CS114 Lecture /7
HMMs

February 5, 2013
Professor Meteer

Thanks for Jurafsky & Martin & Prof. Pustejovksy for slides




Definitions

* A weighted finite-state automaton adds probabilities
to the arcs

— The sum of the probabilities leaving any arc must sum to
one

A Markov chain is a special case of a WFST in which
the input sequence uniquely determines which
states the automaton will go through

 Markov chains can’t represent inherently ambiguous
problems

— Useful for assigning probabilities to unambiguous
seguences
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Markov Chain for Weather
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Markov Chain for Words

2/10/14




Markov Chain: “First-order observable

Markov Model”

* A set of states
— Q=4qy, 9,...qy, the state at time tis q,
* Transition probabilities:
— a set of probabilities A = ay,ay,...2,1---3 -

— Each a; represents the probability of transitioning from
state i to state |

— The set of these is the transition probability matrix A

e Current state only depends on previous state
P(g,1q,--q.)=P(q,1q,,)
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Markov Chain for Weather

 What is the probability of 4 consecutive rainy
days?

* Sequence is rainy-rainy-rainy-rainy
* |.e., state sequence is 3-3-3-3
* P(3,3,3,3) =

— J,a,,@11@17811 = 0.2 x (0.6) = 0.0432
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Markov Chain for Weather




Hidden Markov Model

For Markov chains, the output symbols are the same as
the states.

— See hot weather: we’re in state hot

But in part-of-speech tagging (and other things)
— The output symbols are words
— But the hidden states are part-of-speech tags

So we need an extension!

A Hidden Markov Model is an extension of a Markov
chain in which the input symbols are not the same as
the states.

This means we don’t know which state we are in.
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HMM for Ice Cream

* You are a climatologist in the year 2799

e Studying global warming

* You can’t find any records of the weather in
Baltimore, MA for summer of 2007

e But you find Jason Eisner’s diary

* Which lists how many ice-creams Jason ate
every date that summer

e Our job: figure out how hot it was
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Hidden Markov Models

* States Q=q, ¢p...qy.
* Observations O= 0y, 0,...0y.
— Each observation is a symbol from a vocabulary V = {v,,v,,...v\/}

* Transition probabilities
— Transition probability matrix A = {a;}
a,=P(q,=jlq_=1) 1=<i,j<N
* Observation likelihoods
— Output probability matrix B={b.(k)}

b.(k)=P(X, =0,1q, =1)
* Special initial probability vector
w,=P(g =1) l<sisN
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* Given
— Ice Cream Observation Sequence: 1,2,3,2,2,2,3...

 Produce:
— Weather Sequence: H,C,H,H,H,C...
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HMM for Ice Cream




Observation Probability

Probability of events 3 - 1 — 3 given hidden states Hot Hot Cold




Joint probability

The computation of the joint probability of the ice cream
events 3 -1 — 3 and the hidden state sequence Hot Hot Cold

To find the most likely you would have to compute the probability
for every sequence of hidden states. Too slow!



Dynamic Programming:
Forward Algorithm




3 Factors

a. (i) The previous forward path probability from the
previous time step

a: The transition probability from previous state g, to
current state q;

b,(o,) The state observation likelihood of the observation
symbol o, given the current state j



Forward Algorithm Computation
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Forward Algorithm

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T]

for each state s from 1 to N do ; Initialization step
forward[s,11<—aq s * bs(01)
for each time step 7 from 2 to 7 do ; recursion step

for each state s from 1 to N do

N
forward[s,t] — Z forward[s',t — 1] * ay s * bs(or)

=1
N
forward[qr,T] — Z Jorward[s,T| * as gz ; termination step
1

return forward|[qF, T=]




Factors in the Viterbi Algorithm

V(i) The previous Viterbi path probability from the
previous time step

a: The transition probability from previous state g, to
current state q;

b,(o,) The stat observation likelihood of the observation
symbol o, given the current state |



3 Factors

a. (i) The previous forward path probability from the
previous time step

a: The transition probability from previous state g, to
current state q;

b,(o,) The stat observation likelihood of the observation
symbol o, given the current state |



