probability that a card is red and a king?
* P(king)=4/52=1/13
* P(red) =26/52 =¥ 1/13x 1/2 = 1/26

* Conditional probability
— the probability of event B occurring given event A occurs

— What is the probability that a card is a king if | know that it is
red?

* P(king [red)= " p(king N red) 1/26 1
P(red) ~26/52 13

The Chain Rule

Recall the definition of conditional probabilities

P(A™ B)
* Rewriting: P(A]B) = P(B)

P(A™B)=P(A| B)P(B)
* For sequences...
— P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)
* |n general
— P(X,X9,X5,...X,)) = P(X{)P(X; [X{)P(X5] X1,%5)...P(X, | X .. X, 1)

1/30/14

Language Modeling

* How might we go about calculating such a
conditional probability?

— One way is to use the definition of conditional
probabilities and look for counts. So to get

— P(the | its water is so transparent that)
* By definition that’s

P(its water is so transparent that the)

P(its water is so transparent that)
We can get each of those from counts in a large corpus.

1/30/14

Language Processing - Jurafsky and Martin

The Chain Rule

e Recall the definition of conditional probabilities

P(A" B)
P(B)

¢ Rewriting: P(A | B) _

ARY —
* For sequences... P(4" B) = P(4| B)P(B)

— P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)
* In general
— P(X,X9,X5,...X,)) = P(X{)P(X; [X{)P(X5 | X1, %5)..P(X, [XX, 1)

1/30/14

Markov Independence Assumption

For each component in the product replace with the
approximation (assuming a prefix of N)

P(wn lw™) = P(wn lW"™} |

Bigram version

P(w Iw " =~ Pw, lw)

1/30/14

Estimating Bigram Probabilities

 The Maximum Likelihood Estimate (MLE)

count(w,_,,w;)

Pw.lw,)=
Wi Wi count(w_,)

1/30/14

Shannon’s Method

e Assigning probabilities to sentences is all well
and good, but it’s not terribly illuminating . A
more interesting task is to turn the model
around and use it to generate random
sentences that are like the sentences from
which the model was derived.

* Generally attributed to
Claude Shannon.

1/30/14

Shannon’s Method

 Sample a random bigram (<s>, w) according to its
probability

* Now sample a random bigram (w, x) according to its
probability

— Where the prefix w matches the suffix of the first.

* And so on until we randomly choose a (y, </s>)

* Then string the words together
° <>
| want
want to
to eat
eat Chinese

Chinese food
food </s>

1/30/14

Language Processing - Jurafsky and Martin

Shakespeare

Unigrams

— To him swallowed confess hear both. Which. Of save on trial for are ay
device and rote life have c

— Hill he late speaks; or! A more or legless first you enter
Bigrams
— What means, sir. | confess she? Then all sorts, he is trim, captain.

— Why doest stand forth they canopy, forsooth he is this palpable hit the
King Henry. Live king. Follow.

Trigrams

— Sweet prince, Falstaff shall die. Harry of Monmouths grave

— This shall forbid it should be branded, if renown made it empty
Quadrigrams

— King Henry. What! | will go seek the traitor Gloucester. Exeunt some of
the watch. A great banquet serv’d in;

— Willyou not tell me who | am?
— It cannot be but so.

1/30/14

Language Processing - Jurafsky and Martin

Shakespeare as a Corpus

* N=884,647 tokens, V=29,066 types (vocabulary)

e Shakespeare produced 300,000 bigram types out of

V2= 844 million possible bigrams...
— S0, 99.96% of the possible bigrams were never seen (have
zero entries in the table)
— This is the biggest problem in language modeling; we’ll
come back to it.

