

CS114 Lecture 7 HMMs

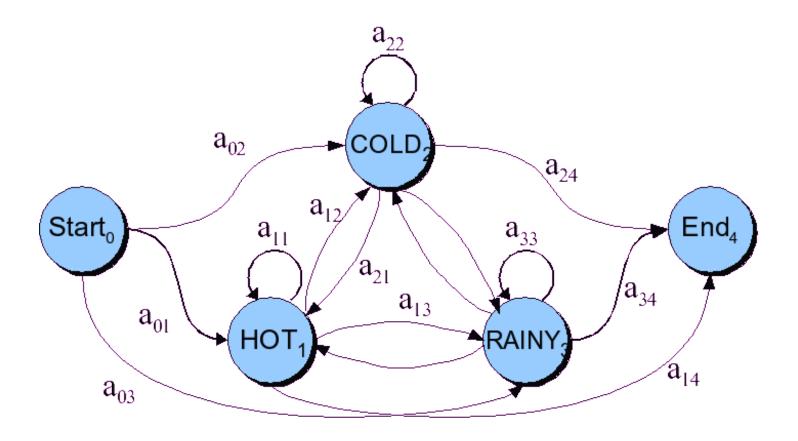
February 5, 2013

Professor Meteer

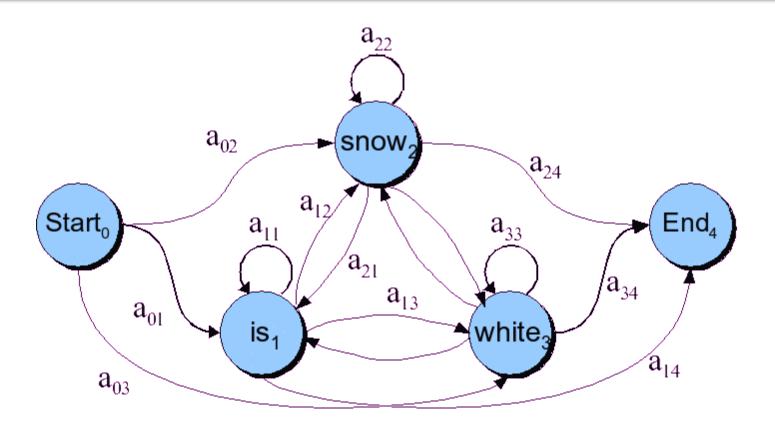
Definitions

- A weighted finite-state automaton adds probabilities to the arcs
 - The sum of the probabilities leaving any arc must sum to one
- A Markov chain is a special case of a WFST in which the input sequence uniquely determines which states the automaton will go through
- Markov chains can't represent inherently ambiguous problems
 - Useful for assigning probabilities to unambiguous sequences

Markov Chain for Weather



Markov Chain for Words



Markov Chain: "First-order observable Markov Model"

- A set of states
 - $-Q = q_1, q_2...q_N$: the state at time t is q_t
- Transition probabilities:
 - a set of probabilities $A = a_{01}a_{02}...a_{n1}...a_{nn}$.
 - Each a_{ij} represents the probability of transitioning from state i to state j
 - The set of these is the transition probability matrix A
- Current state only depends on previous state

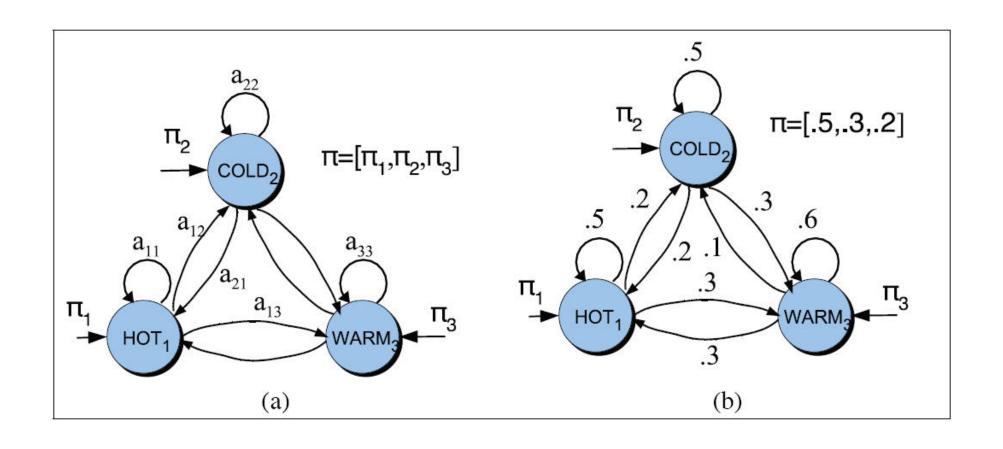
$$P(q_i | q_1...q_{i-1}) = P(q_i | q_{i-1})$$

