Struct std::vec::VecStable [-] [+] [src]

pub struct Vec<T> {
    // some fields omitted
}

A growable list type, written Vec<T> but pronounced 'vector.'

Examples

fn main() { let mut vec = Vec::new(); vec.push(1); vec.push(2); assert_eq!(vec.len(), 2); assert_eq!(vec[0], 1); assert_eq!(vec.pop(), Some(2)); assert_eq!(vec.len(), 1); vec[0] = 7; assert_eq!(vec[0], 7); vec.push_all(&[1, 2, 3]); for x in vec.iter() { println!("{}", x); } assert_eq!(vec, vec![7, 1, 2, 3]); }
let mut vec = Vec::new();
vec.push(1);
vec.push(2);

assert_eq!(vec.len(), 2);
assert_eq!(vec[0], 1);

assert_eq!(vec.pop(), Some(2));
assert_eq!(vec.len(), 1);

vec[0] = 7;
assert_eq!(vec[0], 7);

vec.push_all(&[1, 2, 3]);

for x in vec.iter() {
    println!("{}", x);
}
assert_eq!(vec, vec![7, 1, 2, 3]);

The vec! macro is provided to make initialization more convenient:

fn main() { let mut vec = vec![1, 2, 3]; vec.push(4); assert_eq!(vec, vec![1, 2, 3, 4]); }
let mut vec = vec![1, 2, 3];
vec.push(4);
assert_eq!(vec, vec![1, 2, 3, 4]);

Use a Vec<T> as an efficient stack:

fn main() { let mut stack = Vec::new(); stack.push(1); stack.push(2); stack.push(3); loop { let top = match stack.pop() { None => break, // empty Some(x) => x, }; // Prints 3, 2, 1 println!("{}", top); } }
let mut stack = Vec::new();

stack.push(1);
stack.push(2);
stack.push(3);

loop {
    let top = match stack.pop() {
        None => break, // empty
        Some(x) => x,
    };
    // Prints 3, 2, 1
    println!("{}", top);
}

Capacity and reallocation

The capacity of a vector is the amount of space allocated for any future elements that will be added onto the vector. This is not to be confused with the length of a vector, which specifies the number of actual elements within the vector. If a vector's length exceeds its capacity, its capacity will automatically be increased, but its elements will have to be reallocated.

For example, a vector with capacity 10 and length 0 would be an empty vector with space for 10 more elements. Pushing 10 or fewer elements onto the vector will not change its capacity or cause reallocation to occur. However, if the vector's length is increased to 11, it will have to reallocate, which can be slow. For this reason, it is recommended to use Vec::with_capacity whenever possible to specify how big the vector is expected to get.

Methods

impl<T> Vec<T>

fn new() -> Vec<T>

Constructs a new, empty Vec<T>.

The vector will not allocate until elements are pushed onto it.

Examples

fn main() { let mut vec: Vec<i32> = Vec::new(); }
let mut vec: Vec<i32> = Vec::new();

fn with_capacity(capacity: usize) -> Vec<T>

Constructs a new, empty Vec<T> with the specified capacity.

The vector will be able to hold exactly capacity elements without reallocating. If capacity is 0, the vector will not allocate.

It is important to note that this function does not specify the length of the returned vector, but only the capacity. (For an explanation of the difference between length and capacity, see the main Vec<T> docs above, 'Capacity and reallocation'.)

Examples

fn main() { let mut vec: Vec<_> = Vec::with_capacity(10); // The vector contains no items, even though it has capacity for more assert_eq!(vec.len(), 0); // These are all done without reallocating... for i in 0..10 { vec.push(i); } // ...but this may make the vector reallocate vec.push(11); }
let mut vec: Vec<_> = Vec::with_capacity(10);

// The vector contains no items, even though it has capacity for more
assert_eq!(vec.len(), 0);

// These are all done without reallocating...
for i in 0..10 {
    vec.push(i);
}

// ...but this may make the vector reallocate
vec.push(11);

unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Vec<T>

Creates a Vec<T> directly from the raw components of another vector.