* Quadrigrams are worse: What's coming out looks
like Shakespeare because it is Shakespeare

dl(
1/30/14 Language Processing - Jurafsky and Martin

The Wall Street Journal is Not Shakespeare

unigram: Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

bigram: Last December through the way to preserve the Hudson corporation
N. B. E. C. Taylor would seem to complete the major central planners one
point five percent of U. S. E. has already old M. X. corporation of living on
information such as more frequently fishing to keep her

trigram: They also point to ninety nine point six billion dollars from two
hundred four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions

1/30/14

Language Processing - Jurafsky and Martin

Evaluation

* How do we know if our models are any good?

— And in particular, how do we know if one model is
better than another.

 Well Shannon’s game gives us an intuition.

— The generated texts from the higher order models
sure look better. That is, they sound more like the
text the model was obtained from.

— But what does that mean? Can we make that
notion operational?

1/30/14

Language Processing - Jurafsky and Martin

Evaluation

e Standard method
— Train parameters of our model on a training set.

— Look at the models performance on some new data

* This is exactly what happens in the real world; we want to know
how our model performs on data we haven’t seen

— So use a test set. A dataset which is different than our
training set, but is drawn from the same source

— Then we need an evaluation metric to tell us how well
our model is doing on the test set.
* One such metricis perplexity (to be introduced below)

1/30/14

Language Processing - Jurafsky and Martin

Unknown Words

* But once we start looking at test data, we’ll
run into words that we haven’t seen before
(pretty much regardless of how much training

data you have.
* With an Open Vocabulary task

— Create an unknown word token <UNK>
— Training of <UNK> probabilities

* Create a fixed lexicon L, of size V
— From a dictionary or
— A subset of terms from the training set
* At text normalization phase, any training word not in L changed to <UNK>

* Now we count that like a normal word

— At test time
* Use UNK counts for any word not in training

Language Processing - Jurafsky and Martin

Perplexity

* Perplexity is the probability of the test set
(assigned by the language model), normalized
by the number of words:

1

PP(W) = P(W1W2...WN)_N
— N !)
P(W1W2...WN

" Minimizing perplexity is the same as
maximizing probability

" The best language model is one that best
predicts an unseen test set

Language Processing - Jurafsky and Martin

Perplexity

* Chain rule: 1
) = 3

* For bigrams:

PP(W) = 1{] P(w,-|1Wi—1)

1

" Minimizing perplexity is the same as maximizing
probability

= The best language model is one that best predicts an
unseen test set

Language Processing - Jurafsky and Martin

Lower perplexity means a better model

* Training 38 million words, test 1.5 million
words, WSJ

N-gram Order || Unigram | Bigram | Trigram
Perplexity 962 170 109

Evaluating N-Gram Models

* Best evaluation for a language model

— Put model A into an application
* For example, a speech recognizer

— Evaluate the performance of the application
with model A

— Put model B into the application and evaluate

— Compare performance of the application with
the two models

— Extrinsic evaluation

Language Processing - Jurafsky and Martin

Difficulty of extrinsic (in-vivo)

evaluation of N-gram models

e Extrinsic evaluation
— This is really time-consuming
— Can take days to run an experiment
* SO
— As a temporary solution, in order to run experiments

— To evaluate N-grams we often use an intrinsic evaluation,
an approximation called perplexity

— But perplexity is a poor approximation unless the test data
looks just like the training data

— So is generally only useful in pilot experiments (generally
is not sufficient to publish)

— But is helpful to think about.

Language Processing - Jurafsky and Martin

Example: Linguistic Segmentation

* Acoustic segmentations

* I'm not sure how many active volcanoes there are now and and
what the amount of material that they do

e <s>uh <s> put into the atmosphere
e <s> | think probably the greatest cause is uh
e <s>vehicles
* <s> especially around cities <s>
* Linguistic segmentations
* I'm not sure how many active volcanoes there are now and and

what the amount of material that they do uh put into the
atmosphere

* <s> | think probably the greatest cause is uh vehicles especially
around cities

Compare perplexity

e Build three models

Test | Taining |

Acoustic Seg Ling Seg No Seg
Acoustic Seg 105 111
Ling Seg 89 78
No Seg 163 174 130

Zero Counts

* Back to Shakespeare

— Recall that Shakespeare produced 300,000 bigram types
out of V2= 844 million possible bigrams...