Markov Chain for Weather

- What is the probability of 4 consecutive rainy days?
- Sequence is rainy-rainy-rainy-rainy
- I.e., state sequence is 3-3-3-3
- P(3,3,3,3) =

$$-\pi_1 a_{11} a_{11} a_{11} = 0.2 \text{ x } (0.6)^3 = 0.0432$$

Markov Chain for Weather



Hidden Markov Model

- For Markov chains, the output symbols are the same as the states.
 - See hot weather: we're in state hot
- But in part-of-speech tagging (and other things)
 - The output symbols are words
 - But the hidden states are part-of-speech tags
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.
- This means we don't know which state we are in.

HMM for Ice Cream

- You are a climatologist in the year 2799
- Studying global warming
- You can't find any records of the weather in Baltimore, MA for summer of 2007
- But you find Jason Eisner's diary
- Which lists how many ice-creams Jason ate every date that summer
- Our job: figure out how hot it was

Hidden Markov Models

- States $Q = q_1, q_2...q_{N_1}$
- Observations $O = o_1, o_2...o_{N}$:
 - Each observation is a symbol from a vocabulary $V = \{v_1, v_2, ..., v_V\}$
- Transition probabilities
 - Transition probability matrix $A = \{a_{ii}\}$

$$a_{ij} = P(q_t = j \mid q_{t-1} = i) \quad 1 \le i, j \le N$$

- Observation likelihoods
 - Output probability matrix $B=\{b_i(k)\}$

$$b_i(k) = P(X_t = o_k \mid q_t = i)$$

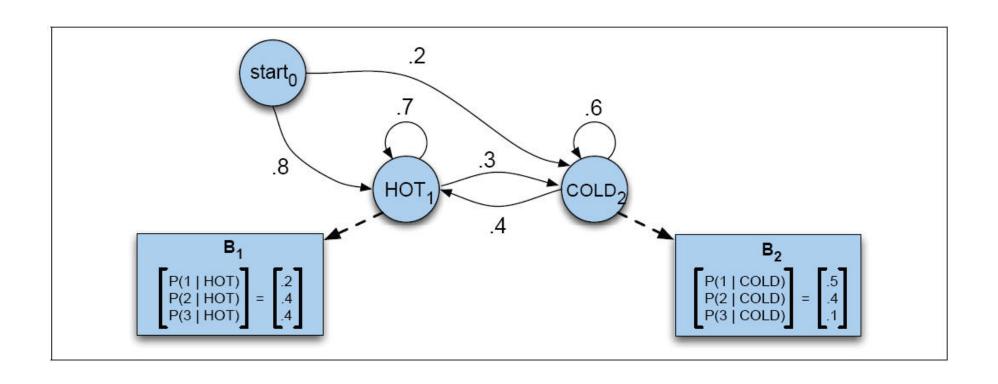
• Special initial probability vector π

$$\pi_i = P(q_1 = i) \quad 1 \le i \le N$$

Eisner Task

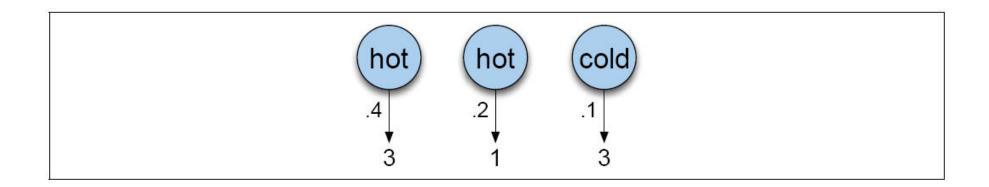
- Given
 - Ice Cream Observation Sequence: 1,2,3,2,2,2,3...
- Produce:
 - Weather Sequence: H,C,H,H,H,C...

