CS114 Lecture 8

Review

February 12, 2014
Professor Meteer

Thanks for Jurafsky & Martin & Prof. Pustejovksy for slides

Review

* Linguistics: Morphology, POS
 Ambiguity
* Grammars, FSAs

* Ngrams

— What are some other applications? Spelling
correction, text generation

e Viterbi algorithm and minimum distance
* Other applications of FSAs and HMMs

Terminology

* Morphology
— Inflectional

— Derivational
— Regular vs irregular

* Parts of speech
— Closed class
— Open class

 Word forms vs Lemmas
— In general tokens vs. types

Why care about morphology?

e Stemming’ in information retrieval

— Might want to search for “going home” and find
pages with both “went home” and “will go home”

* Morphology in machine translation

— Need to know that the Spanish words quiero and
qguieres are both related to querer ‘want’

* Morphology in spell checking

— Need to know that misclaim and antiundoggingly
are not words despite being made up of word
parts

What we want

* Something to automatically do the following
kinds of mappings:

* Cats cat +N +PL

* Cat cat +N +SG

* Cittes city +N +PL

* Merging merge +V +Present-participle
» Caught catch +V +past-participle

* Segmenting words and sentences in running
text

 Why not just periods and white-space?

— Mr. Sherwood said reaction to Sea Containers’
proposal has been "very positive." In New York
Stock Exchange composite trading yesterday, Sea
Containers closed at $62.625, up 62.5 cents.

— “I said, ‘what’re you? Crazy?’ “ said Sadowsky. “I
can’t afford to do that.”

 Words like: cents. said, positive.” Crazy?

Other “wordy” problems

 Tokenization
— which are the words?

* Representing a dictionary using a FSA/FST
e Spell check

— Edit distance (an example of what?)

Minimum Edit Distance Algorithm

* Create Matrix

* |nitialize 1 —length in LH column and bottom
row

* For each cell

— Take the minimum of:

* Deletion: +1 from cell below
* |Insertion: +1 from left cell

» Substitution: Diagonal +0 if same +2 if different

— Keep track of where you came from

Example

e Minimum of: T]>°
H | 4
— 141 (left right)
G | 3
— 1+1 (bottom up) ,\\2
— 0+0 (diagonal) R | 1 1
I
e Minimumofi— [# |0 | 1 |2 |3 |4
| R | T | E

— 0+1 (left right)
— 2+1 (bottom up)
— 142 (diagonal)

Answer to Right-Rite

H 4
G 3
I 2
R 1 21 OI 2
0 1 2 3 4
R I T E
In each box X, Y, Z values are Minimum is highlighted
X: From left: Insert-add one from left box in red with arrow to source
Y: Diagonal, Compare-0 if same, 2 if different NOTE: All boxes will have arrows.
Z: From below: Delete-add one from lower box | didn’t show them all.

Onli one iath back to root.

Answer to Right-Rite

H 4
G 3
I 2 3,3,1 2,0,2
[|
R 1 20 2¥T 133
/ R
0 1 2 3 4
R I T E
In each box X, Y, Z values are Minimum is highlighted
X: From left: Insert-add one from left box in red with arrow to source
Y: Diagonal, Compare-0 if same, 2 if different NOTE: All boxes will have arrows.
Z: From below: Delete-add one from lower box | didn’t show them all.

Onli one iath back to root.

Answer to Right-Rite

H 4 55,3 4,4,?2
| |
G 3 442%] 331% 222
€=
| | & |
| 2 331 Y 202V 133
R 1 2,0,2 1,3,3 2,4,4
/ =
0 1 2 3 4
H R I T E
In each box X, Y, Z values are Minimum is highlighted
X: From left: Insert-add one from left box in red with arrow to source
Y: Diagonal, Compare-0 if same, 2 if different NOTE: All boxes will have arrows.
Z: From below: Delete-add one from lower box | didn’t show them all.

Onli one iath back to root.

Answer to Right-Rite

T 5 6,6,4 5,5, 5 6,2, 4 35,5
y g
H 4 5,5, 3 44 2 333 44 4
]]
G 3 442%] 3317 222 33 3
l l
| > 331 Y 202V 133 2 4 4
i+ =
R 1 20,2 13,3 2.4 4 355
/ <
0 1) 3 4
" R | T E

In each box X, Y, Z values are
X: From left: Insert-add one from left box
Y: Diagonal, Compare-0 if same, 2 if different
Z: From below: Delete-add one from lower box

Onli one iath back to root.

Minimum is highlighted
in red with arrow to source

NOTE: All boxes will have arrows.

| didn’t show them all.

