

CS114 Lecture 8 Review

February 12, 2014 Professor Meteer

Review

- Linguistics: Morphology, POS
- Ambiguity
- Grammars, FSAs
- Ngrams
 - What are some other applications? Spelling correction, text generation
- Viterbi algorithm and minimum distance
- Other applications of FSAs and HMMs

Terminology

- Morphology
 - Inflectional
 - Derivational
 - Regular vs irregular
- Parts of speech
 - Closed class
 - Open class
- Word forms vs Lemmas
 - In general tokens vs. types

Why care about morphology?

- 'Stemming' in information retrieval
 - Might want to search for "going home" and find pages with both "went home" and "will go home"
- Morphology in machine translation
 - Need to know that the Spanish words quiero and quieres are both related to querer 'want'
- Morphology in spell checking
 - Need to know that misclaim and antiundoggingly are not words despite being made up of word parts

What we want

- Something to automatically do the following kinds of mappings:
- Cats cat +N +PL
- Cat cat +N +SG
- Cities city +N +PL
- Merging merge +V +Present-participle
- Caught catch +V +past-participle

Tokenization

- Segmenting words and sentences in running text
- Why not just periods and white-space?
 - Mr. Sherwood said reaction to Sea Containers' proposal has been "very positive." In New York Stock Exchange composite trading yesterday, Sea Containers closed at \$62.625, up 62.5 cents.
 - "I said, 'what're you? Crazy?' " said Sadowsky. "I can't afford to do that."
- Words like: cents. said, positive." Crazy?

Other "wordy" problems

- Tokenization
 - which are the words?
- Representing a dictionary using a FSA/FST
- Spell check
 - Edit distance (an example of what?)

Minimum Edit Distance Algorithm

- Create Matrix
- Initialize 1 length in LH column and bottom row
- For each cell
 - Take the minimum of:
 - Deletion: +1 from cell below
 - Insertion: +1 from left cell
 - Substitution: Diagonal +0 if same +2 if different
 - Keep track of where you came from

Example

- Minimum of:
 - 1+1 (left right)
 - 1+1 (bottom up)
 - 0+0 (diagonal)
- Minimum of:-
 - 0+1 (left right)
 - 2+1 (bottom up)
 - 1+2 (diagonal)

Т	5				
Н	4				
G	3				
	2				
R	1	7	*		
#	0	1	2	3	4
	#	R	I	Т	Е

Т	5				
Н	4				
G	3				
I	2				
R	1	2, 0, 2			
#	0	1	2	3	4
	#	R	I	Т	Е

In each box X, Y, Z values are

X: From left: Insert-add one from left box

Y: Diagonal, Compare-0 if same, 2 if different

Z: From below: Delete-add one from lower box

Т	5				
Н	4				
G	3				
I	2	3, 3, 1	2, 0, 2		
R	1	2, 0, 2	1 , 3, 3		
#	0	1	2	3	4
	#	R	I	Т	E

In each box X, Y, Z values are

X: From left: Insert-add one from left box

Y: Diagonal, Compare-0 if same, 2 if different

Z: From below: Delete-add one from lower box

Т	5				
Н	4	5, 5, 3	4, 4, 2		
G	3	4, 4, 2	3, 3, 1	2, 2, 2	
I	2	3, 3, 1	2, 0, 2	1, 3, 3	
R	1	2, 0, 2	1, 3, 3	2, 4, 4	
#	0	1	2	3	4
	#	R	I	Т	E

In each box X, Y, Z values are

X: From left: Insert-add one from left box

Y: Diagonal, Compare-0 if same, 2 if different

Z: From below: Delete-add one from lower box

Т	5	6, 6, <mark>4</mark>	5, 5, 5	6, 2, 4	3 , 5, 5
Н	4	5, 5, <mark>3</mark>	4, 4, 2	3, 3, 3	4, 4, 4
G	3	4, 4, 2	3, 3, 1	2, 2, 2	3, 3, 3
I	2	3, 3, 1	2, 0, 2	1, 3, 3	2, 4, 4
R	1	2, 0, 2	1, 3, 3	2, 4, 4	3 , 5, 5
#	0	1	2	3	4
	#	R	I	Т	E

In each box X, Y, Z values are

X: From left: Insert-add one from left box

Y: Diagonal, Compare-0 if same, 2 if different

Z: From below: Delete-add one from lower box

Summary

- Minimum Edit Distance
- A "dynamic programming" algorithm
- We will see a probabilistic version of this called "Viterbi"

Three Views

 Three equivalent formal ways to look at what we're up to

Three things you can do with any of these (FSA, FSG, RE)

- Generation
 - Produce all the strings in the language
- Recognition:
 - Is a string in a language
- Transducer
 - Use the FSA to transform one string into another

Finite State Automata

- Regular expressions can be viewed as a textual way of specifying the structure of finite-state automata.
- FSAs and their probabilistic relatives are at the core of much of what we'll be doing all semester.
- They also capture significant aspects of what linguists say we need for morphology and parts of syntax.

