CS114 Lecture /7
HMMs

February 5, 2013
Professor Meteer

Thanks for Jurafsky & Martin & Prof. Pustejovksy for slides

Definitions

* A weighted finite-state automaton adds probabilities
to the arcs

— The sum of the probabilities leaving any arc must sum to
one

A Markov chain is a special case of a WFST in which
the input sequence uniquely determines which
states the automaton will go through

 Markov chains can’t represent inherently ambiguous
problems

— Useful for assigning probabilities to unambiguous
seguences

2/10/14

d O
Language Processing - Jurafsky and Martin

Markov Chain for Weather

2/10/14

Markov Chain for Words

2/10/14

Markov Chain: “First-order observable

Markov Model”

* A set of states
— Q=4qy, 9,...qy, the state at time tis q,
* Transition probabilities:
— a set of probabilities A = ay,ay,...2,1---3 -

— Each a; represents the probability of transitioning from
state i to state |

— The set of these is the transition probability matrix A

e Current state only depends on previous state
P(g,1q,--q.)=P(q,1q,,)

2/10/14

Language Processing - Jurafsky and Martin

Markov Chain for Weather

 What is the probability of 4 consecutive rainy
days?

* Sequence is rainy-rainy-rainy-rainy
* |.e., state sequence is 3-3-3-3
* P(3,3,3,3) =

— J,a,,@11@17811 = 0.2 x (0.6) = 0.0432

2/10/14

Markov Chain for Weather

Hidden Markov Model

For Markov chains, the output symbols are the same as
the states.

— See hot weather: we’re in state hot

But in part-of-speech tagging (and other things)
— The output symbols are words
— But the hidden states are part-of-speech tags

So we need an extension!

A Hidden Markov Model is an extension of a Markov
chain in which the input symbols are not the same as
the states.

This means we don’t know which state we are in.

2/10/14

Language Processing - Jurafsky and Martin

HMM for Ice Cream

* You are a climatologist in the year 2799

e Studying global warming

* You can’t find any records of the weather in
Baltimore, MA for summer of 2007

e But you find Jason Eisner’s diary

* Which lists how many ice-creams Jason ate
every date that summer

e Our job: figure out how hot it was

2/10/14

Hidden Markov Models

* States Q=q, ¢p...qy.
* Observations O= 0y, 0,...0y.
— Each observation is a symbol from a vocabulary V = {v,,v,,...v\/}

* Transition probabilities
— Transition probability matrix A = {a;}
a,=P(q,=jlq_=1) 1=<i,j<N
* Observation likelihoods
— Output probability matrix B={b.(k)}

b.(k)=P(X, =0,1q, =1)
* Special initial probability vector
w,=P(g =1) l<sisN

2/10/14

Language Processing - Jurafsky and Martin

* Given
— Ice Cream Observation Sequence: 1,2,3,2,2,2,3...

 Produce:
— Weather Sequence: H,C,H,H,H,C...

2/10/14

Language Processing - Jurafsky and Martin

HMM for Ice Cream

Observation Probability

Probability of events 3 - 1 — 3 given hidden states Hot Hot Cold

Joint probability

The computation of the joint probability of the ice cream
events 3 -1 — 3 and the hidden state sequence Hot Hot Cold

To find the most likely you would have to compute the probability
for every sequence of hidden states. Too slow!

Dynamic Programming:
Forward Algorithm

3 Factors

a. (i) The previous forward path probability from the
previous time step

a: The transition probability from previous state g, to
current state q;

b,(o,) The state observation likelihood of the observation
symbol o, given the current state j

Forward Algorithm Computation

a4 (N)
2 By a())= lzi ag_4(i) a; bj(oy) -

@ ® []
® [] ®
® ® ®
3 3
p v WO ay
dg) 1 Og |
3 - s
G;.o(2) a_4(2) 2
/’h\\ a b](ot) I/'-‘\\
ds ; 1] C]2 "\QQ K
a (1) ay4(1)
< (a) G (an)
Ot0 O 0 Ots1

