1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

// FIXME: talk about offset, copy_memory, copy_nonoverlapping_memory

//! Operations on unsafe pointers, `*const T`, and `*mut T`.
//!
//! Working with unsafe pointers in Rust is uncommon,
//! typically limited to a few patterns.
//!
//! Use the [`null` function](fn.null.html) to create null pointers,
//! the [`is_null`](trait.PtrExt.html#tymethod.is_null)
//! methods of the [`PtrExt` trait](trait.PtrExt.html) to check for null.
//! The `PtrExt` trait is imported by the prelude, so `is_null` etc.
//! work everywhere. The `PtrExt` also defines the `offset` method,
//! for pointer math.
//!
//! # Common ways to create unsafe pointers
//!
//! ## 1. Coerce a reference (`&T`) or mutable reference (`&mut T`).
//!
//! ```
//! let my_num: i32 = 10;
//! let my_num_ptr: *const i32 = &my_num;
//! let mut my_speed: i32 = 88;
//! let my_speed_ptr: *mut i32 = &mut my_speed;
//! ```
//!
//! This does not take ownership of the original allocation
//! and requires no resource management later,
//! but you must not use the pointer after its lifetime.
//!
//! ## 2. Transmute an owned box (`Box<T>`).
//!
//! The `transmute` function takes, by value, whatever it's given
//! and returns it as whatever type is requested, as long as the
//! types are the same size. Because `Box<T>` and `*mut T` have the same
//! representation they can be trivially,
//! though unsafely, transformed from one type to the other.
//!
//! ```
//! use std::mem;
//!
//! unsafe {
//!     let my_num: Box<i32> = Box::new(10);
//!     let my_num: *const i32 = mem::transmute(my_num);
//!     let my_speed: Box<i32> = Box::new(88);
//!     let my_speed: *mut i32 = mem::transmute(my_speed);
//!
//!     // By taking ownership of the original `Box<T>` though
//!     // we are obligated to transmute it back later to be destroyed.
//!     drop(mem::transmute::<_, Box<i32>>(my_speed));
//!     drop(mem::transmute::<_, Box<i32>>(my_num));
//! }
//! ```
//!
//! Note that here the call to `drop` is for clarity - it indicates
//! that we are done with the given value and it should be destroyed.
//!
//! ## 3. Get it from C.
//!
//! ```
//! extern crate libc;
//!
//! use std::mem;
//!
//! fn main() {
//!     unsafe {
//!         let my_num: *mut i32 = libc::malloc(mem::size_of::<i32>() as libc::size_t) as *mut i32;
//!         if my_num.is_null() {
//!             panic!("failed to allocate memory");
//!         }
//!         libc::free(my_num as *mut libc::c_void);
//!     }
//! }
//! ```
//!
//! Usually you wouldn't literally use `malloc` and `free` from Rust,
//! but C APIs hand out a lot of pointers generally, so are a common source
//! of unsafe pointers in Rust.

#![stable(feature = "rust1", since = "1.0.0")]

use mem;
use clone::Clone;
use intrinsics;
use ops::Deref;
use option::Option::{self, Some, None};
use marker::{PhantomData, Send, Sized, Sync};
use nonzero::NonZero;

use cmp::{PartialEq, Eq, Ord, PartialOrd};
use cmp::Ordering::{self, Less, Equal, Greater};

// FIXME #19649: intrinsic docs don't render, so these have no docs :(

#[unstable(feature = "core")]
pub use intrinsics::copy_nonoverlapping_memory;

#[unstable(feature = "core")]
pub use intrinsics::copy_memory;

#[unstable(feature = "core",
           reason = "uncertain about naming and semantics")]
pub use intrinsics::set_memory;


/// Creates a null raw pointer.
///
/// # Examples
///
/// ```
/// use std::ptr;
///
/// let p: *const i32 = ptr::null();
/// assert!(p.is_null());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn null<T>() -> *const T { 0 as *const T }

/// Creates a null mutable raw pointer.
///
/// # Examples
///
/// ```
/// use std::ptr;
///
/// let p: *mut i32 = ptr::null_mut();
/// assert!(p.is_null());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn null_mut<T>() -> *mut T { 0 as *mut T }