FSA's time of day

- Think about the data
 - One o'clock
 - Five twenty three
 - Quarter to nine
 - Six oh four
 - Half past twelve

FSA for dollar amounts under \$100.00

And as a grammar (note to make more readable, we go beyond finite state):

MONEY → DOLLARS CENTS?

DOLLARS → one dollar | ONETOTEEN | TENS ONES?) dollars

"Operationalizing" FSAs with Transition Tables

 The guts of FSAs can ultimately be represented as tables

If you're in state 1 and you're looking at an a, go to state 2

		b	а	!	e
	0	1			
	1		2		
	2		2,3		
	3			4	
•	4				

Key Points

- Deterministic means that at each point in processing there is always one unique thing to do (no choices).
- D-recognize is a simple table-driven interpreter
- The algorithm is universal for all unambiguous regular languages.
 - To change the machine, you simply change the table.

Key Points

- Crudely therefore... matching strings with regular expressions (a la Perl, grep, etc.) is a matter of
 - translating the regular expression into a machine (a table) and
 - passing the table and the string to an interpreter

Recognition as Search

- You can view this algorithm as a trivial kind of state-space search.
- States are pairings of tape positions and state numbers.
- Operators are compiled into the table
- Goal state is a pairing with the end of tape position and a final accept state
- It is trivial because?

Multi-Level Tape Machines

 We use one machine to transduce between the lexical and the intermediate level, and another to handle the spelling changes to the surface tape

Cascades

- This is an architecture that we'll see again and again
 - Overall processing is divided up into distinct rewrite steps
 - The output of one layer serves as the input to the next
 - The intermediate tapes may or may not wind up being useful in their own right

2/12/14

Languages and Grammars

- We can model a language with a grammar
 - Production rules: LHS→ RHS
 - NonTerminals indicate a production rule can be applied
 - Terminals make up the "strings" (sentences) of the language
- The grammar defines all the possible strings of terminals in the language
 - A "language" is generally an infinite number of finite strings
 - Any string can be "accepted"/parsed by the grammar
 - The grammar can generate all the strings

The "Power" of Grammars

- The "Chomsky Hierarchy" shows that grammars written with different constraints on the rules generate different "languages"
- Finite state
 - $-A \rightarrow Ab | a$
- Context free
 - $-A \rightarrow AB \mid a$
- Context Sensitive
 - $-bAc \rightarrow bac \mid cab$

An Example

- Consider language aⁿbⁿ
- Finite state grammar for a's and b's can't keep track
 - $-A \rightarrow aA \mid aB$
 - $-B \rightarrow bB \mid b$
 - L1: a^mb^n

- Context free grammar
 - $-S \rightarrow aSb \mid ab$
 - L2: aⁿbⁿ
- Is L2 regular? No. Proof using the Pumping lemma left to the reader

The "C" in CL (does it really just mean "count"?)

- Conditional probability
- Ngram Modeling
 - N-grams are token sequences of length N
 - Given knowledge of counts of N-grams such as these,
 we can guess likely next words in a sequence
- What to count?
 - Types vs. token
 - Wordforms vs. lemmas
 - Punctuation?

Language Modeling

- Back to word prediction
- We can model the word prediction task as the ability to assess the conditional probability of a word given the previous words in the sequence
 - $-P(w_n|w_1,w_2...w_{n-1})$
- We'll call a statistical model that can assess this a Language Model

Other ngram concepts

- Perplexity
 - Computes the likelihood of a test set against a model, but nothing about the model per se
- Evaluation
 - Intrinsic vs. extrinsic
 - Separation of training and test
- What to do about gaps in the corpora
 - Unseen combinations
 - -00V

Backoff Vs. Interpolation

- **Backoff**: use trigram if you have it, otherwise bigram, otherwise unigram
- Interpolation: mix all three

GT Fish Example

- OR use the 1s for 0s (3/18 spread over2 species)
- AND Look at the things that happened 2s to share with 1s
 - C(whitefish) = 2 happened once
 - Discount 1s by 2/3
- LOTS OF ALTERNATIVES! Just estimates

	unseen (bass or catfish)	trout
С	0	1
MLE p	$p = \frac{0}{18} = 0$	$\frac{1}{18}$
c^*		$c^*(\text{trout}) = 2 \times \frac{N_2}{N_1} = 2 \times \frac{1}{3} = .67$
$\mathrm{GT}p_{\mathrm{GT}}^*$	$p_{\text{GT}}^*(\text{unseen}) = \frac{N_1}{N} = \frac{3}{18} = .17$	$p_{\text{GT}}^*(\text{trout}) = \frac{.67}{18} = \frac{1}{27} = .037$