— S0, 99.96% of the possible bigrams were never seen (have
zero entries in the table)

— Does that mean that any sentence that contains one of
those bigrams should have a probability of 0?

Language Processing - Jurafsky and Martin

Zero Counts

Some of those zeros are really zeros...
— Things that really can’t or shouldn’t happen.
On the other hand, some of them are just rare events.

— If the training corpus had been a little bigger they would have had a count
(probably a count of 11).

Zipf’s Law (long tail phenomenon):
— A small number of events occur with high frequency
— A large number of events occur with low frequency

— You can quickly collect statistics on the high frequency events

— You might have to wait an arbitrarily long time to get valid statistics on low
frequency events

Result:

— Our estimates are sparse! We have no counts at all for the vast bulk of
things we want to estimate!

Answer:
— Estimate the likelihood of unseen (zero count) N-grams!

Language Processing - Jurafsky and Martin

Laplace Smoothing

e Also called add-one smoothing
e Just add one to all the counts!
* Very simple

e MLE estimate:

* Laplace estimate:

e Reconstructed counts: ¢; = (¢;+ 1)

d O
Language Processing - Jurafsky and Martin

Laplace-Smoothed Bigram Counts

1 want | to eat chinese | food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

dNQG
Language Processing - Jurafsky and Martin

Laplace-Smoothed Bigram Probabilities

P (Wn ‘Wn—l) —

C(Wn—lwn) +1

C (Wn— |) +V

1 want to eat chinese food lunch spend
1 0.0015 0.21 0.0025 0.00025]| 0.00025| 0.00025| 0.00075
want 0.0013 0.00042 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046| 0.00046 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039| 0.0063 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056] 0.0011 0.00056| 0.00056
spend 0.0012 0.00058| 0.0012 0.00058 | 0.00058| 0.00058| 0.00058| 0.00058

Language Processing - Jurafsky and Martin

Original Bigram Probabilities

1 want | to eat chinese | food lunch | spend
1 0.002 03310 0.0036 | 0 0 0 0.00079
want 0.0022 |0 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011
to 0.00083 | 0 070017 | 0.28 0.00083 | O 0.0025 | 0.087
eat 0 0 0.0027 | 0 0.021 0.0027 [0.056 |0
chinese || 0.0063 | 0 0 0 0 0.52 0.0063 | 0
food 0.014 0 0.014 |0 0.00092 | 0.0037 | 0 0
lunch 0.0059 |0 0 0 0 0.0029 | O 0
spend | 0.0036 |0 0.0036 | 0 0 0 0 0

Language Processing - Jurafsky and Martin

c” (Wn—lwn)

Reconstituted Counts

N

[C(Wn—lwn) + 1] X C(Wn—l)

C(Wn—l) +V

1 want to eat chinese | food| Ilunch| spend
1 3.8 527 0.64 6.4 0.64 0.64 | 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098(0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57] 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16 | 0.16 0.16

Language Processing - Jurafsky and Martin

Big Change to the Counts!

C(want to) went from 608 to 238!
P(to|want) from .66 to .26!
Discount d= c*/c
— d for “chinese food” =.10!!l A 10x reduction
— Soin general, Laplace is a blunt instrument

— Could use more fine-grained method (add-k)

But Laplace smoothing not used for N-grams, as we have
much better methods

Despite its flaws Laplace (add-k) is however still used to
smooth other probabilistic models in NLP, especially

— For pilot studies

— in domains where the number of zeros isn’t so huge.

Language Processing - Jurafsky and Martin

Better Smoothing

* |ntuition used by many smoothing algorithms
— Good-Turing
— Kneser-Ney
— Witten-Bell

* |s to use the count of things we’ve seen once
to help estimate the count of things we’ve
never seen

Language Processing - Jurafsky and Martin

Good-Tu rmg

Imagine you are fishing
— There are 8 species: carp, perch, whitefish, trout, salmon,
eel, catfish, bass

You have caught

— 1}IOhcarp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel =18

S

How likely is it that the next fish caught is from a new
species (one not seen in our previous catch)?

