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Abstract

In this paper we describe the English Conversational Telephone
Speech (CTS) recognition system jointly developed by BBN
and LIMSI under the DARPA EARS program for the 2004
evaluation conducted by NIST. The 2004 BBN/LIMSI system
achieved a word error rate (WER) of 13.5% at 18.3xRT (real-
time as measured on Pentium 4 Xeon 3.4 GHz Processor) on
the EARS progress test set. This translates into a 22.8% rel-
ative improvement in WER over the 2003 BBN/LIMSI EARS
evaluation system, which was run without any time constraints.
In addition to reporting on the system architecture and the eval-
uation results, we also highlight the significant improvements
made at both sites.

1. Introduction
This paper reports on the English Conversational Telephone
Speech (CTS) recognition system jointly developed by BBN
and LIMSI under the DARPA EARS (Effective, Affordable, Re-
usable, Speech-to-Text) program for the 2004 Rich Transcrip-
tion evaluation (RT04) conducted by NIST. In the 2003 evalu-
ation (RT03) there was no constraint on computation, whereas
for the RT04 English CTS condition, we were required to sub-
mit a system that had an execution time of less than 20xRT
(real-time). The 2004 BBN/LIMSI system uses both cross-site
adaptation and system combination employing NIST ROVER
to get a result that is better than either system by itself, but still
stays within the allotted time of 20xRT.

In section 2, we describe the large acoustic training cor-
pus made available to the speech recognition community for
RT04. In section 3, we describe the system development ef-
fort at BBN and the components used in the combined system.
Section 4 summarizes the system development effort at LIMSI
and the components used in the combined system. In section 5
we present the system architecture for the 20xRT BBN/LIMSI
2004 EARS system and also the results achieved on the 2004
evaluation test set and the EARS progress test set.

2. Large CTS Training Corpus
Under the EARS program, thousands of hours of speech were
collected by the Linguistic Data Consortium (LDC), and the
collection is called the Fisher collection. BBN oversaw the
quick transcription of 1750 hours of Fisher data and post-
processed the resulting transcripts [1]. This data, with 180
additional hours transcribed by LDC, were made available to
the EARS community in the beginning of 2004. Therefore,
together with the Switchboard I and II, CallHome, and Cellu-
lar corpora, a total of 2300 hours of CTS data were available
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oustic training. The text sources for language model-
cluded: 27M words of CTS transcripts from the acous-
ta, 260.3M words of Broadcast News (BN) transcriptions
LDC, 115.9M words of CNN transcripts, and 525M words
b data from the University of Washington.

3. BBN System Development
BBN System Highlights

ent Acoustic Modeling: The BBN Byblos system
phonetic Hidden Markov Models (HMMs), with State-
ered-Tied Mixture (SCTM) models. The states of each
tic model are clustered based on the quinphone context
ifferent “codebooks” (groups of Gaussian components).
ally we create about 10,000 codebooks, and the mixture
t distributions are clustered into about 100,000 distribu-
We use both within-word (non-crossword) quinphone and
ne models, as well as more detailed between-word (cross-
quinphone models. Parameters for these models are first

ated in the Maximum-Likelihood (ML) framework using
rward-backward EM algorithm with time constraints pro-
by “fuzzy labels” (probabilistic state alignments). The
odels serve as an initial estimate for discriminative train-

sing Maximum Mutual Information (MMI) or Minimum
e Error (MPE) [2] objective functions.
e invested significant effort in improving the efficiency
ustic modeling for facilitating effective research with the

CTS corpus. First, we improved the compute efficiency of
er-independent (SI) ML acoustic modeling by a factor of 4
ut any loss in accuracy 1 by: parallelizing state clustering
aussian splitting, adopting row iterative EM estimation in

[3] instead of HDA+MLLT for feature projection, and
ing the number of forward-backward passes during the fi-
M training. In addition, feature quantization using 8-bit
scalar quantizers and on-the-fly fuzzy label synthesis for

rossword models from crossword fuzzy labels were used
ducing the storage requirements by a factor of 3. The com-
ime taken for speaker adaptive training (SAT) was reduced
actor of 10 by using “approximate” [4] Constrained Max-
Likelihood Linear Regression (CMLLR).