HMM for Ice Cream



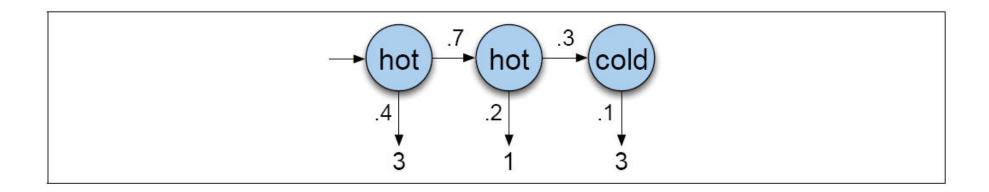
Observation Probability

Probability of events 3 - 1 - 3 given hidden states Hot Hot Cold



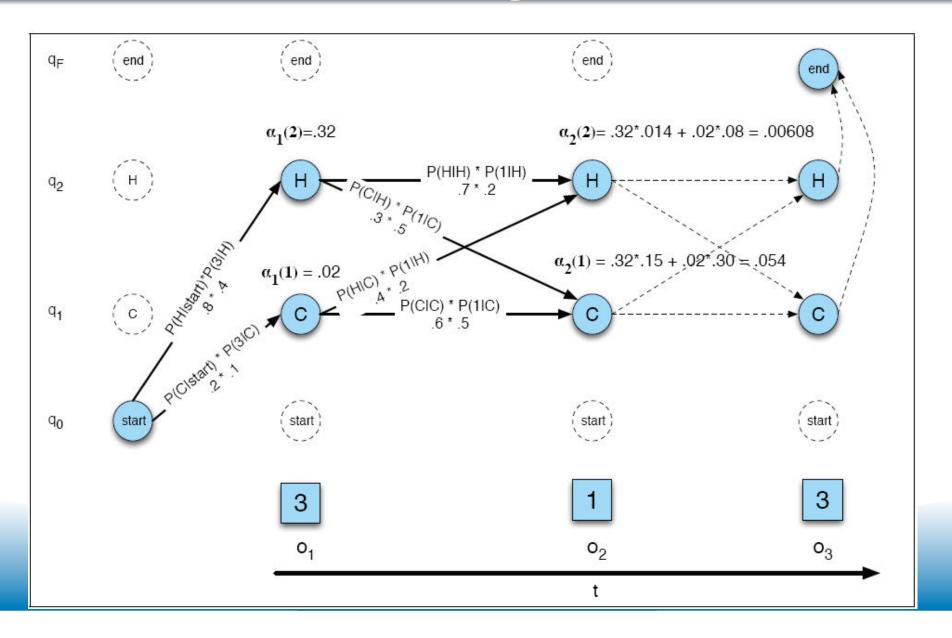
Joint probability

The computation of the joint probability of the ice cream events 3 - 1 - 3 and the hidden state sequence Hot Hot Cold



To find the most likely you would have to compute the probability for every sequence of hidden states. Too slow!