This is highly unsafe, due to the number of invariants that aren't checked.

Examples

use std::ptr; use std::mem; fn main() { let mut v = vec![1, 2, 3]; // Pull out the various important pieces of information about `v` let p = v.as_mut_ptr(); let len = v.len(); let cap = v.capacity(); unsafe { // Cast `v` into the void: no destructor run, so we are in // complete control of the allocation to which `p` points. mem::forget(v); // Overwrite memory with 4, 5, 6 for i in 0..len as isize { ptr::write(p.offset(i), 4 + i); } // Put everything back together into a Vec let rebuilt = Vec::from_raw_parts(p, len, cap); assert_eq!(rebuilt, vec![4, 5, 6]); } }
use std::ptr;
use std::mem;

fn main() {
    let mut v = vec![1, 2, 3];

    // Pull out the various important pieces of information about `v`
    let p = v.as_mut_ptr();
    let len = v.len();
    let cap = v.capacity();

    unsafe {
        // Cast `v` into the void: no destructor run, so we are in
        // complete control of the allocation to which `p` points.
        mem::forget(v);

        // Overwrite memory with 4, 5, 6
        for i in 0..len as isize {
            ptr::write(p.offset(i), 4 + i);
        }

        // Put everything back together into a Vec
        let rebuilt = Vec::from_raw_parts(p, len, cap);
        assert_eq!(rebuilt, vec![4, 5, 6]);
    }
}

unsafe fn from_raw_buf(ptr: *const T, elts: usize) -> Vec<T>

Creates a vector by copying the elements from a raw pointer.

This function will copy elts contiguous elements starting at ptr into a new allocation owned by the returned Vec<T>. The elements of the buffer are copied into the vector without cloning, as if ptr::read() were called on them.

fn capacity(&self) -> usize

Returns the number of elements the vector can hold without reallocating.

Examples

fn main() { let vec: Vec<i32> = Vec::with_capacity(10); assert_eq!(vec.capacity(), 10); }
let vec: Vec<i32> = Vec::with_capacity(10);
assert_eq!(vec.capacity(), 10);

fn reserve(&mut self, additional: usize)

Reserves capacity for at least additional more elements to be inserted in the given Vec<T>. The collection may reserve more space to avoid frequent reallocations.

Panics

Panics if the new capacity overflows usize.

Examples

fn main() { let mut vec = vec![1]; vec.reserve(10); assert!(vec.capacity() >= 11); }
let mut vec = vec![1];
vec.reserve(10);
assert!(vec.capacity() >= 11);

fn reserve_exact(&mut self, additional: usize)

Reserves the minimum capacity for exactly additional more elements to be inserted in the given Vec<T>. Does nothing if the capacity is already sufficient.

Note that the allocator may give the collection more space than it requests. Therefore capacity can not be relied upon to be precisely minimal. Prefer reserve if future insertions are expected.

Panics

Panics if the new capacity overflows usize.

Examples

fn main() { let mut vec = vec![1]; vec.reserve_exact(10); assert!(vec.capacity() >= 11); }
let mut vec = vec![1];
vec.reserve_exact(10);
assert!(vec.capacity() >= 11);

fn shrink_to_fit(&mut self)

Shrinks the capacity of the vector as much as possible.

It will drop down as close as possible to the length but the allocator may still inform the vector that there is space for a few more elements.

Examples

fn main() { let mut vec = Vec::with_capacity(10); vec.push_all(&[1, 2, 3]); assert_eq!(vec.capacity(), 10); vec.shrink_to_fit(); assert!(vec.capacity() >= 3); }
let mut vec = Vec::with_capacity(10);
vec.push_all(&[1, 2, 3]);
assert_eq!(vec.capacity(), 10);
vec.shrink_to_fit();
assert!(vec.capacity() >= 3);

fn into_boxed_slice(self) -> Box<[T]>

Convert the vector into Box<[T]>.