— 3/18

Assuming so, how likely is it that next species is

trout?
— Must be less than 1/18

APLCCL TEOIL I OSATRIOOULA T 1)

Good-Turing

* Notation: N, is the frequency-of-frequency-x
— So N=1
* Number of fish species seen 10 times is 1 (carp)
— N;=3
* Number of fish species seen 1 is 3 (trout, salmon, eel)
* To estimate total number of unseen species

— Use number of species (words) we’ve seen on%

— ¢y =C; =N,/N (C—|- 1)]i;-l
c

* All other estimates are adjusted (down) to give
probabilities for unseen

d O
180y 820D S 8¢ [8 AT fSky and Martin

GT Fish Example

unseen (bass or catfish) trout
c 0 1
MLE =2 =0 =
P || = 13 I8
c* c*(trout)= 2 x % =2x1=.67
GT pir || pé =N =3 = 17|p: =7 — L — 037
PGT pGT(unseen) =5 =15 =- pGT(trout) = g = 37 = .0¢

Language Processing - Jurafsky and Martin

Good-Turing Intuition

* Notation: N, is the frequency-of-frequency-x
— So N;p=1, N;=3, etc
* To estimate total number of unseen species

— Use number of species (words) we’ve seen once

— ¢y =C; Po=N;/N p,=N,/N=3/18
N

P(r (things with frequency zero in training) = —
* All other estimates are adjusted (down) to give
probabilities for unseen
N,
¢ =(c+1)—

Nc P(eel) =c*(1)=(1+1)1/3=2/3

dn

O
13038 A8 2P\ ot k810 T9) 8 fsky and Martin

GT Fish Example

* OR use the 1s for Os (3/18 spread over 2 species)

* AND Look at the things that happened 2s to share with 1s
— C(whitefish) = 2 happened once
— Discount 1s by 2/3

e LOTS OF ALTERNATIVES! Just estimates

unseen (bass or catfish) trout
c 0 1
MLEp |[p= =0 &

. N» _ 1 _
c* c*(trout)=2 x N = 2 x5 =.67

Language Processing - Jurafsky and Martin

Could just spread 1s over Os

Carp 10 119 * Prob of things that occurred once
Perch 3 3

WF . . 1\18 + 1\18 + 1\18 = 3\18

Trout 1 Add one to zero counts

Salmon t 2 e Spread probability over 1s and Os
Eel 1 1

Catfish 0 1 ’ (3/18) / > =.066

Bass 0 1

TOTAL 18

Practical considerations for

Good- Turing

* The new estimations of c (c*) are dependent on
the counts of c+1
— But some can be O
* First use linear regression to smooth counts
— Higher counts are more likely to be right
* Only apply this to counts <=5

— Low counts can be noise
* Treat counts of 1 as if they were O

* Good-Turing is never used alone—always
combined with back-off and interpolation

Bigram Frequencies of Frequencies and

GT Re-estimates

AP Newswire Berkeley Restaurant—

¢ (MLE) N. ¢ (GT) c (MLE) N. ¢ (GT)

0 74,671,100,000 0.0000270|| O 2,081,496 0.002553
1 2,018,046 0.446 1 5315 0.533960
2 449,721 1.26 2 1419 1.357294
3 188,933 2.24 3 642 2.373832
4 105,668 3.24 4 381 4.081365
5 68,379 4.22 5 311 3.781350
6 48,190 5.19 6 196 4.500000

Language Processing - Jurafsky and Martin

Backoff and Interpolation

Another really useful source of knowledge
If we are estimating:

— trigram p(z|x,y)

— but count(xyz) is zero

Use info from:

— Bigram p(z|y)

Or even:

— Unigram p(z)

How to combine this trigram, bigram, unigram
info in a valid fashion?

