

CS114 Lecture 6 Part of Speech Tagging (POST)

February 3, 2014 Professor Meteer

Summer JBS

- Voice, Web and Mobile Applications
- June 2-August 8, 2014 Professor Timothy Hickey and Professor Marie Meteer
- 3 courses, 12 credits
 - (still checking on status for graduate students)

Next Assignment

- Using a new data set for Switchboard
 - text
 - {D So } how do you get most of your current event information?
 - pos
 - / So/UH how/WRB do/VBP [you/PRP] get/VB most/JJS of/ IN [your/PRP\$ current/JJ event/NN information/NN] ?/.
 - trees
 - (SBARQ (INTJ (UH So)) (WHADVP-1 (WRB how)) (SQ (VBP do) (NP-SBJ (PRP you)) (VP (VB get) (NP (NP (JJS most)) (PP (IN of) (NP (PRP\$ your) (JJ current) (NN event) (NN information)))) (ADVP-MNR (-NONE- *T*-1)))) (.?) (-DFL-E_S))

Goal: Compare sentence parts

- Create corpora of given, new, all
- Separate into test and training
- Run perplexity tools on all the combinations
 - SRILM or CMUCU

	ALL	GIVEN	NEW
ALL			
GIVEN			
NEW			

Part of Speech Tagging

- Parts of speech
 - What's POS tagging good for anyhow?
- Tag sets Rule-based tagging
- Statistical tagging
 - Simple most-frequent-tag baseline
- Important Ideas
 - Training sets and test sets
 - Unknown words
- HMM tagging

Parts of Speech

- 8 (ish) traditional parts of speech
 - Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc
 - Called: parts-of-speech, lexical categories, word classes, morphological classes, lexical tags...
 - Lots of debate within linguistics about the number, nature, and universality of these
 - We'll completely ignore this debate.

POS examples

- N noun chair, bandwidth, pacing
- V verb study, debate, munch
- ADJ adjective purple, tall, ridiculous
- ADV adverb unfortunately, slowly
- P preposition of, by, to
- PRO pronoun *I, me, mine*
- DET determiner the, a, that, those

POS Tagging Definition

 The process of assigning a part-of-speech or lexical class marker to each word in a collection.

Why is POS Tagging Useful?

- First step of a vast number of practical tasks
- Speech synthesis
 - How to pronounce "lead"?
 - INsult inSULT– OBject obJECT
 - OVERflow overFLOWDIScount disCOUNTCONtent conTENT
- Parsing
 - Need to know if a word is an N or V before you can parse
- Information extraction
 - Finding names, relations, etc.
- Machine Translation

Open and Closed Classes

- Closed class: a small fixed membership
 - Prepositions: of, in, by, ...
 - Auxiliaries: may, can, will had, been, ...
 - Pronouns: I, you, she, mine, his, them, ...
 - Usually function words (short common words which play a role in grammar)
- Open class: new ones can be created all the time
 - English has 4: Nouns, Verbs, Adjectives, Adverbs
 - Many languages have these 4, but not all!

Open Class Words

Nouns

- Proper nouns (Boulder, Granby, Eli Manning)
 - English capitalizes these.
- Common nouns (the rest).
- Count nouns and mass nouns
 - Count: have plurals, get counted: goat/goats, one goat, two goats
 - Mass: don't get counted (snow, salt, communism) (*two snows)
- Adjectives: tend to modify things
 - Properties: important
 - Qualities: good, bad
 - Color (blue, gray), age (young, old)

- Verbs
 - Refer to actions or processes
 - Accomplishment vs. process
 - Won vs ran
 - In English, have morphological affixes (eat/eats/eaten)
 - Special closed class of verbs: auxiliaries (be/have)
- Adverbs: tend to modify actions, states, qualities
 - Wide range
 - Unfortunately, John walked home extremely slowly yesterday
 - Directional/locative adverbs (here, home, downhill)
 - Degree adverbs (extremely, very, somewhat)
 - Manner adverbs (slowly, slinkily, delicately)

Closed Class Words

- prepositions: *on, under, over,* ...
 - Relation between two nouns or verb and noun
- particles: up, down, on, off, ...
 - Look like preposition, but change often change the meaning of a verb, e.g. blow up, turn over
- determiners: a, an, the, ...
- pronouns: she, who, I, ...
- conjunctions: and, but, or, ...
- auxiliary verbs: can, may should, ...
- numerals: one, two, three, third, ...