* Minimum Edit Distance

* A “dynamic programming” algorithm

* We will see a probabilistic version of this
called “Viterbi”

Three Views

* Three equivalent formal ways to look at what

we’re up to
Regular Expressions
Regular
Languages
Finite State Automata Regular Grammars

Brandeis v eteer

Three things you can do with any of

these (FSA, FSG, RE

* Generation

— Produce all the strings in the language
* Recognition:

— Is a string in a language

* Transducer
— Use the FSA to transform one string into another

Finite State Automata

* Regular expressions can be viewed as a textual
way of specifying the structure of finite-state
automata.

* FSAs and their probabilistic relatives are at the
core of much of what we’ll be doing all
semester.

* They also capture significant aspects of what
linguists say we need for morphology and
parts of syntax.

FSA’s time of day

* Think about the data
— One o’clock
— Five twenty three
— Quarter to nine
— Six oh four

— Half past twelve

FSA for dollar amounts under $100.00

Thirty
ninety

And as a grammar (note to make more readable, we go beyond finite state):
MONEY - DOLLARS CENTS?

DOLLARS - one dollar | ONETOTEEN | TENS ONES?) dollars

“Operationalizing” FSAs

with Transition Tables

* The guts of FSAs can b la 1 |e
ultimately be 0 1
represented as tables >

1
2,3
If you're in state 1

and you’re looking at 3 4
an a, go to state 2 4

aa! I

Brandeis v eteer

(2

* Deterministic means that at each point in
processing there is always one unique thing to
do (no choices).

* D-recognize is a simple table-driven
Interpreter

* The algorithm is universal for all unambiguous
regular languages.

— To change the machine, you simply change the
table.

Brandeis v eteer

* Crudely therefore... matching strings with regular
expressions (a la Perl, grep, etc.) is a matter of

— translating the regular expression into a machine (a
table) and

— passing the table and the string to an interpreter

Brandeis v eteer

Recognition as Search

* You can view this algorithm as a trivial kind of
state-space search.

e States are pairings of tape positions and state
numbers.

* Operators are compiled into the table

* Goal state is a pairing with the end of tape
position and a final accept state

e |tis trivial because?

Brandeis v eteer

Multi-Level Tape Machines

L exical é flo|x |[+N|+PI f
Intermediate é flo|lx|M|s|# f
Surface § flo|x|e|s f

 We use one machine to transduce between the
lexical and the intermediate level, and another to
handle the spelling changes to the surface tape

2/12/14 24

Cascades

* This is an architecture that we’ll see again and
again
e Overall processing is divided up into distinct
rewrite steps

 The output of one layer serves as the input to the
next

 The intermediate tapes may or may not wind up
being useful in their own right

2/12/14 25

Languages and Grammars

 We can model a language with a grammar
— Production rules: LHS—=> RHS
— NonTerminals indicate a production rule can be applied
— Terminals make up the “strings” (sentences) of the
language
 The grammar defines all the possible strings of
terminals in the language

— A “language” is generally an infinite number of finite
strings

— Any string can be “accepted”/parsed by the grammar
— The grammar can generate all the strings

Brandeis v eteer

The “Power” of Grammars

* The “Chomsky Hierarchy” shows that
grammars written with different constraints
on the rules generate different “languages”

* Finite state
— A > Ab |a

e Context free
—A—>AB|a

* Context Sensitive
— bAc = bac | cab

An Example

 Consider language a"b"
* Finite state grammar for a’s and b’s can’t keep track

— A—> aA | aB 3 ;
— B> bB|b e —>@

— L1: a™b"

* Context free grammar
— S—>aSb | ab
— L2: a"b"

* |sL2 regular? No. Proof using the Pumping lemma left
to the reader

The “C” in CL

does it really just mean “count”?

* Conditional probability

* Ngram Modeling
— N-grams are token sequences of length N

— Given knowledge of counts of N-grams such as these,
we can guess likely next words in a sequence

* What to count?
— Types vs. token
— Wordforms vs. lemmas
— Punctuation?

Language Modeling

e Back to word prediction

 We can model the word prediction task as the
ability to assess the conditional probability of
a word given the previous words in the

sequence
— P(w, [w,w,..w,_)

e We'll call a statistical model that can assess
this a Language Model

2/12/14

Other ngram concepts

* Perplexity

— Computes the likelihood of a test set against a
model, but nothing about the model per se

e Evaluation
— Intrinsic vs. extrinsic
— Separation of training and test

 What to do about gaps in the corpora

— Unseen combinations
— 00V

Backoff Vs. Interpolation

e Backoff: use trigram if you have it, otherwise
bigram, otherwise unigram

* Interpolation: mix all three

2/12/14

GT Fish Example

* OR use the 1s for 0s (3/18 spread over2 species)

* AND Look at the things that happened 2s to share with 1s
— C(whitefish) = 2 happened once
— Discount 1s by 2/3

e LOTS OF ALTERNATIVES! Just estimates

unseen (bass or catfish) trout
c 0 1
MLEp |[p= =0 &

. N» _ 1 _
c* c*(trout)=2 x N = 2 x5 =.67

2/12/14

Language Processing - Jurafsky and Martin

Good-Turing

* Notation: N, is the frequency-of-frequency-x
— So N=1
* Number of fish species seen 10 times is 1 (carp)
— N;=3
* Number of fish species seen 1 is 3 (trout, salmon, eel)
* To estimate total number of unseen species