/// Zeroes out `count * size_of::<T>` bytes of memory at `dst`. `count` may be
/// `0`.
///
/// # Safety
///
/// Beyond accepting a raw pointer, this is unsafe because it will not drop the
/// contents of `dst`, and may be used to create invalid instances of `T`.
#[inline]
#[unstable(feature = "core",
           reason = "may play a larger role in std::ptr future extensions")]
pub unsafe fn zero_memory<T>(dst: *mut T, count: usize) {
    set_memory(dst, 0, count);
}

/// Swaps the values at two mutable locations of the same type, without
/// deinitialising either. They may overlap, unlike `mem::swap` which is
/// otherwise equivalent.
///
/// # Safety
///
/// This is only unsafe because it accepts a raw pointer.
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn swap<T>(x: *mut T, y: *mut T) {
    // Give ourselves some scratch space to work with
    let mut tmp: T = mem::uninitialized();
    let t: *mut T = &mut tmp;

    // Perform the swap
    copy_nonoverlapping_memory(t, &*x, 1);
    copy_memory(x, &*y, 1); // `x` and `y` may overlap
    copy_nonoverlapping_memory(y, &*t, 1);

    // y and t now point to the same thing, but we need to completely forget `tmp`
    // because it's no longer relevant.
    mem::forget(tmp);
}

/// Replaces the value at `dest` with `src`, returning the old
/// value, without dropping either.
///
/// # Safety
///
/// This is only unsafe because it accepts a raw pointer.
/// Otherwise, this operation is identical to `mem::replace`.
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn replace<T>(dest: *mut T, mut src: T) -> T {
    mem::swap(mem::transmute(dest), &mut src); // cannot overlap
    src
}

/// Reads the value from `src` without moving it. This leaves the
/// memory in `src` unchanged.
///
/// # Safety
///
/// Beyond accepting a raw pointer, this is unsafe because it semantically
/// moves the value out of `src` without preventing further usage of `src`.
/// If `T` is not `Copy`, then care must be taken to ensure that the value at
/// `src` is not used before the data is overwritten again (e.g. with `write`,
/// `zero_memory`, or `copy_memory`). Note that `*src = foo` counts as a use
/// because it will attempt to drop the value previously at `*src`.
#[inline(always)]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn read<T>(src: *const T) -> T {
    let mut tmp: T = mem::uninitialized();
    copy_nonoverlapping_memory(&mut tmp, src, 1);
    tmp
}

/// Reads the value from `src` and nulls it out without dropping it.
///
/// # Safety
///
/// This is unsafe for the same reasons that `read` is unsafe.
#[inline(always)]
#[unstable(feature = "core",
           reason = "may play a larger role in std::ptr future extensions")]
pub unsafe fn read_and_zero<T>(dest: *mut T) -> T {
    // Copy the data out from `dest`:
    let tmp = read(&*dest);

    // Now zero out `dest`:
    zero_memory(dest, 1);

    tmp
}

/// Overwrites a memory location with the given value without reading or
/// dropping the old value.
///
/// # Safety
///
/// Beyond accepting a raw pointer, this operation is unsafe because it does
/// not drop the contents of `dst`. This could leak allocations or resources,
/// so care must be taken not to overwrite an object that should be dropped.
///
/// This is appropriate for initializing uninitialized memory, or overwriting
/// memory that has previously been `read` from.
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn write<T>(dst: *mut T, src: T) {
    intrinsics::move_val_init(&mut *dst, src)
}

/// Methods on raw pointers
#[stable(feature = "rust1", since = "1.0.0")]
pub trait PtrExt: Sized {
    type Target;

    /// Returns true if the pointer is null.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn is_null(self) -> bool;

    /// Returns `None` if the pointer is null, or else returns a reference to
    /// the value wrapped in `Some`.
    ///
    /// # Safety
    ///
    /// While this method and its mutable counterpart are useful for
    /// null-safety, it is important to note that this is still an unsafe
    /// operation because the returned value could be pointing to invalid
    /// memory.
    #[unstable(feature = "core",
               reason = "Option is not clearly the right return type, and we may want \
                         to tie the return lifetime to a borrow of the raw pointer")]
    unsafe fn as_ref<'a>(&self) -> Option<&'a Self::Target>;