Prepositions from CELEX

of	540,085	through	14,964	worth	1,563	pace	12
in	331,235	after	13,670	toward	1,390	nigh	9
for	142,421	between	13,275	plus	750	re	4
to	125,691	under	9,525	till	686	mid	3
with	124,965	per	6,515	amongst	525	o'er	2
on	109,129	among	5,090	via	351	but	0
at	100,169	within	5,030	amid	222	ere	0
by	77,794	towards	4,700	underneath	164	less	0
from	74,843	above	3,056	versus	113	midst	0
about	38,428	near	2,026	amidst	67	o'	0
than	20,210	off	1,695	sans	20	thru	0
over	18,071	past	1,575	circa	14	vice	0

English Particles

aboard	aside	besides	forward(s)	opposite	through
about	astray	between	home	out	throughout
above	away	beyond	in	outside	together
across	back	by	inside	over	under
ahead	before	close	instead	overhead	underneath
alongside	behind	down	near	past	up
apart	below	east, etc.	off	round	within
around	beneath	eastward(s),etc.	on	since	without

Conjunctions

and	514,946	yet	5,040	considering	174	forasmuch as	0
that	134,773	since	4,843	lest	131	however	0
but	96,889	where	3,952	albeit	104	immediately	0
or	76,563	nor	3,078	providing	96	in as far as	0
as	54,608	once	2,826	whereupon	85	in so far as	0
if	53,917	unless	2,205	seeing	63	inasmuch as	0
when	37,975	why	1,333	directly	26	insomuch as	0
because	23,626	now	1,290	ere	12	insomuch that	0
so	12,933	neither	1,120	notwithstanding	3	like	0
before	10,720	whenever	913	according as	0	neither nor	0
though	10,329	whereas	867	as if	0	now that	0
than	9,511	except	864	as long as	0	only	0
while	8,144	till	686	as though	0	provided that	0
after	7,042	provided	594	both and	0	providing that	0
whether	5,978	whilst	351	but that	0	seeing as	0
for	5,935	suppose	281	but then	0	seeing as how	0
although	5,424	cos	188	but then again	0	seeing that	0
until	5,072	supposing	185	either or	0	without	0

POS Tagging: Choosing a Tagset

- There are so many parts of speech, potential distinctions we can draw
- To do POS tagging, we need to choose a standard set of tags to work with
- Could pick very coarse tagsets
 - N, V, Adj, Adv.
- More commonly used set is finer grained, the "Penn TreeBank tagset", 45 tags
 - PRP\$, WRB, WP\$, VBG
- Even more fine-grained tagsets exist

Penn TreeBank POS Tagset

Ta	ıg	Description	Example	Tag	Description	Example
CO	C	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CI	D	cardinal number	one, two, three	TO	"to"	to
\mathbf{D}^{T}	Γ	determiner	a, the	UH	interjection	ah, oops
ΕΣ	X	existential 'there'	there	VB	verb, base form	eat
FV	V	foreign word	mea culpa	VBD	verb, past tense	ate
IN	1	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ		adjective	yellow	VBN	verb, past participle	eaten
JJ]	R	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJ	S	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	S	list item marker	1, 2, One	WDT	wh-determiner	which, that
M	D	modal	can, should	WP	wh-pronoun	what, who
NI	N	noun, sing. or mass	llama	WP\$	possessive wh-	whose
N	NS	noun, plural	llamas	WRB	wh-adverb	how, where
N	NP	proper noun, singular	IBM	\$	dollar sign	\$
NI	NPS	proper noun, plural	Carolinas	#	pound sign	#
PI	TC	predeterminer	all, both	"	left quote	or "
PC	OS	possessive ending	's	,,	right quote	' or "
PF	RP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PF	RP\$	possessive pronoun	your, one's)	right parenthesis],), },>
RI	В	adverb	quickly, never	,	comma	,
RI	BR	adverb, comparative	faster		sentence-final punc	.!?
RI	BS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RI	P	particle	up, off			

Using the Penn Tagset

- The/DT grand/JJ jury/NN commmented/VBD on/IN a/DT number/NN of/IN other/JJ topics/ NNS ./.
- Prepositions and subordinating conjunctions marked IN ("although/IN I/PRP..")
- Except the preposition/complementizer "to" is just marked "TO".