Language Processing - Jurafsky and Martin

Backoff Vs. Interpolation

e Backoff: use trigram if you have it, otherwise
bigram, otherwise unigram

* Interpolation: mix all three

Interpolation

* Simple interpolation

P(Wn|wn—lwn—2) — kIP(Wn|Wn—1Wn—2)
+7\2P(Wn|wn.—l) 27\,, =1
+A3P(wy,) !

e Lambdas conditional on context:

p(W,-,|W,,_2Wn_1) — 7\'1 (WZ:%)P(W,,IW,,,_QWn_l)

+7¥2(W:;:%)P(Wr1lwn—l)
+ 7‘3(”’:;:%)[) (Wn)

Language Processing - Jurafsky and Martin

How to Set the Lambdas?

* Use a held-out, or development, corpus

* Choose lambdas which maximize the
probability of some held-out data
— |.e. fix the N-gram probabilities
— Then search for lambda values
— That when plugged into previous equation
— Give largest probability for held-out set
— Can use EM to do this search

Language Processing - Jurafsky and Martin

Katz Backoff

P n—1 P ("""lwzzllvﬂ)’ if C(w)_pyq) >0
katz (Vnl"n-vi1) = (W' 1) Picatz(Wn Wi — N +2)s otherwise.
P*(z|x,y), if C(x,y,z) >0
Praiz(Zx,y) = < 0(x,y) Pt (2]Y), else if C(x,y) >0
P*(z), otherwise.

P*(zly), if C(v,z) >0

o(v)P*(z), otherwise.

Pratz(zly) = {

Language Processing - Jurafsky and Martin

Why discounts P* and alpha?

MLE probabilities sumto 1
Y P(w;jwiwg) =1
i

So if we used MLE probabilities but backed off to
lower order model when MLE prob is zero

We would be adding extra probability mass
And total probability would be greater than 1

Language Processing - Jurafsky and Martin

GT Smoothed Bigram Probabilities

1 want to eat chinese food lunch spend
1 0.0014 0.326 0.00248 0.00355 0.000205 0.0017 0.00073 0.000489
want 0.00134 0.00152 0.656 0.000483 0.00455 0.00455 0.00384 0.000483
to 0.000512 0.00152 0.00165 0.284 0.000512 0.0017 0.00175 0.0873
eat 0.00101 0.00152 0.00166 0.00189 0.0214 0.00166 0.0563 0.000585
chinese 0.00283 0.00152 0.00248 0.00189 0.000205 0.519 0.00283 0.000585
food 0.0137 0.00152 0.0137 0.00189 0.000409 0.00366 0.00073 0.000585
lunch 0.00363 0.00152 0.00248 0.00189 0.000205 0.00131 0.00073 0.000585
spend 0.00161 0.00152 0.00161 0.00189 0.000205 0.0017 0.00073 0.000585

Language Processing - Jurafsky and Martin

Intuition of Backoff+Discounting

* How much probability to assign to all the zero
trigrams?
— Use GT or other discounting algorithm to tell us

* How to divide that probability mass among
different contexts?
— Use the N-1 gram estimates to tell us

 What do we do for the unigram words not
seen in training?
— Out Of Vocabulary = OOV words

OO0V words: <UNK> word

e Out Of Vocabulary = OOV words

* We don’t use GT smoothing for these
— Because GT assumes we know the number of unseen events

* Instead: create an unknown word token <UNK>
— Training of <UNK> probabilities
* Create a fixed lexicon L of size V
e At text normalization phase, any training word not in L changed to <UNK>
* Now we train its probabilities like a normal word
— At decoding time
* If text input: Use UNK probabilities for any word not in training

Language Processing - Jurafsky and Martin

Practical Issues

 We do everything in log space
— Avoid underflow
— (also adding is faster than multiplying)

P1 X p2 X p3 x ps = exp(log p1 +log p> +log p3 +1log p4)