Note that this will drop any excess capacity. Calling this and converting back to a vector with into_vec() is equivalent to calling shrink_to_fit().

fn truncate(&mut self, len: usize)

Shorten a vector, dropping excess elements.

If len is greater than the vector's current length, this has no effect.

Examples

fn main() { let mut vec = vec![1, 2, 3, 4]; vec.truncate(2); assert_eq!(vec, vec![1, 2]); }
let mut vec = vec![1, 2, 3, 4];
vec.truncate(2);
assert_eq!(vec, vec![1, 2]);

fn as_mut_slice(&mut self) -> &mut [T]

Returns a mutable slice of the elements of self.

Examples

fn main() { fn foo(slice: &mut [i32]) {} let mut vec = vec![1, 2]; foo(vec.as_mut_slice()); }
fn foo(slice: &mut [i32]) {}

let mut vec = vec![1, 2];
foo(vec.as_mut_slice());

fn into_iter(self) -> IntoIter<T>

Creates a consuming iterator, that is, one that moves each value out of the vector (from start to end). The vector cannot be used after calling this.

Examples

fn main() { let v = vec!["a".to_string(), "b".to_string()]; for s in v.into_iter() { // s has type String, not &String println!("{}", s); } }
let v = vec!["a".to_string(), "b".to_string()];
for s in v.into_iter() {
    // s has type String, not &String
    println!("{}", s);
}

unsafe fn set_len(&mut self, len: usize)

Sets the length of a vector.

This will explicitly set the size of the vector, without actually modifying its buffers, so it is up to the caller to ensure that the vector is actually the specified size.

Examples

fn main() { let mut v = vec![1, 2, 3, 4]; unsafe { v.set_len(1); } }
let mut v = vec![1, 2, 3, 4];
unsafe {
    v.set_len(1);
}

fn swap_remove(&mut self, index: usize) -> T

Removes an element from anywhere in the vector and return it, replacing it with the last element.

This does not preserve ordering, but is O(1).

Panics

Panics if index is out of bounds.

Examples

fn main() { let mut v = vec!["foo", "bar", "baz", "qux"]; assert_eq!(v.swap_remove(1), "bar"); assert_eq!(v, vec!["foo", "qux", "baz"]); assert_eq!(v.swap_remove(0), "foo"); assert_eq!(v, vec!["baz", "qux"]); }
let mut v = vec!["foo", "bar", "baz", "qux"];

assert_eq!(v.swap_remove(1), "bar");
assert_eq!(v, vec!["foo", "qux", "baz"]);

assert_eq!(v.swap_remove(0), "foo");
assert_eq!(v, vec!["baz", "qux"]);

fn insert(&mut self, index: usize, element: T)

Inserts an element at position index within the vector, shifting all elements after position i one position to the right.

Panics

Panics if index is not between 0 and the vector's length (both bounds inclusive).

Examples

fn main() { let mut vec = vec![1, 2, 3]; vec.insert(1, 4); assert_eq!(vec, vec![1, 4, 2, 3]); vec.insert(4, 5); assert_eq!(vec, vec![1, 4, 2, 3, 5]); }
let mut vec = vec![1, 2, 3];
vec.insert(1, 4);
assert_eq!(vec, vec![1, 4, 2, 3]);
vec.insert(4, 5);
assert_eq!(vec, vec![1, 4, 2, 3, 5]);

fn remove(&mut self, index: usize) -> T

Removes and returns the element at position index within the vector, shifting all elements after position index one position to the left.

Panics

Panics if i is out of bounds.

Examples

fn main() { let mut v = vec![1, 2, 3]; assert_eq!(v.remove(1), 2); assert_eq!(v, vec![1, 3]); }
let mut v = vec![1, 2, 3];
assert_eq!(v.remove(1), 2);
assert_eq!(v, vec![1, 3]);

fn retain<F>(&mut self, f: F) where F: FnMut(&T), <F as FnMut(&T)>::Output == bool

Retains only the elements specified by the predicate.