POS Tagging

- Words often have more than one POS: back
 - The *back* door = JJ
 - On my back = NN
 - Win the voters back = RB
 - Promised to back the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

How Hard is POS Tagging? Measuring Ambiguity

		87-tag	Original Brown	45-tag	g Treebank Brown
Unambiguous	(1 tag)	44,019		38,857	
Ambiguous (2	2–7 tags)	5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round,
					open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

Three Methods for POS Tagging

- 1. Rule-based tagging
 - (ENGTWOL)
- 2. Stochastic
 - 1. Probabilistic sequence models
 - HMM (Hidden Markov Model) tagging
 - MEMMs (Maximum Entropy Markov Models)
 - 3. Transformation Based tagging
 - Brill Tagger

Rule-Based Tagging

- Start with a dictionary
- Assign all possible tags to words from the dictionary
- Write rules by hand to selectively remove tags
- Leaving the correct tag for each word.

Start With a Dictionary

• she: PRP

promised:VBN,VBD

• to TO

• back: VB, JJ, RB, NN

• the: DT

• bill: NN, VB

 Etc... for the ~100,000 words of English with more than 1 tag

Assign Every Possible Tag

PRP	VBN VBD	TO	NN JJ RB VB	DT	VB NN
She	promised	to	back	the	bill

Write Rules to Eliminate Tags

Eliminate VBN if VBD is an option when VBNIVBD follows "<start> PRP"

PRP	VBN VBD	ТО	NN JJ RB VB	DT	VB NN
She	promised	to	back	the	bill

Stage 1 of ENGTWOL Tagging

- First Stage: Run words through FST morphological analyzer to get all parts of speech.
- Example: Pavlov had shown that salivation ...

Pavlov PAVLOV N NOM SG PROPER

had **HAVE V PAST VFIN SVO**

HAVE PCP2 SVO

shown SHOW PCP2 SVOO SVO SV

that ADV

PRON DEM SG

DET CENTRAL DEM SG

CS

salivation N NOM SG

Stage 2 of ENGTWOL Tagging

- Second Stage: Apply NEGATIVE constraints.
- Example: Adverbial "that" rule
 - Eliminates all readings of "that" except the one in
 - "It isn't that odd"

```
Given input: "that"

If

(+1 A/ADV/QUANT) ;if next word is adj/adv/quantifier
(+2 SENT-LIM) ;following which is E-O-S

(NOT -1 SVOC/A) ; and the previous word is not a

; verb like "consider" which

; allows adjective complements

; in "I consider that odd"

Then eliminate non-ADV tags
Else eliminate ADV
```

Statistical Tagging

- Based on probability theory
- First we'll introduce the simple "most-frequent-tag" algorithm
 - Most-freq-tag is another baseline algorithm.
 - Meaning that no one would use it if they really wanted some data tagged
 - But it's useful as a comparison

Conditional Probability and Tags

- P(Verb) is probability of randomly selected word being a verb.
- P(Verb|race) is "what's the probability of a word being a verb given that it's the word "race"?
 - Race can be a noun or a verb.
 - It's more likely to be a noun.
- P(Verb|race) can be estimated by looking at some corpus and saying "out of all the times we saw 'race', how many were verbs?

Most frequent tag

- Some ambiguous words have a more frequent tag and a less frequent tag:
- Consider the word "a" in these 2 sentences:
 - would/MD prohibit/VB a/DT suit/NN for/IN refund/NN
 - of/IN section/NN 381/CD (/(a/NN)/) ./.
- Which do you think is more frequent?

Counting in a corpus

- We could count in a corpus
- A corpus: an on-line collection of text, often linguistically annotated
 - The Brown Corpus: 1 million words from 1961 Part of speech tagged at U Penn
 - I counted in this corpus
 - The results for "a":

21830	DT
6	NN
3	FW

The Most Frequent Tag algorithm

- For each word, we said:
 - Create a dictionary with each possible tag for a word...
- Where does the dictionary come from?