    /// Calculates the offset from a pointer. `count` is in units of T; e.g. a
    /// `count` of 3 represents a pointer offset of `3 * sizeof::<T>()` bytes.
    ///
    /// # Safety
    ///
    /// The offset must be in-bounds of the object, or one-byte-past-the-end.
    /// Otherwise `offset` invokes Undefined Behaviour, regardless of whether
    /// the pointer is used.
    #[stable(feature = "rust1", since = "1.0.0")]
    unsafe fn offset(self, count: isize) -> Self;
}

/// Methods on mutable raw pointers
#[stable(feature = "rust1", since = "1.0.0")]
pub trait MutPtrExt {
    type Target;

    /// Returns `None` if the pointer is null, or else returns a mutable
    /// reference to the value wrapped in `Some`.
    ///
    /// # Safety
    ///
    /// As with `as_ref`, this is unsafe because it cannot verify the validity
    /// of the returned pointer.
    #[unstable(feature = "core",
               reason = "Option is not clearly the right return type, and we may want \
                         to tie the return lifetime to a borrow of the raw pointer")]
    unsafe fn as_mut<'a>(&self) -> Option<&'a mut Self::Target>;
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> PtrExt for *const T {
    type Target = T;

    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn is_null(self) -> bool { self == 0 as *const T }

    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    unsafe fn offset(self, count: isize) -> *const T {
        intrinsics::offset(self, count)
    }

    #[inline]
    #[unstable(feature = "core",
               reason = "return value does not necessarily convey all possible \
                         information")]
    unsafe fn as_ref<'a>(&self) -> Option<&'a T> {
        if self.is_null() {
            None
        } else {
            Some(&**self)
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> PtrExt for *mut T {
    type Target = T;

    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn is_null(self) -> bool { self == 0 as *mut T }

    #[inline]
    #[stable(feature = "rust1", since = "1.0.0")]
    unsafe fn offset(self, count: isize) -> *mut T {
        intrinsics::offset(self, count) as *mut T
    }

    #[inline]
    #[unstable(feature = "core",
               reason = "return value does not necessarily convey all possible \
                         information")]
    unsafe fn as_ref<'a>(&self) -> Option<&'a T> {
        if self.is_null() {
            None
        } else {
            Some(&**self)
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> MutPtrExt for *mut T {
    type Target = T;

    #[inline]
    #[unstable(feature = "core",
               reason = "return value does not necessarily convey all possible \
                         information")]
    unsafe fn as_mut<'a>(&self) -> Option<&'a mut T> {
        if self.is_null() {
            None
        } else {
            Some(&mut **self)
        }
    }
}

// Equality for pointers
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> PartialEq for *const T {
    #[inline]
    fn eq(&self, other: &*const T) -> bool {
        *self == *other
    }
    #[inline]
    fn ne(&self, other: &*const T) -> bool { !self.eq(other) }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Eq for *const T {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> PartialEq for *mut T {
    #[inline]
    fn eq(&self, other: &*mut T) -> bool {
        *self == *other
    }
    #[inline]
    fn ne(&self, other: &*mut T) -> bool { !self.eq(other) }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Eq for *mut T {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for *const T {
    #[inline]
    fn clone(&self) -> *const T {
        *self
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for *mut T {
    #[inline]
    fn clone(&self) -> *mut T {
        *self
    }
}

// Equality for extern "C" fn pointers
mod externfnpointers {
    use mem;
    use cmp::PartialEq;

    #[stable(feature = "rust1", since = "1.0.0")]
    impl<_R> PartialEq for extern "C" fn() -> _R {
        #[inline]
        fn eq(&self, other: &extern "C" fn() -> _R) -> bool {
            let self_: *const () = unsafe { mem::transmute(*self) };
            let other_: *const () = unsafe { mem::transmute(*other) };
            self_ == other_
        }
    }
    macro_rules! fnptreq {
        ($($p:ident),*) => {
            #[stable(feature = "rust1", since = "1.0.0")]
            impl<_R,$($p),*> PartialEq for extern "C" fn($($p),*) -> _R {
                #[inline]
                fn eq(&self, other: &extern "C" fn($($p),*) -> _R) -> bool {
                    let self_: *const () = unsafe { mem::transmute(*self) };

                    let other_: *const () = unsafe { mem::transmute(*other) };
                    self_ == other_
                }
            }
        }
    }
    fnptreq! { A }
    fnptreq! { A,B }
    fnptreq! { A,B,C }
    fnptreq! { A,B,C,D }
    fnptreq! { A,B,C,D,E }
}