In other words, remove all elements e such that f(&e) returns false. This method operates in place and preserves the order of the retained elements.

Examples

fn main() { let mut vec = vec![1, 2, 3, 4]; vec.retain(|&x| x%2 == 0); assert_eq!(vec, vec![2, 4]); }
let mut vec = vec![1, 2, 3, 4];
vec.retain(|&x| x%2 == 0);
assert_eq!(vec, vec![2, 4]);

fn push(&mut self, value: T)

Appends an element to the back of a collection.

Panics

Panics if the number of elements in the vector overflows a usize.

Examples

fn main() { let mut vec = vec!(1, 2); vec.push(3); assert_eq!(vec, vec!(1, 2, 3)); }
let mut vec = vec!(1, 2);
vec.push(3);
assert_eq!(vec, vec!(1, 2, 3));

fn pop(&mut self) -> Option<T>

Removes the last element from a vector and returns it, or None if it is empty.

Examples

fn main() { let mut vec = vec![1, 2, 3]; assert_eq!(vec.pop(), Some(3)); assert_eq!(vec, vec![1, 2]); }
let mut vec = vec![1, 2, 3];
assert_eq!(vec.pop(), Some(3));
assert_eq!(vec, vec![1, 2]);

fn append(&mut self, other: &mut Vec<T>)

Moves all the elements of other into Self, leaving other empty.

Panics

Panics if the number of elements in the vector overflows a usize.

Examples

fn main() { let mut vec = vec![1, 2, 3]; let mut vec2 = vec![4, 5, 6]; vec.append(&mut vec2); assert_eq!(vec, vec![1, 2, 3, 4, 5, 6]); assert_eq!(vec2, vec![]); }
let mut vec = vec![1, 2, 3];
let mut vec2 = vec![4, 5, 6];
vec.append(&mut vec2);
assert_eq!(vec, vec![1, 2, 3, 4, 5, 6]);
assert_eq!(vec2, vec![]);

fn drain(&mut self) -> Drain<T>

Creates a draining iterator that clears the Vec and iterates over the removed items from start to end.

Examples

fn main() { let mut v = vec!["a".to_string(), "b".to_string()]; for s in v.drain() { // s has type String, not &String println!("{}", s); } assert!(v.is_empty()); }
let mut v = vec!["a".to_string(), "b".to_string()];
for s in v.drain() {
    // s has type String, not &String
    println!("{}", s);
}
assert!(v.is_empty());

fn clear(&mut self)

Clears the vector, removing all values.

Examples

fn main() { let mut v = vec![1, 2, 3]; v.clear(); assert!(v.is_empty()); }
let mut v = vec![1, 2, 3];

v.clear();

assert!(v.is_empty());

fn len(&self) -> usize

Returns the number of elements in the vector.

Examples

fn main() { let a = vec![1, 2, 3]; assert_eq!(a.len(), 3); }
let a = vec![1, 2, 3];
assert_eq!(a.len(), 3);

fn is_empty(&self) -> bool

Returns true if the vector contains no elements.

Examples

fn main() { let mut v = Vec::new(); assert!(v.is_empty()); v.push(1); assert!(!v.is_empty()); }
let mut v = Vec::new();
assert!(v.is_empty());

v.push(1);
assert!(!v.is_empty());

fn map_in_place<U, F>(self, f: F) -> Vec<U> where F: FnMut(T), <F as FnMut(T)>::Output == U

Converts a Vec<T> to a Vec<U> where T and U have the same size and in case they are not zero-sized the same minimal alignment.

Panics

Panics if T and U have differing sizes or are not zero-sized and have differing minimal alignments.