Viterbi Algorithm

function VITERBI(observations of len T, state-graph of len N) returns best-path

create a path probability matrix viterbi/N+2,T]

for each state s from 1 to N do ; Initialization step
viterbi[s,1]1—ag s * bs(01)
backpointer(s,1]—0

for each time step 7 from 2 to 7 do ; recursion step

for each state s frglm 1toNdo
viterbi[s,t] — max virerbi[s’,t— 1] * ag s * bs(or)

s'=1

: N ; :
backpointer(s,t] «— argmax viterbi[s',t — 1] * ay

s'=1
5 N o s -
viterbi[qp ,T]+— max viterdi[s,T| * as g, ; termination step
s=1
; N o .
backpointer[qr ,T]— argmax viterbi(s,T| * as g, ; termination step
s=1

return the backtrace path by following backpointers to states back in
time from Dackpointer[qr.T]
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Viterbi Trellis with Backtrace

-———

T~ < _ vy(2)=max(.32".014, .02".08) = .0448

i P(HIH) *PAIH) o ,@
¥ 7 \\\\ /”’,
3 5(/@ \\\\ 3 =
AW 30" 15 02%30) = .048
R G '?; v,(1) = max(. . 15,.02% \) =
- ] — \ = -7 TS
. N V(1) =02\ o). ¢ ‘ e i
a V¢ S < \ P(CIC) * P(1IC) S TTT——_ .
\\\ -l Q@ \C)\ \\ 6’5 = G /
do ' start:‘, -: stalt\l‘,

~

-

0, 0, O3
—




The Three Basic Problems for HMMs

Jack Ferguson at IDA in the 1960s

* Problem 1 (Evaluation):

— Given the observation sequence O=(0,0,...0;), and an HMM model ® =
(A,B), how do we efficiently compute P(O| ®), the probability of the
observation sequence, given the model

 Problem 2 (Decoding):

— Given the observation sequence O=(0,0,...0;), and an HMM model ® =
(A,B), how do we choose a corresponding state sequence Q=(q,q,...0;)
that is optimal in some sense (i.e., best explains the observations)

* Problem 3 (Learning):
— How do we adjust the model parameters ® = (A,B) to maximize P(O| ®)?

Thanks to Dan Jo & ™Or these slides



Transition Probabilities
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Observation Likelihoods

"""""
- 3,

Bz
P(“aardvark” | TO)
i5(“race” | TO)
P(‘the” | TO)
P(“t0” | TO)
i5(“zeb ra” | TO)

P(“aardvark” | NN)
P(“race” | NN)
P(“the” | NN)
P(“to” | NN)
i5(“zeb ra” | NN)

P(“aardvark” | VB)
P(“race” | VB)
P(‘the” | VB)
P(“to” | VB)
P(“zebra’ | VB)

Language rrocessing - Jurafsky and Martin
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Decoding

* Ok, now we have a complete model that can give us
what we need. Recall that we need to get
f] = argmax P(r7 |wy)
tn
1

* We could just enumerate all paths given the input
and use the model to assign probabilities to each.
— Not a good idea.

— Luckily dynamic programming (last seen in Ch. 3 with
minimum edit distance) helps us here
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Viterbi Summary

* Create an array
— With columns corresponding to inputs
— Rows corresponding to possible states
* Sweep through the array in one pass filling the

columns left to right using our transition probs
and observations probs

* Dynamic programming key is that we need
only store the MAX prob path to each cell,
(not all paths).
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Unknown Words:

Integrating features into the model

* Unknown words are a problem in open text

* Features of the word can help
— Inflectional endings (e.g. —ing)
— Derivational endings (e.g. —ly)
— Hyphenation
— Capitalization (+initial+capitalized,-initial+capitalized...)
* |nstead of word emit probability use
— p*(w; | t;= p(unknown-word | t;) *

» p(Capital-feature | t)
» P(endings/hypenations | t))



Results using features
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Evaluation

* So once you have you POS tagger running how
do you evaluate it?

— Overall error rate with respect to a gold-standard
test set.

— Error rates on particular tags
— Error rates on particular words
— Tag confusions...
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Evaluation

* The result is compared with a manually coded
“Gold Standard”

— Typically accuracy reaches 96-97%

— This may be compared with result for a baseline
tagger (one that uses no context).

* Important: 100% is impossible even for human
annotators.
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Error Analysis

‘ IN JJ NN NNP RB VBD VBN

IN — 2 i

JJ 2 — 33 21 1.7 .2 2.7
NN 8.7 — 2
NNP 2 33 41 — 2

RB 22 20 5 -

VBD 3 5 - 4.4
VBN 2.8 2.6 —

* See what errors are causing problems
— Noun (NN) vs ProperNoun (NNP) vs Adj (JJ)
— Preterite (VBD) vs Participle (VBN) vs Adjective (JJ)
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