Forward Algorithm

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T]

for each state s from 1 to N do ; Initialization step
forward[s,11<—aq s * bs(01)
for each time step 7 from 2 to 7 do ; recursion step

for each state s from 1 to N do

N
forward[s,t] — Z forward[s',t — 1] * ay s * bs(or)

=1
N
forward[qr,T] — Z Jorward[s,T| * as gz ; termination step
1

return forward|[qF, T=]

Factors in the Viterbi Algorithm

V(i) The previous Viterbi path probability from the
previous time step

a: The transition probability from previous state g, to
current state q;

b,(o,) The stat observation likelihood of the observation
symbol o, given the current state |

3 Factors

a. (i) The previous forward path probability from the
previous time step

a: The transition probability from previous state g, to
current state q;

b,(o,) The stat observation likelihood of the observation
symbol o, given the current state |

Viterbi Algorithm

function VITERBI(observations of len T, state-graph of len N) returns best-path

create a path probability matrix viterbi/N+2,T]

for each state s from 1 to N do ; Initialization step
viterbi[s,1]1—ag s * bs(01)
backpointer(s,1]—0

for each time step 7 from 2 to 7 do ; recursion step

for each state s frglm 1toNdo
viterbi[s,t] — max virerbi[s’,t— 1] * ag s * bs(or)

s'=1

: N ; :
backpointer(s,t] «— argmax viterbi[s',t — 1] * ay

s'=1
5 N o s -
viterbi[qp ,T]+— max viterdi[s,T| * as g, ; termination step
s=1
; N o .
backpointer[qr ,T]— argmax viterbi(s,T| * as g, ; termination step
s=1

return the backtrace path by following backpointers to states back in
time from Dackpointer[qr.T]

I,"\\\ l”—\\. /”‘\\
dF " end | \end | t end)

v,(2)=.32 v,(2)= max(.32".014, .02".08) = .0448 | |
PHIH) "P(IIH) o/ Fo
- \/?y} ¥ (\‘\\ ,t’ :
X « I/C) \\\\ ,’// :I
*\ @ | o :
& v (1) = 02 o vy(1) = max(.82" 15,02 :39\)\: 048
S, WO L2 :
Ny X * ?\ A 4 L A X
o o) o ——_P(CIC) * P(IIC) S Ny Y
M " Q\ o 6‘5
o A\
N
O, A
e

’ \ 4 N - \
do @ | start) | start | | start)
A ~ -, 4 s . - / \\ - J

Viterbi Trellis with Backtrace

-———

T~ < _ vy(2)=max(.32".014, .02".08) = .0448

i P(HIH) *PAIH) o ,@
¥ 7 \\\\ /”’,
3 5(/@ \\\\ 3 =
AW 30" 15 02%30) = .048
R G '?; v,(1) = max(. . 15,.02% \) =
-] — \ = -7 TS
. N V(1) =02\ o). ¢ ‘ e i
a V¢ S < \ P(CIC) * P(1IC) S TTT——_ .
\\\ -l Q@ \C)\ \\ 6’5 = G /
do ' start:‘, -: stalt\l‘,

~

-

0, 0, O3
—

The Three Basic Problems for HMMs

Jack Ferguson at IDA in the 1960s

* Problem 1 (Evaluation):

— Given the observation sequence O=(0,0,...0;), and an HMM model ® =
(A,B), how do we efficiently compute P(O| ®), the probability of the
observation sequence, given the model

 Problem 2 (Decoding):

— Given the observation sequence O=(0,0,...0;), and an HMM model ® =
(A,B), how do we choose a corresponding state sequence Q=(q,q,...0;)
that is optimal in some sense (i.e., best explains the observations)

* Problem 3 (Learning):
— How do we adjust the model parameters ® = (A,B) to maximize P(O| ®)?