Examples

fn main() { let v = vec![0, 1, 2]; let w = v.map_in_place(|i| i + 3); assert_eq!(w.as_slice(), [3, 4, 5].as_slice()); #[derive(PartialEq, Debug)] struct Newtype(u8); let bytes = vec![0x11, 0x22]; let newtyped_bytes = bytes.map_in_place(|x| Newtype(x)); assert_eq!(newtyped_bytes.as_slice(), [Newtype(0x11), Newtype(0x22)].as_slice()); }
let v = vec![0, 1, 2];
let w = v.map_in_place(|i| i + 3);
assert_eq!(w.as_slice(), [3, 4, 5].as_slice());

#[derive(PartialEq, Debug)]
struct Newtype(u8);
let bytes = vec![0x11, 0x22];
let newtyped_bytes = bytes.map_in_place(|x| Newtype(x));
assert_eq!(newtyped_bytes.as_slice(), [Newtype(0x11), Newtype(0x22)].as_slice());

fn split_off(&mut self, at: usize) -> Vec<T>

Splits the collection into two at the given index.

Returns a newly allocated Self. self contains elements [0, at), and the returned Self contains elements [at, len).

Note that the capacity of self does not change.

Panics

Panics if at > len.

Examples

fn main() { let mut vec = vec![1,2,3]; let vec2 = vec.split_off(1); assert_eq!(vec, vec![1]); assert_eq!(vec2, vec![2, 3]); }
let mut vec = vec![1,2,3];
let vec2 = vec.split_off(1);
assert_eq!(vec, vec![1]);
assert_eq!(vec2, vec![2, 3]);

impl<T> Vec<T> where T: Clone

fn resize(&mut self, new_len: usize, value: T)

Resizes the Vec in-place so that len() is equal to new_len.

Calls either extend() or truncate() depending on whether new_len is larger than the current value of len() or not.

Examples

fn main() { let mut vec = vec!["hello"]; vec.resize(3, "world"); assert_eq!(vec, vec!["hello", "world", "world"]); let mut vec = vec![1, 2, 3, 4]; vec.resize(2, 0); assert_eq!(vec, vec![1, 2]); }
let mut vec = vec!["hello"];
vec.resize(3, "world");
assert_eq!(vec, vec!["hello", "world", "world"]);

let mut vec = vec![1, 2, 3, 4];
vec.resize(2, 0);
assert_eq!(vec, vec![1, 2]);

fn push_all(&mut self, other: &[T])

Appends all elements in a slice to the Vec.

Iterates over the slice other, clones each element, and then appends it to this Vec. The other vector is traversed in-order.

Examples

fn main() { let mut vec = vec![1]; vec.push_all(&[2, 3, 4]); assert_eq!(vec, vec![1, 2, 3, 4]); }
let mut vec = vec![1];
vec.push_all(&[2, 3, 4]);
assert_eq!(vec, vec![1, 2, 3, 4]);

impl<T> Vec<T> where T: PartialEq<T>

fn dedup(&mut self)

Removes consecutive repeated elements in the vector.

If the vector is sorted, this removes all duplicates.

Examples

fn main() { let mut vec = vec![1, 2, 2, 3, 2]; vec.dedup(); assert_eq!(vec, vec![1, 2, 3, 2]); }
let mut vec = vec![1, 2, 2, 3, 2];

vec.dedup();

assert_eq!(vec, vec![1, 2, 3, 2]);

Trait Implementations

impl<T> Borrow<[T]> for Vec<T>

fn borrow(&self) -> &[T]

impl<T> BorrowMut<[T]> for Vec<T>

fn borrow_mut(&mut self) -> &mut [T]

impl<T> Send for Vec<T> where T: Send

impl<T> Sync for Vec<T> where T: Sync

impl<T> Clone for Vec<T> where T: Clone

fn clone(&self) -> Vec<T>

fn clone_from(&mut self, other: &Vec<T>)

fn clone_from(&mut self, &Vec<T>)