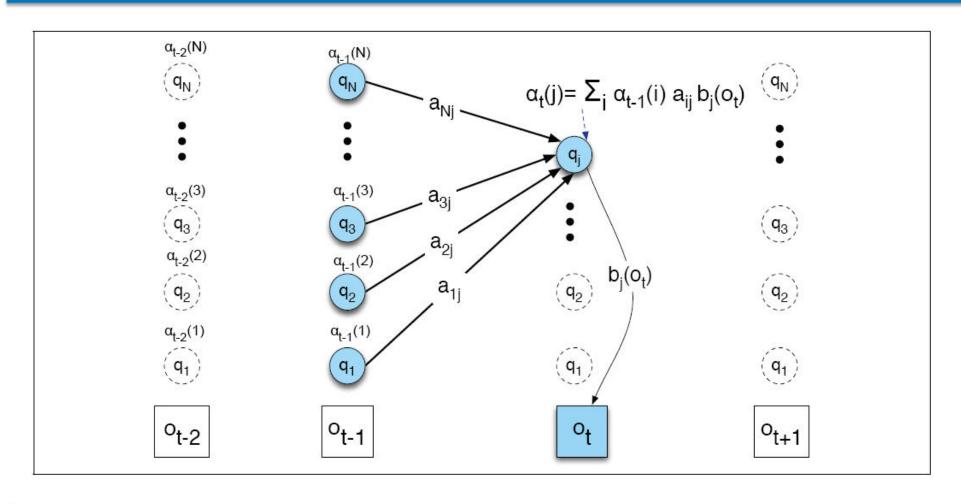
Dynamic Programming: Forward Algorithm



3 Factors

- $\alpha_{i-1}(i)$ The previous forward path probability from the previous time step
- a_{ij} The transition probability from previous state q_i to current state q_j
- $b_j(o_t)$ The state observation likelihood of the observation symbol o_t given the current state j

Forward Algorithm Computation



Forward Algorithm

function FORWARD(observations of len T, state-graph of len N) **returns** forward-prob

create a probability matrix forward[N+2,T]

for each state s **from** 1 **to** N **do** ; initialization step

 $forward[s,1] \leftarrow a_{0,s} * b_s(o_1)$

for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

 $forward[s,t] \leftarrow \sum_{s'=1}^{N} forward[s',t-1] * a_{s',s} * b_s(o_t)$

 $forward[q_F,T] \leftarrow \sum_{s=1}^{N} forward[s,T] * a_{s,q_F}$; termination step

return forward $[q_F, T]$

Factors in the Viterbi Algorithm

- $v_{t-1}(i)$ The previous Viterbi path probability from the previous time step
- a_{ij} The transition probability from previous state q_i to current state q_j
- $b_j(o_t)$ The stat observation likelihood of the observation symbol o_t given the current state j

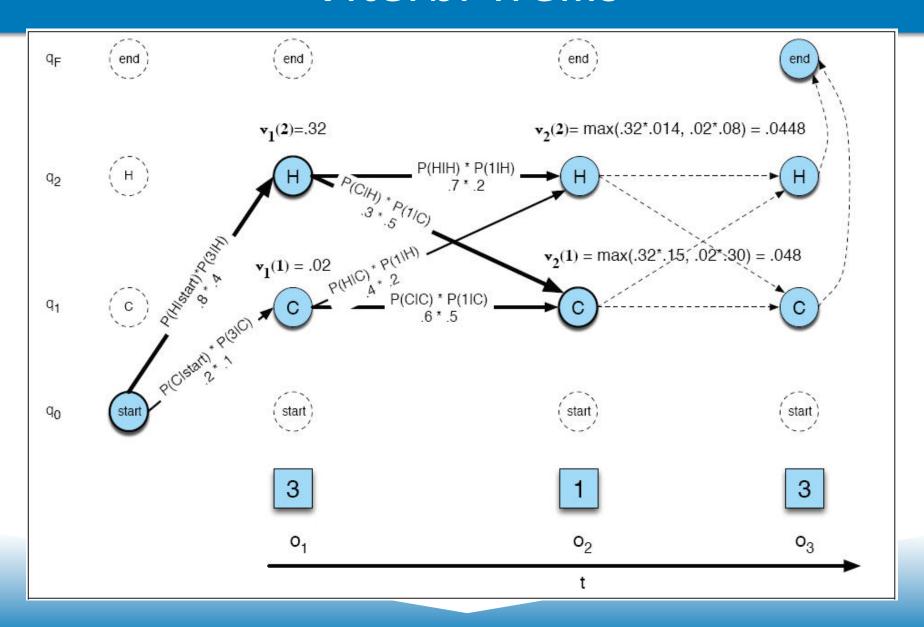
3 Factors

- $\alpha_{i-1}(i)$ The previous forward path probability from the previous time step
- a_{ij} The transition probability from previous state q_i to current state q_j
- $b_j(o_t)$ The stat observation likelihood of the observation symbol o_t given the current state j