r Data in Language and Acoustic Modeling: We first
d a trigram language model (LM) with the 1930 hours
her data added to our 2003 LM data. We decoded (with
ation) the 2003 evaluation test set (Eval03) with the new
m LM, and ML models trained on 370 hours of speech. As
n in Table 1, the WER improved on Eval03 by 1.3% abso-

lapsed time for training SI ML models on 370 hours of CTS data
red on 40 Pentium 4 Xeon 2.0 GHz processors



lute, but as one would expect, the relative improvement on the
Fisher (Fsh) subset was better than Switchboard (Swbd). Next,
we added the 1930 hours of the Fisher data to the 370 hours of
acoustic training data and re-estimated the ML acoustic models.
The number of Gaussians in the acoustic model(AM) were in-
creased to 843k from the 442k used in the 370 hours model. The
2300-hour acoustic model by itself reduced the WER by 1.6%
absolute. Adding Fisher data to both AM and LM reduced the
overall WER on Eval03 by 3.1% absolute.

AM LM %WER (Eval03)
Swbd Fsh All

Swbd Swbd 28.6 20.3 24.6
Swbd Swbd+Fsh 27.3 19.0 23.3
Swbd+Fsh Swbd 26.5 19.2 23.0
Swbd+Fsh Swbd+Fsh 24.9 17.9 21.5

Table 1: Adapted decoding results on the Eval03 test set with
additional Fisher data added to both AM and LM.

Discriminative Training with Large Corpus: Our RT03 sys-
tem [5] used MMI models. Recently, we have implemented
lattice-based MPE in our system. We trained acoustic mod-
els with both MMI and MPE criterion using unigram lattices
generated by decoding the 2300 hours of training data with the
2300-hour ML SAT model. Next, we decoded the 3-hour Fisher
development set (Dev04) with adaptation, using the 2300-hour
MMI and MPE acoustic models. The WER with MMI models
was 2.2% absolute better than ML models, and MPE resulted in
another 0.5% absolute improvement over MMI.
Long Span Features: In Byblos we use 14 cepstral features
and their first, second and third derivatives, resulting in a
60-dimensional feature vector. Typically we project the 60-
dimensional vector to 46 dimensions using HLDA. We explored
adding information from a wider context by concatenating n
successive frames and then projecting the concatenated features
to a lower dimensional space. We trained acoustic models on
2300 hours of data with the “long span” [6] features and found
the optimal configuration to be concatenating 15 frames and
projecting the concatenated features to a 60 dimensional space
using LDA followed by MLLT. Adapted decoding on the Dev04
test set with the long span features resulted in a 0.5% absolute
improvement over the derivative features.
State-Tied Mixtures in Forward Decoding: We experimented
with using a more detailed State Tied Mixture (STM) triphone
model instead of Phonetic Tied Mixture (PTM) model in the
forward decoding pass of our 2-pass N-best decoder. In STM,
all triphones of a given phoneme and state position share the
same set of Gaussian components (512 on average), while the
mixture weights are shared based on linguistically-guided de-
cision tree clustering. Adapted decoding on the Dev04 test set
with STM models in the forward pass resulted in a 0.3% abso-
lute reduction in WER over the PTM models.
Word Duration Modeling: Motivated by the results in [7], we
implemented word duration N-best rescoring. A duration score
for each hypothesis in the N-best list was computed by summing
the duration log-likelihood for each word in the hypothesis. The
duration score for a word was obtained by computing the dis-
tance of the time-aligned frames against the phonetic duration
Gaussian Mixture Models (GMM) of the component phones of
the word. Finally, The duration score for each hypothesis was
combined with other scores such as acoustic, language etc. to
reorder the N-best list. The word duration rescoring resulted in
a 0.3% absolute improvement in the WER on the Dev04 test set.
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Table 2, we summarize the significant improvements
since our RT03 system on the Dev04 test set. The 2004
component system has been improved by 25% relative
he RT03 system.

rovement details WER red.
er data in AM (with MMI) and LM 3.5%

E training 0.5%
g Span Features 0.5%

model in forward decoding 0.3%
d duration N-best rescoring 0.3%

rall relative WER reduction since RT03 25%

2: Summary of improvements to the BBN CTS compo-
system. Absolute WER reductions on the Dev04 set and
ll relative word error reduction since RT03.