— Use number of species (words) we’ve seen on%

— ¢y =C; =N,/N (C—|- 1)]i;-l
c

* All other estimates are adjusted (down) to give
probabilities for unseen

2/12/14

d O
180y 820D S 8¢ [8 AT fSky and Martin

Good-Turing Intuition

* Notation: N, is the frequency-of-frequency-x
— So N;p=1, N;=3, etc
* To estimate total number of unseen species

— Use number of species (words) we’ve seen once

— ¢y =C; Po=N;/N p,=N,/N=3/18
. . . . N
P¢r (things with frequency zero in training) = Fl
* All other estimates are adjusted (down) to give
probabilities for unseen
Nc+l Peel) =c*(1)=(1+1)1/3=2/3

Ne

¢ =(c+1)

180y 820D S 8¢ [8 AT fSky and Martin

Could just spread 1s over Os

Carp 10 10
Perch 3 3
WEF 2 2
Trout 1 1
Salmon 1 1
Eel 1 1
Catfish 0 1
Bass 0 1
TOTAL 18

Prob of things that occurred
once

1\18 + 1\18 + 1\18 = 3\18
Add one to zero counts

Spread probability over 1s
and Os

(3/18) /5 =.066

Part of Speech Tagging

* Parts of speech
— What'’s POS tagging good for anyhow

* I[mportant Ideas
— Training sets and test sets
— Unknown words

 How can features help?

* HMM tagging

Hidden Markov Model Tagging

e Using an HMM to do POS tagging is a special
case of Bayesian inference
— Foundational work in computational linguistics
— Bledsoe 1959: OCR

— Mosteller and Wallace 1964: authorship
identification

III

It is also related to the “noisy channel” model

that’s the basis for ASR, OCR and MT

2/12/14

POS Tagging as Sequence Classification

 We are given a sentence (an “observation” or
“sequence of observations”)

— Secretariat is expected to race tomorrow

 What is the best sequence of tags that
corresponds to this sequence of observations?
* Probabilistic view:
— Consider all possible sequences of tags

— Out of this universe of sequences, choose the tag
sequence which is most probable given the
observation sequence of n words w,...w,..

2/12/14

d O
Language Processing - Jurafsky and Martin

Two Kinds of Probabilities

* Tag transition probabilities p(t. |t ;)

— Determiners likely to precede adjs and nouns
* That/DT flight/NN
* The/DT yellow/JJ hat/NN
e So we expect P(NN|DT) and P(JJ|DT) to be high
e But P(DT|JJ) to be:

— Compute P(NN|DT) by counting in a labeled corpus:

- C(ti—1, 1)
P(tilti_1) = Clo)
P(NNlDT)_C(DT,NN) _ 56,509
~ C(DT) 116,454

2/12/14

Language Processing - Jurafsky and Martin

Two Kinds of Probabilities

* Word likelihood pro
—VBZ (3sg Pres verb)

— Compute P(is|VBZ)
corpus:

P(w;lt;) =

pabilities p(w, | t;)
ikely to be “is”

oy counting in a labeled

C(t;,w;)
C(t;)

C(VBZ,is) 10,073

P(is|VBZ) =

2/12/14

— — 47
C(VBZ) — 21,627

Hidden Markov Models

* What we’ve described with these two kinds of
probabilities is a Hidden Markov Model
(HMM)

2/12/14

HMMs for semantics

* |dea: use an HMM for semantics, just as we
did for ASR (and part-of-speech tagging, etc)

e Hidden units:

— Semantic slot names
* Origin
* Destination
* Departure time

* Observations:
— Word sequences

Semantics for a sentence

LIST FLIGHTS ORIGIN
Show me flights from Boston

DESTINATION DEPARTDATE
to San Francisco on Tuesday

DEPARTTIME
morning

HMM model of semantics —

Pieraccini et al

* |nput is the set of words
e QOutput is the set of semantic states

Show me flights that go from Boston to San Francisco

Decoding

* Ok, now we have a complete model that can give us
what we need. Recall that we need to get
f] = argmax P(r7 |wy)
tn
1

* We could just enumerate all paths given the input
and use the model to assign probabilities to each.
— Not a good idea.

— Luckily dynamic programming (last seen in Ch. 3 with
minimum edit distance) helps us here

2/12/14

Language Processing - Jurafsky and Martin

Viterbi Summary

* Create an array
— With columns corresponding to inputs
— Rows corresponding to possible states
* Sweep through the array in one pass filling the

columns left to right using our transition probs
and observations probs

* Dynamic programming key is that we need
only store the MAX prob path to each cell,
(not all paths).

2/12/14