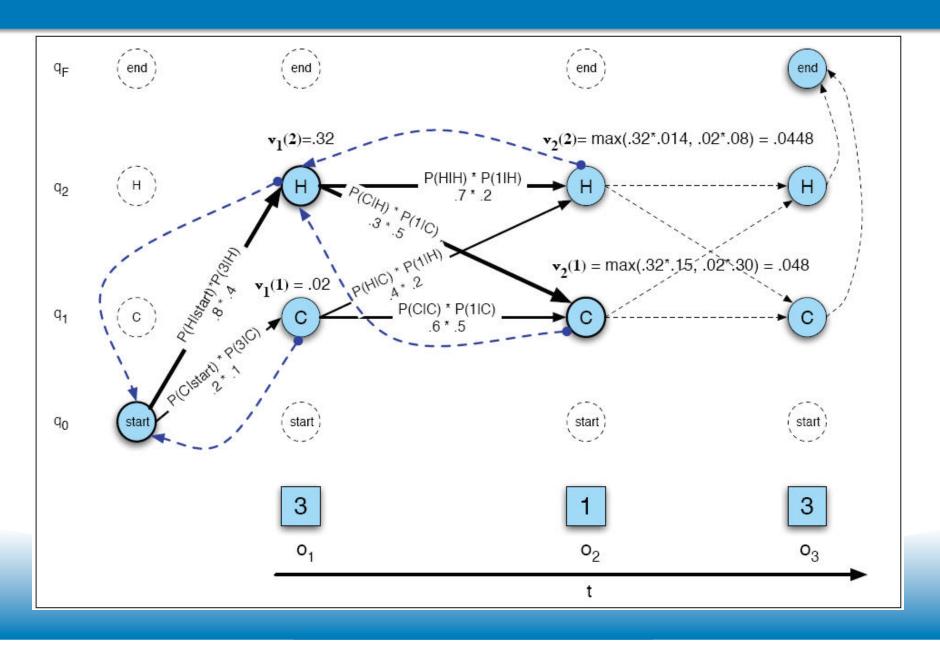
Viterbi Algorithm

```
function VITERBI(observations of len T, state-graph of len N) returns best-path
create a path probability matrix viterbi(N+2,T)
for each state s from 1 to N do
                                                              ; initialization step
       viterbi[s,1] \leftarrow a_{0,s} * b_s(o_1)
       backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                              ; recursion step
    for each state s from 1 to N do
       viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
       backpointer[s,t] \leftarrow \underset{\sim}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s}
viterbi[q_F,T] \leftarrow \max^{N} viterbi[s,T] * a_{s,q_F}; termination step
backpointer[q_F,T] \leftarrow \underset{s,q_F}{\operatorname{argmax}} viterbi[s,T] * a_{s,q_F}
                                                                ; termination step
return the backtrace path by following backpointers to states back in
           time from backpointer[q_F, T]
```