BBN Components in the 2004 BBN/LIMSI System

re Extraction: The base features (14 Cepstral coeffi-
and normalized energy) were extracted using either Per-

al Linear Prediction (PLP) or Mel-Frequency Cepstral Co-
nt (MFCC) analysis after frequency axis scaling using Vo-
act Length Normalization (VTLN). Mean removal and co-
ce normalization were also applied to each conversation
The final feature vectors were either base and derivative
es reduced to 46 dimensions or the long span features.
stic Models: Each BBN system comprised of a set of
models: STM non-crossword triphone model, SCTM
rossword quinphone model, and SCTM crossword quin-
model. All models used gender-independent (GI) 5-state
s. Models used in adaptation were estimated via SAT. The
ing four systems were used for decoding in the combined
BBN/LIMSI system:
ong Span Held-Out MPE System (B1): This system used

ng span PLP features and was trained with the “held-out”
estimation. In this procedure, we first trained an MMI
l on 800 hours of training data using unigram lattices gen-

with an 800-hour SAT ML model. Next, we decoded
hours of the “held-out” training corpus with the 800-hour
model and a trigram LM to generate lattices. Finally, MPE
ls were trained on 1500 hours using trigram lattices. No
thing was used in MPE training, and a small (365k Gaus-
model was trained to avoid over-fitting.

Derivative MPE System (B2): This system used PLP
tive features and was trained with MPE. The SCTM

word quinphone model in this system had 843k Gaussians.
ong Span MPE System (B3): This system used long span

features like B1, but was trained with conventional MPE
ng as in B2. The crossword quinphone model in this sys-
ad 855k Gaussians.
C Long Span MPE System (B4): This system is identical to
stem B3 except for the fact that it was trained with MFCC

span features. The SCTM crossword quinphone model in
ystem had 708k Gaussians.
uage Models: We estimated two trigram LMs using mod-
Witten-Bell smoothing from the data sources described in
n 2. Both LMs included the most frequent bigrams and
ms as compound words, therefore many of the trigrams

LM were actually higher order n-grams. The LM used
oding used a higher count cutoff threshold to reduce the
f the LM. For N-best rescoring, a “full” grammar with
ount cut-offs was estimated. The LM used for backward
ing consisted of 76M trigrams, whereas the rescoring LM



consisted of 173M trigrams. All BBN systems used a lexicon of
61k words (including 2500 compound words). Phonetic word
pronunciations were written using a set of 49 phonemes.
Decoding Strategy: In adapted decodings, we first estimated
speaker-dependent feature projections via CMLLR and then
adapted all the SAT models using Least Squares Linear Regres-
sion. With the exception of B1, a three pass decoding was per-
formed: a fast-match forward pass using STM model and an
approximate bigram LM, a backward pass using SCTM within-
word quinphone and an approximate trigram LM to produce
N-best lists, and finally an N-best rescoring pass using SCTM
between-word quinphones and full trigram LM. We used tech-
niques such as Gaussian short lists, pre-computing Gaussian
density values, grammar spreading, and Gaussian mean and
variance quantization [8] to reduce the compute and memory us-
age during decoding. Models from B1 were used in the frame-
work developed for the RT04 BBN 1xRT system [4].

4. LIMSI System Development
4.1. LIMSI System Highlights

The LIMSI systems used for RT04 have been significantly im-
proved since RT03. Some of the main characteristics of the sys-
tem are: gender-dependent (GD) VTLN [9]; MAP-adapted GD
acoustic models from SI seed models; MLLT; SAT; MMI train-
ing, CMLLR and multiple regression class MLLR adaptation
with a tree organization for the adaptation classes; neural net-
work LM [10]; multiple phone sets; lattice-based decoder with
Gaussian short lists for efficient decoding; consensus decoding
with pronunciation probabilities. Many of the above techniques
are new to or have been improved in our RT04 system. We also
invested significant effort in order to be able to train acoustic
models on the 2300 hours of CTS data, and needed to update
our infrastructure, both at the hardware and software levels.