impl<T> Hash for Vec<T> where T: Hash

fn hash<H>(&self, state: &mut H) where H: Hasher

fn hash_slice<H>(&[Vec<T>], &mut H) where H: Hasher, Vec<T>: Sized

impl<T> Index<usize> for Vec<T>

type Output = T

fn index(&self, index: &usize) -> &T

impl<T> IndexMut<usize> for Vec<T>

fn index_mut(&mut self, index: &usize) -> &mut T

impl<T> Index<Range<usize>> for Vec<T>

type Output = [T]

fn index(&self, index: &Range<usize>) -> &[T]

impl<T> Index<RangeTo<usize>> for Vec<T>

type Output = [T]

fn index(&self, index: &RangeTo<usize>) -> &[T]

impl<T> Index<RangeFrom<usize>> for Vec<T>

type Output = [T]

fn index(&self, index: &RangeFrom<usize>) -> &[T]

impl<T> Index<RangeFull> for Vec<T>

type Output = [T]

fn index(&self, _index: &RangeFull) -> &[T]

impl<T> IndexMut<Range<usize>> for Vec<T>

fn index_mut(&mut self, index: &Range<usize>) -> &mut [T]

impl<T> IndexMut<RangeTo<usize>> for Vec<T>

fn index_mut(&mut self, index: &RangeTo<usize>) -> &mut [T]

impl<T> IndexMut<RangeFrom<usize>> for Vec<T>

fn index_mut(&mut self, index: &RangeFrom<usize>) -> &mut [T]

impl<T> IndexMut<RangeFull> for Vec<T>

fn index_mut(&mut self, _index: &RangeFull) -> &mut [T]

impl<T> Deref for Vec<T>

type Target = [T]

fn deref(&self) -> &[T]

impl<T> DerefMut for Vec<T>

fn deref_mut(&mut self) -> &mut [T]

impl<T> FromIterator<T> for Vec<T>

fn from_iter<I>(iterable: I) -> Vec<T> where I: IntoIterator, <I as IntoIterator>::Item == T

impl<T> IntoIterator for Vec<T>

type Item = T

type IntoIter = IntoIter<T>

fn into_iter(self) -> IntoIter<T>

impl<T> Extend<T> for Vec<T>

fn extend<I>(&mut self, iterable: I) where I: IntoIterator, <I as IntoIterator>::Item == T

impl<A, B> PartialEq<Vec<B>> for Vec<A> where A: PartialEq<B>

fn eq(&self, other: &Vec<B>) -> bool

fn ne(&self, other: &Vec<B>) -> bool

fn ne(&self, &Vec<B>) -> bool

impl<'b, A, B> PartialEq<&'b [B]> for Vec<A> where A: PartialEq<B>

fn eq(&self, other: &&'b [B]) -> bool

fn ne(&self, other: &&'b [B]) -> bool

fn ne(&self, &&'b [B]) -> bool

impl<'b, A, B> PartialEq<&'b mut [B]> for Vec<A> where A: PartialEq<B>

fn eq(&self, other: &&'b mut [B]) -> bool

fn ne(&self, other: &&'b mut [B]) -> bool

fn ne(&self, &&'b mut [B]) -> bool

impl<'a, A, B> PartialEq<Cow<'a, [A]>> for Vec<B> where A: Clone, B: PartialEq<A>

fn eq(&self, other: &Cow<'a, [A]>) -> bool

fn ne(&self, other: &Cow<'a, [A]>) -> bool

fn ne(&self, &Cow<'a, [A]>) -> bool

impl<T> PartialOrd<Vec<T>> for Vec<T> where T: PartialOrd<T>

fn partial_cmp(&self, other: &Vec<T>) -> Option<Ordering>

fn lt(&self, &Vec<T>) -> bool

fn le(&self, &Vec<T>) -> bool

fn gt(&self, &Vec<T>) -> bool

fn ge(&self, &Vec<T>) -> bool

impl<T> Eq for Vec<T> where T: Eq

fn assert_receiver_is_total_eq(&self)

impl<T> Ord for Vec<T> where T: Ord

fn cmp(&self, other: &Vec<T>) -> Ordering

impl<T> AsSlice<T> for Vec<T>

fn as_slice(&self) -> &[T]

Returns a slice into self.