Viterbi Trellis



Viterbi Trellis with Backtrace

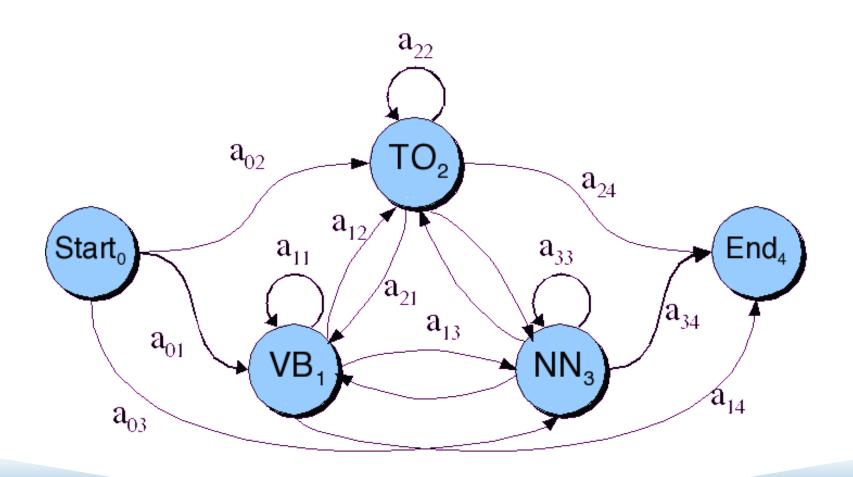


The Three Basic Problems for HMMs

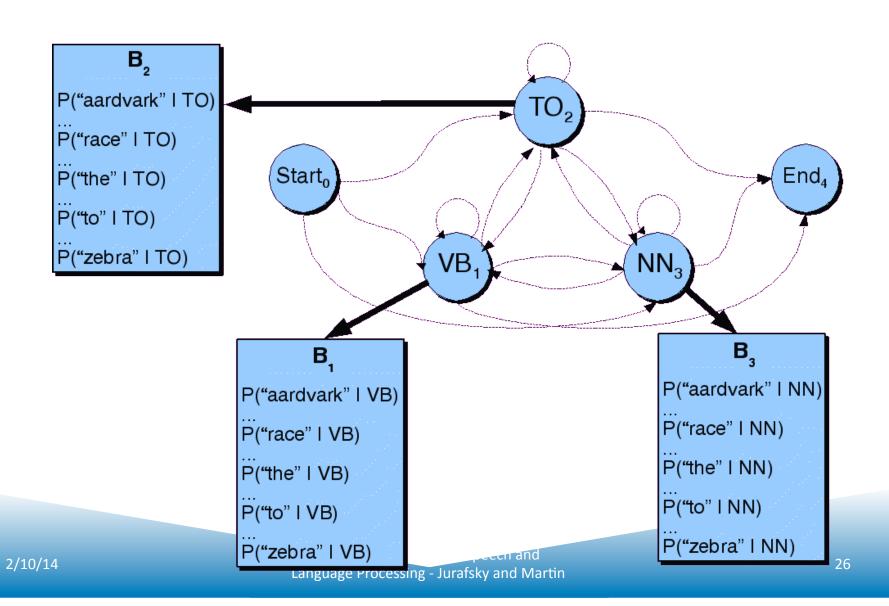
Jack Ferguson at IDA in the 1960s

- Problem 1 (Evaluation):
 - Given the observation sequence $O=(o_1o_2...o_T)$, and an HMM model $\Phi=(A,B)$, how do we efficiently compute $P(O|\Phi)$, the probability of the observation sequence, given the model
- Problem 2 (Decoding):
 - Given the observation sequence $O=(o_1o_2...o_T)$, and an HMM model $\Phi=(A,B)$, how do we choose a corresponding state sequence $Q=(q_1q_2...q_T)$ that is optimal in some sense (i.e., best explains the observations)
- Problem 3 (Learning):
 - How do we adjust the model parameters $\Phi = (A,B)$ to maximize $P(O \mid \Phi)$?