// Comparison for pointers
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Ord for *const T {
    #[inline]
    fn cmp(&self, other: &*const T) -> Ordering {
        if self < other {
            Less
        } else if self == other {
            Equal
        } else {
            Greater
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> PartialOrd for *const T {
    #[inline]
    fn partial_cmp(&self, other: &*const T) -> Option<Ordering> {
        Some(self.cmp(other))
    }

    #[inline]
    fn lt(&self, other: &*const T) -> bool { *self < *other }

    #[inline]
    fn le(&self, other: &*const T) -> bool { *self <= *other }

    #[inline]
    fn gt(&self, other: &*const T) -> bool { *self > *other }

    #[inline]
    fn ge(&self, other: &*const T) -> bool { *self >= *other }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Ord for *mut T {
    #[inline]
    fn cmp(&self, other: &*mut T) -> Ordering {
        if self < other {
            Less
        } else if self == other {
            Equal
        } else {
            Greater
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> PartialOrd for *mut T {
    #[inline]
    fn partial_cmp(&self, other: &*mut T) -> Option<Ordering> {
        Some(self.cmp(other))
    }

    #[inline]
    fn lt(&self, other: &*mut T) -> bool { *self < *other }

    #[inline]
    fn le(&self, other: &*mut T) -> bool { *self <= *other }

    #[inline]
    fn gt(&self, other: &*mut T) -> bool { *self > *other }

    #[inline]
    fn ge(&self, other: &*mut T) -> bool { *self >= *other }
}

/// A wrapper around a raw `*mut T` that indicates that the possessor
/// of this wrapper owns the referent. This in turn implies that the
/// `Unique<T>` is `Send`/`Sync` if `T` is `Send`/`Sync`, unlike a raw
/// `*mut T` (which conveys no particular ownership semantics).  It
/// also implies that the referent of the pointer should not be
/// modified without a unique path to the `Unique` reference. Useful
/// for building abstractions like `Vec<T>` or `Box<T>`, which
/// internally use raw pointers to manage the memory that they own.
#[unstable(feature = "core", reason = "recently added to this module")]
pub struct Unique<T:?Sized> {
    pointer: NonZero<*const T>,
    _marker: PhantomData<T>,
}

/// `Unique` pointers are `Send` if `T` is `Send` because the data they
/// reference is unaliased. Note that this aliasing invariant is
/// unenforced by the type system; the abstraction using the
/// `Unique` must enforce it.
#[unstable(feature = "core", reason = "recently added to this module")]
unsafe impl<T: Send + ?Sized> Send for Unique<T> { }

/// `Unique` pointers are `Sync` if `T` is `Sync` because the data they
/// reference is unaliased. Note that this aliasing invariant is
/// unenforced by the type system; the abstraction using the
/// `Unique` must enforce it.
#[unstable(feature = "core", reason = "recently added to this module")]
unsafe impl<T: Sync + ?Sized> Sync for Unique<T> { }

impl<T:?Sized> Unique<T> {
    /// Create a new `Unique`.
    #[unstable(feature = "core",
               reason = "recently added to this module")]
    pub unsafe fn new(ptr: *mut T) -> Unique<T> {
        Unique { pointer: NonZero::new(ptr as *const T), _marker: PhantomData }
    }

    /// Dereference the content.
    #[unstable(feature = "core",
               reason = "recently added to this module")]
    pub unsafe fn get(&self) -> &T {
        &**self.pointer
    }

    /// Mutably dereference the content.
    #[unstable(feature = "core",
               reason = "recently added to this module")]
    pub unsafe fn get_mut(&mut self) -> &mut T {
        &mut ***self
    }
}

impl<T:?Sized> Deref for Unique<T> {
    type Target = *mut T;

    #[inline]
    fn deref<'a>(&'a self) -> &'a *mut T {
        unsafe { mem::transmute(&*self.pointer) }
    }
}