The/DT City/NNP Purchasing/NNP Department/NNP, /, the/DT jury/NN said/VBD,/, is/VBZ lacking/VBG in/IN experienced/VBN clerical/JJ personnel/NNS...

department experienced in ls

. . .

Evaluating performance

- How do we know how well a tagger does?
- Say we had a test sentence, or a set of test sentences, that were already tagged by a human
 - a "Gold Standard"
- We could run a tagger on this set of test sentences
- And see how many of the tags we got right.
 - This is called "Tag accuracy" or "Tag percent correct"

Test set

- We take a set of test sentences
 - Hand-label them for part of speech
 - The result is a "Gold Standard" test set
- Who does this?
 - Brown corpus: done by U Penn
 - Grad students in linguistics
- Don't they disagree?
 - Yes! But on about 97% of tags no disagreements
 - And if you let the taggers discuss the remaining 3%, they often reach agreement
- NOTE: we can't train our frequencies on the test set sentences.

Computing % correct

- Computing % correct
 - Of all the words in the test set
 - For what percent of them did the tag chosen by the tagger equal the human- selected tag.
- Human tag set: ("Gold Standard" set)

```
%correct = #of words tagged correctly in test set total # of words in test set
```

Unknown Words

- Most-frequent-tag approach has a problem!!
- What about words that don't appear in the training set?
- For example, here are some words that occur in a small Brown Corpus test set but not the training set:

Abernathy all-american big-boned

absolution alligator boathouses

Adrien asparagus boxcar

ajar baby-sitter

Alicia bantered

Unknown words

- New words added to (newspaper) language
 20+ per month
- Plus many proper names ...
- Increases error rates by 1-2%
 - Method 1: assume they are nouns
 - Method 2: assume the unknown words have a probability distribution similar to words only occurring once in the training set.
 - Method 3: Use morphological information, e.g.,
 words ending with –ed tend to be tagged VBN.

Rule-Based Tagger

The Linguistic Complaint

- Where is the linguistic knowledge of a tagger?
- Just a massive table of numbers
- Aren't there any linguistic insights that could emerge from the data?
- Could thus use handcrafted sets of rules to tag input sentences, for example, if input follows a determiner tag it as a noun.

The Brill tagger

- An example of TRANSFORMATION-BASED LEARNING
- Very popular (freely available, works fairly well)
- A SUPERVISED method: requires a tagged corpus
- Basic idea: do a quick job first (using frequency), then revise it using contextual rules

Brill Tagging: In more detail

- Start with simple (less accurate) rules...learn better ones from tagged corpus
 - Tag each word initially with most likely POS
 - Examine set of transformations to see which improves tagging decisions compared to tagged corpus
 - Re-tag corpus using best transformation
 - Repeat until, e.g., performance doesn't improve
 - Result: tagging procedure (ordered list of transformations) which can be applied to new, untagged text

An example

- Examples:
 - They are expected to race tomorrow.
 - The race for outer space.
- Tagging algorithm:
 - Tag all uses of "race" as NN (most likely tag in the Brown corpus)
 - They are expected to race/NN tomorrow
 - the race/NN for outer space
 - Use a transformation rule to replace the tag NN with VB for all uses of "race" preceded by the tag TO:
 - They are expected to race/VB tomorrow
 - the race/NN for outer space

First 20 Transformation Rules

	Chang	ge Tag	
#	From	То	Condition
1	NN	VB	Previous tag is TO
2	VBP	VB	One of the previous three tags is MD
3	NN	VB	One of the previous two tags is MD
4	VB	NN	One of the previous two tags is DT
5	VBD	VBN	One of the previous three tags is VBZ
6	VBN	VBD	Previous tag is PRP
7	VBN	VBD	Previous tag is NNP
8	VBD	VBN	Previous tag is VBD
8	VBP	VB	Previous tag is TO
10	POS	VBZ	Previous tag is PRP
11	VB	VBP	Previous tag is NNS
12	VBD	VBN	One of previous three tags is VBP
13	IN	WDT	One of next two tags is VB
14	VBD	VBN	One of previous two tags is VB
15	VB	VBP	Previous tag is PRP
16	IN	WDT	Next tag is VBZ
17	IN	DT	Next tag is NN
18	JJ	NNP	Next tag is NNP
19	IN	WDT	Next tag is VBD
20	$_{ m JJR}$	RBR	Next tag is JJ

From: Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part of Speech Tagging Eric Brill. Computational Linguistics. December, 1995.