Transition Probabilities



Observation Likelihoods



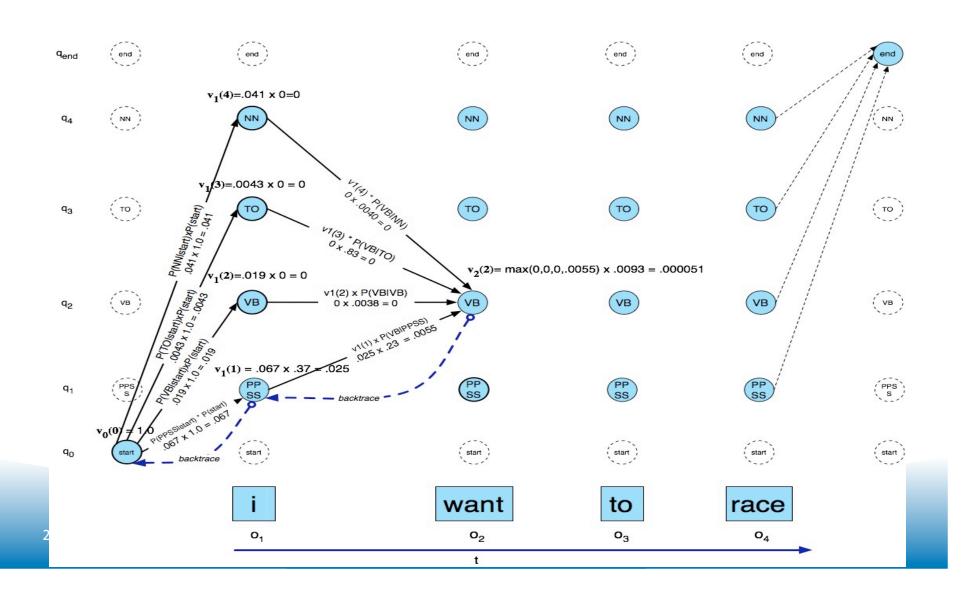
Decoding

 Ok, now we have a complete model that can give us what we need. Recall that we need to get

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

- We could just enumerate all paths given the input and use the model to assign probabilities to each.
 - Not a good idea.
 - Luckily dynamic programming (last seen in Ch. 3 with minimum edit distance) helps us here

Viterbi Example



Viterbi Summary

- Create an array
 - With columns corresponding to inputs
 - Rows corresponding to possible states
- Sweep through the array in one pass filling the columns left to right using our transition probs and observations probs
- Dynamic programming key is that we need only store the MAX prob path to each cell, (not all paths).

Unknown Words: Integrating features into the model

- Unknown words are a problem in open text
- Features of the word can help
 - Inflectional endings (e.g. –ing)
 - Derivational endings (e.g. –ly)
 - Hyphenation
 - Capitalization (+initial+capitalized,-initial+capitalized...)
- Instead of word emit probability use

Results using features

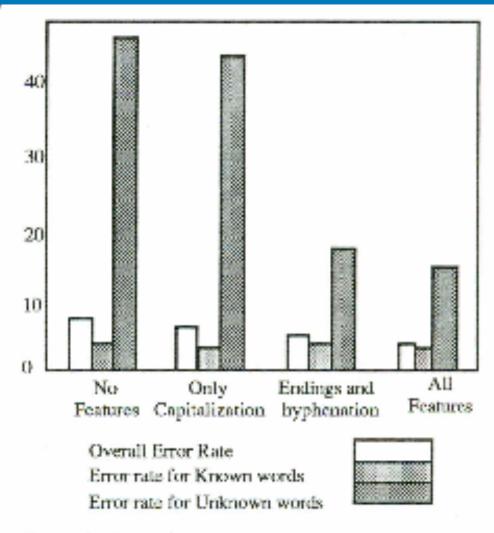


Figure 1: Decreasing error rate with use of word features

Evaluation

- So once you have you POS tagger running how do you evaluate it?
 - Overall error rate with respect to a gold-standard test set.
 - Error rates on particular tags
 - Error rates on particular words
 - Tag confusions...

Evaluation

- The result is compared with a manually coded "Gold Standard"
 - Typically accuracy reaches 96-97%
 - This may be compared with result for a baseline tagger (one that uses no context).
- Important: 100% is impossible even for human annotators.

Error Analysis

•	IN	JJ	NN	NNP	RB	VBD	VBN
IN	_	.2			.7		
JJ	.2	_	3.3	2.1	1.7	.2	2.7
NN		8.7	_				.2
NNP	.2	3.3	4.1	_	.2		
RB	2.2	2.0	.5		_		
VBD		.3	.5			_	4.4
VBN		2.8				2.6	_

- See what errors are causing problems
 - Noun (NN) vs ProperNoun (NNP) vs Adj (JJ)
 - Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)