Thanks to Dan Jo & ™Or these slides

Transition Probabilities

2/10/14 Language Processing - Jurafsky and Martin

Observation Likelihoods

"""""
- 3,

Bz
P(“aardvark” | TO)
i5(“race” | TO)
P(‘the” | TO)
P(“t0” | TO)
i5(“zeb ra” | TO)

P(“aardvark” | NN)
P(“race” | NN)
P(“the” | NN)
P(“to” | NN)
i5(“zeb ra” | NN)

P(“aardvark” | VB)
P(“race” | VB)
P(‘the” | VB)
P(“to” | VB)
P(“zebra’ | VB)

Language rrocessing - Jurafsky and Martin

2/10/14

Decoding

* Ok, now we have a complete model that can give us
what we need. Recall that we need to get
f] = argmax P(r7 |wy)
tn
1

* We could just enumerate all paths given the input
and use the model to assign probabilities to each.
— Not a good idea.

— Luckily dynamic programming (last seen in Ch. 3 with
minimum edit distance) helps us here

2/10/14

Language Processing - Jurafsky and Martin

Qend

qs

a3

a2

Viterb

| Example

. eng ‘: + end \: + end \, | enc \'. +end |
c wE e R e sl f
v1(4)=.041 x 0=0 = i
Y @ @ @’/ ,,’I -" NN ‘
v, [3)=.0043 x0=0 l’/, 7 ,/
o' 7 K .
| @ //
\ V2(2)= max(0,0,0,.0055) x .0093 = .000051 ,'l ‘,'
vi(2) x P(VBIVB) ,'I ; sy
0x.0038 =0 _> ,/ L Vs ,:
= 7P ; o
APt s
*?\\‘% L / ;
a7 22 / "
0@6* i
< / ,/
/7) .
dp -{stan \‘, -"lsmn \', -’stan) -:‘slan ‘:
/] 0o, O, Og o,
-
t

Viterbi Summary

* Create an array
— With columns corresponding to inputs
— Rows corresponding to possible states
* Sweep through the array in one pass filling the

columns left to right using our transition probs
and observations probs

* Dynamic programming key is that we need
only store the MAX prob path to each cell,
(not all paths).

2/10/14

Unknown Words:

Integrating features into the model

* Unknown words are a problem in open text

* Features of the word can help
— Inflectional endings (e.g. —ing)
— Derivational endings (e.g. —ly)
— Hyphenation
— Capitalization (+initial+capitalized,-initial+capitalized...)
* |nstead of word emit probability use
— p*(w; | t;= p(unknown-word | t;) *

» p(Capital-feature | t)
» P(endings/hypenations | t))

Results using features

A0

n

Na Only Erxlings arxl All
Features Copitalizetion bypheoarion Feanes

3 r ';::Z;

0

Overull Brror Rale
Error ratz For Known woeds

Ervor rate for Unknown words

Figure 1: Deceeaging covor eate with vse of word feanares

Evaluation

* So once you have you POS tagger running how
do you evaluate it?

— Overall error rate with respect to a gold-standard
test set.

— Error rates on particular tags
— Error rates on particular words
— Tag confusions...

2/10/14

Language Processing - Jurafsky and Martin

Evaluation

* The result is compared with a manually coded
“Gold Standard”

— Typically accuracy reaches 96-97%

— This may be compared with result for a baseline
tagger (one that uses no context).

* Important: 100% is impossible even for human
annotators.

2/10/14

d O
Language Processing - Jurafsky and Martin

Error Analysis

‘ IN JJ NN NNP RB VBD VBN

IN — 2 i

JJ 2 — 33 21 1.7 .2 2.7
NN 8.7 — 2
NNP 2 33 41 — 2

RB 22 20 5 -

VBD 3 5 - 4.4
VBN 2.8 2.6 —

* See what errors are causing problems
— Noun (NN) vs ProperNoun (NNP) vs Adj (JJ)
— Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)

2/10/14

Language Processing - Jurafsky and Martin