One of our first goals for the RT04 evaluation was to speed-
up the decoding for the LIMSI single component system. Based
on a study of the computational cost at each step, we made the
following changes in the decoding strategy: sped-up the non-
VTLN unadapted decoding; used these hypotheses for MLLR
acoustic model adaptation; generated word lattices using the
adapted models and converted the lattices into word graphs for
fast acoustic rescoring. The resulting single component system
had a WER of 21.1% at 13xRT, which compared favorably to
our RT03 single component system running in about 120xRT
with a WER of 21.9%. Table 3 summarizes the main improve-
ments in our CTS system from RT03. An absolute WER reduc-
tion of 1.7% was due to improved acoustic modeling by incor-
porating SAT and MLLT. An overall improvement of 2.5% was

Improvement details WER red.
Speaker adaptive training 0.9%
MLLT 0.8%
Improved models with Fisher data
(LM, large AM, lexicon) 2.5%
Better and faster decoding with AM adapt.
with factor of 6 speed-up 0.4%
Multiple phone sets modeling 0.4%-0.7%

Overall relative WER reduction since RT03 23%

Table 3: Summary of improvements to the LIMSI CTS compo-
nent system. Absolute WER reductions on the Dev04 set and
overall relative word error reduction since RT03.
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% while reducing the computation time by a factor of 6.
lso experimented with using multiple phone sets to better
re the large differences in individual speaking styles and
tical variations in CTS [11].

LIMSI Components in the 2004 BBN/LIMSI System

re Extraction: The LIMSI front-end used 39 cepstral fea-
(12 cepstral coefficients, log energy, along with first and
d order derivatives) derived from a Mel frequency spec-
estimated on the 0-3.8kHz band every 10ms. Cepstral
removal and variance normalization was performed on

conversations side. VTLN warps were estimated by align-
of audio segments with a word transcript (output of BBN

B1) using single-Gaussian GD models.
stic Models: The LIMSI acoustic models used in the 2004
/LIMSI system were tied-state position-dependent cross-
triphones with Gaussian mixtures. The most frequent
ne contexts (over 99%) were modeled specifically, with
maining contexts being modeled by less specific models
- and left-context phone models and context-independent
models). The tied states were obtained by means of a de-
tree with questions on the left and right phone contexts,
e phone position within the word. There were on average
ussians per tied state. Starting from the VTLN cepstrum

he training procedure included 4 major steps: MLLT es-
ion, CMLLR SAT estimation for each speaker, ML train-
nd MMI training. Three sets of MLLT-SAT models were
d with MMI on 2300 hours of CTS data:
odels: For the L1 system, two sets of GD models were
fter dividing the training data into the gender specific sub-

i.e. the two model sets were trained completely indepen-
. These models used 48 phones and included about 30k

tates with 32 Gaussian per state.
odels: The L2 models were reduced phone set models con-
g of 38 phones [11], and were trained using the same pro-
e as used for the L1 models. These models included about
ed states for 28k phone contexts.
odels: The L3 GD models were trained using a standard
estimation procedure to adapt ML GD SI seed models

h were trained on all the data VTLN warped to the gender)
he gender-specific data. These models used 48 phones and
ed about 31k tied states for 43k phone contexts.

uage Models: The trigram and four-gram language mod-
ed by the decoder were obtained by interpolating backoff
m models trained on data sets described in section 2. The
olation coefficients were chosen in order to minimize the

exity of a development data set containing the Fisher part
Eval03 test set, and Dev04 (hereafter referred to as the

-evaldev set). In addition a neural network (NN) LM [10]
rained on all of the CTS training data transcripts (27M
). The NN LM gave an additional gain of 0.3% to 0.5%

ute depending on the acoustic model set.
50k word list was selected from the text sources so as to
ize the OOV rate on the fisher-evaldev set. The word list

n OOV rate of 0.1% on the fisher-evaldev set and 0.13% on
3. The pronunciation dictionary had a total of 59k phone
riptions for the 50k words. Two versions of the pronun-
n lexicon were used, the one represented with 48 phones
sed in the L1 and L3 systems, and the reduced 38 phone

as used in the L2 system.