Examples

fn main() { fn foo(slice: &[i32]) {} let vec = vec![1, 2]; foo(vec.as_slice()); }
fn foo(slice: &[i32]) {}

let vec = vec![1, 2];
foo(vec.as_slice());

impl<'a, T> Add<&'a [T]> for Vec<T> where T: Clone

type Output = Vec<T>

fn add(self, rhs: &[T]) -> Vec<T>

impl<T> Drop for Vec<T>

fn drop(&mut self)

impl<T> Default for Vec<T>

fn default() -> Vec<T>

impl<T> Debug for Vec<T> where T: Debug

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl<'a, T> IntoCow<'a, [T]> for Vec<T> where T: 'a, T: Clone

fn into_cow(self) -> Cow<'a, [T]>

impl OwnedAsciiExt for Vec<u8>

fn into_ascii_uppercase(self) -> Vec<u8>

fn into_ascii_lowercase(self) -> Vec<u8>

impl IntoBytes for Vec<u8>

fn into_bytes(self) -> Vec<u8>

impl Writer for Vec<u8>

fn write_all(&mut self, buf: &[u8]) -> IoResult<()>

fn write(&mut self, buf: &[u8]) -> IoResult<()>

fn flush(&mut self) -> IoResult<()>

fn write_fmt(&mut self, fmt: Arguments) -> IoResult<()>

fn write_str(&mut self, s: &str) -> IoResult<()>

fn write_line(&mut self, s: &str) -> IoResult<()>

fn write_char(&mut self, c: char) -> IoResult<()>

fn write_int(&mut self, n: isize) -> IoResult<()>

fn write_uint(&mut self, n: usize) -> IoResult<()>

fn write_le_uint(&mut self, n: usize) -> IoResult<()>

fn write_le_int(&mut self, n: isize) -> IoResult<()>

fn write_be_uint(&mut self, n: usize) -> IoResult<()>

fn write_be_int(&mut self, n: isize) -> IoResult<()>

fn write_be_u64(&mut self, n: u64) -> IoResult<()>

fn write_be_u32(&mut self, n: u32) -> IoResult<()>

fn write_be_u16(&mut self, n: u16) -> IoResult<()>

fn write_be_i64(&mut self, n: i64) -> IoResult<()>

fn write_be_i32(&mut self, n: i32) -> IoResult<()>

fn write_be_i16(&mut self, n: i16) -> IoResult<()>

fn write_be_f64(&mut self, f: f64) -> IoResult<()>

fn write_be_f32(&mut self, f: f32) -> IoResult<()>

fn write_le_u64(&mut self, n: u64) -> IoResult<()>

fn write_le_u32(&mut self, n: u32) -> IoResult<()>

fn write_le_u16(&mut self, n: u16) -> IoResult<()>

fn write_le_i64(&mut self, n: i64) -> IoResult<()>

fn write_le_i32(&mut self, n: i32) -> IoResult<()>

fn write_le_i16(&mut self, n: i16) -> IoResult<()>

fn write_le_f64(&mut self, f: f64) -> IoResult<()>

fn write_le_f32(&mut self, f: f32) -> IoResult<()>

fn write_u8(&mut self, n: u8) -> IoResult<()>

fn write_i8(&mut self, n: i8) -> IoResult<()>

impl Write for Vec<u8>

fn write(&mut self, buf: &[u8]) -> Result<usize>

fn flush(&mut self) -> Result<()>

fn write_all(&mut self, buf: &[u8]) -> Result<()>

fn write_fmt(&mut self, fmt: Arguments) -> Result<()>

impl BytesContainer for Vec<u8>

fn container_as_bytes(&self) -> &[u8]

fn container_as_str<'a>(&'a self) -> Option<&'a str>

fn is_str(_: Option<&Self>) -> bool