Good-Turing

- Notation: N_x is the frequency-of-frequency-x
 - $So N_{10} = 1$
 - Number of fish species seen 10 times is 1 (carp)
 - $-N_{1}=3$
 - Number of fish species seen 1 is 3 (trout, salmon, eel)
- To estimate total number of unseen species

- Use number of species (words) we've seen once
$$-c_0^* = c_1 \quad p_0 = N_1/N \qquad c^* = (c+1)\frac{N_{c+1}}{N_c}$$

 All other estimates are adjusted (down) to give probabilities for unseen

Good-Turing Intuition

- Notation: N_x is the frequency-of-frequency-x
 - So $N_{10}=1$, $N_1=3$, etc
- To estimate total number of unseen species
 - Use number of species (words) we've seen once

$$-c_0^*=c_1$$
 $p_0=N_1/N$ $p_0=N_1/N=3/18$

$$P_{GT}^*$$
 (things with frequency zero in training) = $\frac{N_1}{N}$

 All other estimates are adjusted (down) to give probabilities for unseen

$$c^* = (c+1) \frac{N_{c+1}}{N_c}$$

$$P(eel) = c*(1) = (1+1) 1/3 = 2/3$$

Could just spread 1s over 0s

Carp	10	10
Perch	3	3
WF	2	2
Trout	1	1
Salmon	1	1
Eel	1	1
Catfish	0	1
Bass	0	1
TOTAL	18	

- Prob of things that occurred once
- $1\18 + 1\18 + 1\18 = 3\18$
- Add one to zero counts
- Spread probability over 1s and 0s
- (3/18)/5 = .066

Part of Speech Tagging

- Parts of speech
 - What's POS tagging good for anyhow
- Important Ideas
 - Training sets and test sets
 - Unknown words
 - How can features help?
- HMM tagging

Hidden Markov Model Tagging

- Using an HMM to do POS tagging is a special case of Bayesian inference
 - Foundational work in computational linguistics
 - Bledsoe 1959: OCR
 - Mosteller and Wallace 1964: authorship identification
- It is also related to the "noisy channel" model that's the basis for ASR, OCR and MT

POS Tagging as Sequence Classification

- We are given a sentence (an "observation" or "sequence of observations")
 - Secretariat is expected to race tomorrow
- What is the best sequence of tags that corresponds to this sequence of observations?
- Probabilistic view:
 - Consider all possible sequences of tags
 - Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words w₁...wₙ.

Two Kinds of Probabilities

- Tag transition probabilities p(t_i | t_{i-1})
 - Determiners likely to precede adjs and nouns
 - That/DT flight/NN
 - The/DT yellow/JJ hat/NN
 - So we expect P(NN|DT) and P(JJ|DT) to be high
 - But P(DT|JJ) to be:
 - Compute P(NN|DT) by counting in a labeled corpus:

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$$

$$P(NN|DT) = \frac{C(DT,NN)}{C(DT)} = \frac{56,509}{116,454} = .49$$

Two Kinds of Probabilities

- Word likelihood probabilities p(w_i|t_i)
 - -VBZ (3sg Pres verb) likely to be "is"
 - Compute P(is|VBZ) by counting in a labeled corpus:

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

$$P(is|VBZ) = \frac{C(VBZ, is)}{C(VBZ)} = \frac{10,073}{21,627} = .47$$

Hidden Markov Models

 What we've described with these two kinds of probabilities is a Hidden Markov Model (HMM)

HMMs for semantics

- Idea: use an HMM for semantics, just as we did for ASR (and part-of-speech tagging, etc)
- Hidden units:
 - Semantic slot names
 - Origin
 - Destination
 - Departure time
- Observations:
 - Word sequences

Semantics for a sentence

LIST FLIGHTS ORIGIN

Show me flights from Boston

DESTINATION DEPARTDATE

to San Francisco on Tuesday

DEPARTTIME

morning

HMM model of semantics – Pieraccini et al (1991)

- Input is the set of words
- Output is the set of semantic states

Decoding

 Ok, now we have a complete model that can give us what we need. Recall that we need to get

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n)$$

- We could just enumerate all paths given the input and use the model to assign probabilities to each.
 - Not a good idea.
 - Luckily dynamic programming (last seen in Ch. 3 with minimum edit distance) helps us here

Viterbi Summary

- Create an array
 - With columns corresponding to inputs
 - Rows corresponding to possible states
- Sweep through the array in one pass filling the columns left to right using our transition probs and observations probs
- Dynamic programming key is that we need only store the MAX prob path to each cell, (not all paths).