Transformation Rules for Tagging Unknown Words

	Change Tag		
#	From	То	Condition
1	NN	NNS	Has suffix -s
2	NN	CD	Has character.
3	NN	JJ	Has character -
4	NN	VBN	Has suffix -ed
5	NN	VBG	Has suffix -ing
6	??	RB	Has suffix -ly
7	??	JJ	Adding suffix -ly results in a word.
8	NN	CD	The word \$ can appear to the left.
9	NN	JJ	Has suffix -al
10	NN	VB	The word would can appear to the left.
11	NN	CD	Has character 0
12	NN	JJ	The word be can appear to the left.
13	NNS	JJ	Has suffix -us
14	NNS	VBZ	The word it can appear to the left.
15	NN	JJ	Has suffix -ble
16	NN	JJ	Has suffix -ic
17	NN	CD	Has character 1
18	NNS	NN	Has suffix -ss
19	??	JJ	Deleting the prefix un- results in a word
20	NN	JJ	Has suffix -ive

From: Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part of Speech Tagging Eric Brill. Computational Linguistics. December, 1995.

Hidden Markov Model Tagging

- Using an HMM to do POS tagging is a special case of Bayesian inference
 - Foundational work in computational linguistics
 - Bledsoe 1959: OCR
 - Mosteller and Wallace 1964: authorship identification
- It is also related to the "noisy channel" model that's the basis for ASR, OCR and MT

POS Tagging as Sequence Classification

- We are given a sentence (an "observation" or "sequence of observations")
 - Secretariat is expected to race tomorrow
- What is the best sequence of tags that corresponds to this sequence of observations?
- Probabilistic view:
 - Consider all possible sequences of tags
 - Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words w₁...wₙ.

Getting to HMMs

 We want, out of all sequences of n tags t1...tn the single tag sequence such that P(t1...tn|w1...wn) is highest.

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n)$$

- Hat ^ means "our estimate of the best one"
- Argmax f(x) means "the x such that f(x) is maximized"

Getting to HMMs

 This equation is guaranteed to give us the best tag sequence

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

- But how to make it operational? How to compute this value?
- Intuition of Bayesian classification:
 - Use Bayes rule to transform this equation into a set of other probabilities that are easier to compute

Using Bayes Rule

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \frac{P(w_1^n | t_1^n) P(t_1^n)}{P(w_1^n)}$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(w_1^n | t_1^n) P(t_1^n)$$

Likelihood and Prior

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} \ \widetilde{P(w_1^n|t_1^n)} \ \widehat{P(t_1^n)}$$

$$P(w_1^n|t_1^n) \approx \prod_{i=1}^n P(w_i|t_i)$$

$$P(t_1^n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$

Two Kinds of Probabilities

- Tag transition probabilities p(t_i|t_{i-1})
 - Determiners likely to precede adjs and nouns
 - That/DT flight/NN
 - The/DT yellow/JJ hat/NN
 - So we expect P(NN|DT) and P(JJ|DT) to be high
 - But P(DT|JJ) to be:
 - Compute P(NN|DT) by counting in a labeled corpus:

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$$

$$P(NN|DT) = \frac{C(DT,NN)}{C(DT)} = \frac{56,509}{116,454} = .49$$

Two Kinds of Probabilities

- Word likelihood probabilities p(w_i|t_i)
 - -VBZ (3sg Pres verb) likely to be "is"
 - Compute P(is|VBZ) by counting in a labeled corpus:

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

Example: The Verb "race"

- Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
- People/NNS continue/VB to/TO inquire/VB the/ DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN
- How do we pick the right tag?

Disambiguating "race"

Example

- P(NN|TO) = .00047
- P(VB|TO) = .83
- P(race | NN) = .00057
- P(race | VB) = .00012
- P(NR|VB) = .0027
- P(NR|NN) = .0012
- P(VB|TO)P(NR|VB)P(race|VB) = .00000027
- P(NN|TO)P(NR|NN)P(race|NN)=.00000000032
- So we (correctly) choose the verb reading,

Hidden Markov Models

 What we've described with these two kinds of probabilities is a Hidden Markov Model (HMM)