Decoding Strategy: For each component, decoding was per-
formed in three steps. CMLLR and MLLR adaptations were
performed using the hypothesis of the preceding system. Then
a word lattice was produced for each speech segment using a
dynamic network decoder with a trigram LM. This step was a
full decode for system L1 and a word graph rescoring for sys-
tems L2 and L3. Finally, the word lattice was rescored with the
NN LM and converted to a confusion network. MLLR adap-
tation in L1 system used a fixed set of 4 phonemic regression
classes, whereas MLLR adaptation in L2 and L3 systems relied
on a tree organization of the tied states to create the regression
classes (on the average 9) as a function of the available data.

5. System Architecture and Results
The 2004 BBN/LIMSI system uses both cascaded cross-site
adaptation and ROVER for combining different systems. Fig-
ure 1 shows a block diagram representation of the the joint sys-
tem. If a system has a single incoming arrow, it indicates that
the models were adapted to the previous result before decoding.
Multiple incoming arrows into a small circle indicate that the
results are combined using ROVER, producing a new hypoth-
esis. The name of the system indicates the site (“B” signifies
BBN, “L” LIMSI, and “R” ROVER), and the system number.

First, the waveforms are segmented using the BBN CTS
segmenter. System B1 is run in slightly over real-time to gener-
ate an 18.0% WER hypothesis on the Dev04 test set. The 18.0%
WER hypothesis is used to MLLR-adapt LIMSI’s L1 models
with 4 fixed regression classes. LIMSI decodes using the same
segmentation as BBN with adapted L1 models in about 5xRT
to generate lattices and a 15.5% WER hypothesis. Next, BBN
adapts the B2 to the 15.5% WER LIMSI hypothesis using a
maximum of 8 regression classes and performs a three pass de-
coding to generate a 14.4% WER hypothesis. The 14.4% WER
hypothesis is used to adapt BBN’s B3 models, again using a
maximum of 8 regression classes. Decoding with the adapted
B3 models results in a WER of 14.2%. Then L1, B2 and B3
hypotheses are combined using ROVER resulting in a WER of
13.8% (R1). Next, BBN adapts model sets B2 and B4 to the
R1 hypothesis, using a maximum of 16 regression classes for
adaptation. BBN performs partial decodings with the adapted
B2 and B4 models re-using the forward pass output from the
B3 run. LIMSI adapts the L2 and L3 models to the R1 hy-
pothesis and rescores lattices generated from the L1 run. These
lattice rescorings are denoted as L2 and L3 in Figure 1, and
require slightly more than 1xRT. Finally, hypotheses from five
runs: B2, B3, B4, L2, and L3 are combined using ROVER to
generate a 13.4% WER hypothesis (R2).

B1

L1

B2

B3 L2 L3 B2 B4

R2

R1

Figure 1: 2004 BBN/LIMSI CTS System Architecture.
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System Eval04 PT
%WER xRT %WER xRT

RT03 - - 17.5 480
RT04 16.0 18.0 13.5 18.3

4: WER and RTF for the 20xRT RT04 BBN/LIMSI
on the Eval04 test set. Also comparing WER on the

ess Test (PT) with the RT03 system.

he 2004 BBN/LIMSI system obtained a WER of 16.0% at
RT (real-time measured on Pentium 4 Xeon 3.4 GHz) on
04 evaluation test set (Eval04). The WER on the EARS

ess test set (PT) was 13.5% at 18.3xRT, which is 4.0% ab-
lower than the WER obtained by the 2003 BBN/LIMSI
. This significant error reduction was obtained while re-

g the decoding time by more than a factor of 20.

6. Conclusions
004 BBN/LIMSI system is 22.8% relative better in WER

the 2003 BBN/LIMSI system on the EARS progress test
d also stays within the alloted time of 20xRT. The combi-
of cascaded cross-adaptation and ROVER was found to

ective for system design. Both sites have benefited from
rge CTS acoustic training corpus. Significant effort was
irected toward developing fast and efficient methods to

with such a large amount of data. In the future we will
on new features and novel modeling techniques to further
ve the gains from the large acoustic training corpus.
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