DCC 2021 is a Virtual Format

Due to continued widespread restrictions caused by the COVID19 pandemic, the DCC 2021 conference format is virtual.

The keynote presentation format is live with questions at the time listed.

Information for on-line access to all presentations, question and answer forums, posters, and the conference proceedings will be provided to registered participants.
WEDNESDAY, March 24
12:30pm - 1:30pm U.S. Mountain Daylight Time (Utah time)

Keynote Speaker
(live presentation)

User-Generated Video Quality Prediction:
From Local to Global

Alan C. Bovik, Director
Laboratory for Image and Video Engineering
The University of Texas at Austin

In this talk I will discuss recent experiments targeting a deeper understanding of the relationships between global and local space-time perception of video quality. Specifically, I will discuss the difficulty of assessing the quality of user-generated videos, which are often distorted, often by multiple commingled processes, and our latest approaches to attacking the problem using deep network architectures.

Al Bovik is the Cockrell Family Regents Endowed Chair Professor at The University of Texas at Austin. He has received many major international awards, including a 2020 Technology and Engineering Emmy Award, the 2019 Progress Medal of the Royal Photographic Society, the 2019 IEEE Fourier Award, the 2017 Edwin H. Land Medal from the Optical Society of America, a 2015 Primetime Emmy Award for Outstanding Achievement in Engineering Development from the Academy of Television Arts and Sciences, and the Norbert Wiener and ‘Sustained Impact’ Awards of the IEEE Signal Processing Society. His is a Fellow of the IEEE, the Optical Society of America, and SPIE. His books include The Handbook of Image and Video Processing, Modern Image Quality Assessment, and The Essential Guides to Image and Video Processing. Al co-founded and was the longest-serving Editor-in-Chief of the IEEE Transactions on Image Processing and created the IEEE International Conference on Image Processing in Austin, Texas, in November, 1994.
The year 2020 was unusual and difficult, and it moved compressed video applications to the forefront of everyday life. As the world was hit by a global pandemic on a scale not experienced for a full century, travel and physical interaction outside the home ground to a halt, and people were forced to move much of their life online. Video became central to learning, work, entertainment, health care and socializing, and the growth of video traffic further accelerated. Video usage had already been on an upward trajectory so steep that it had become 80% of internet traffic and was commanding strong attention from the industry, with especially strong growth in ultra high definition television (UHD), high dynamic range (HDR), security monitoring, and emerging immersive applications.

Meanwhile, the development of the next major generation of video coding standard proceeded to completion in the international community. The finalization of Versatile Video Coding (VVC) coincided with the historical year of 2020 as well, arriving to help meet these challenges. Undeterred by the inability to hold face-to-face meetings, the standards groups have adapted and managed to deliver the new standard without delaying its development schedule. Like MPEG-2, H.264 / MPEG-4 AVC and H.265 / HEVC before it, VVC’s main goal has been to address the longstanding problems of the massive bandwidth needed for video and the insatiable desire for improved quality and expanding usage. The fundamental requirement for VVC has been to achieve roughly a 2× improvement in coding efficiency – i.e., a bit rate reduction over its H.265 / HEVC predecessor on the order of 50% for the same visual quality. Considering that most applications are still using AVC, which HEVC had already greatly surpassed by a similar amount, the value proposition posed by VVC in today’s market is truly compelling.

Besides coding efficiency, and as its name emphasizes, versatility is also a central design goal of VVC. A broad diversity of the latest application needs was considered in the development of the VVC standard. Application requirements that were strongly emphasized during its design included UHD, HDR, computer-generated and screen-captured content (e.g., for screen sharing), 360-degree immersive video, and compressed-domain bitstream repurposing. These needs resulted in new coding tools and new high-level functionalities supported in the syntax. Further, VVC version 1 includes profiles that support still picture coding, multi-layer coding, e.g. for spatial, quality and multi-view scalabilities, and the coding of video in non-4:2:0 chroma formats.
Like its major predecessors, VVC has been developed jointly by the two largest international standardization organizations for video coding – the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group (MPEG). The partnership is known as the Joint Video Experts Team (JVET), and the result is approval of the new design as both ITU-T H.266 and ISO/IEC 23090-3 (MPEG-I Part 3). The core normative VVC specification is also accompanied by a new Versatile Supplemental Enhancement Information (VSEI) standard, referenced as ITU-T H.274 and ISO/IEC 23002-7, which generalizes the approach to handling supplemental data for broad and versatile applicability as well.

Beyond the VVC version 1 specification document, early implementations of VVC have begun to emerge to confirm that the new standard is implementable and ready for real-world deployment. The JVET is also now hard at work developing a version 2 of VVC, which will enhance the design for higher bit-depth and higher bit-rate applications and add other supplemental data and possibly other coding improvement features as well. Beyond VVC, new work is also under way to explore the potential of deep-learning technology for interoperable standardization, with great promise shown in early studies.

Even as we strive to put the COVID-19 pandemic behind us sometime in 2021, the demand for more and better video technology will continue to grow. The new VVC standard will help to meet these needs, and will help illuminate the path forward for the next advances to come.

Gary J. Sullivan has been a chairman and co-chairman of various video and image coding standardization activities in ITU-T VCEG, ISO/IEC MPEG, ISO/IEC JPEG, and in their joint collaborative teams since 1996 and in 2021 became the chair of ISO/IEC JTC 1 Subcommittee 29, the organization that oversees JPEG and MPEG. He has led the development of the Advanced Video Coding (AVC) standard (ITU-T H.264 | ISO/IEC 14496-10), the High Efficiency Video Coding (HEVC) standard (ITU-T H.265 | ISO/IEC 23008-2), the Versatile Video Coding (VVC) standard (ITU-T H.266 | ISO/IEC 29090-3), the various extensions of those standards, and several other standardization projects. He is a Video and Image Technology Architect at Microsoft Research. At Microsoft, he has also been the originator and lead designer of the DirectX Video Acceleration (DXVA) video decoding feature of the Microsoft Windows operating system.

The team efforts that Sullivan has led have been recognized by three Emmy Awards. He has received the SMPTE Digital Processing Medal, the IEEE Masaru Ibuka Consumer Electronics Award, the IEEE Consumer Electronics Engineering Excellence Award, two IEEE Trans. CSVT Best Paper awards, the INCITS Technical Excellence Award, the IMTC Leadership Award, and the University of Louisville J. B. Speed Professional Award in Engineering. He is a Fellow of the IEEE and SPIE.
SESSION 1, Special Session - "Video Coding Technologies"

Fast Partitioning for VVC Intra-Picture Encoding With a CNN Minimizing the Rate-Distortion-Time Cost

Gerhard Tech, Jonathan Pfaff, Heiko Schwarz, Philipp Helle, Adam Wieckowski, Detlev Marpe, and Thomas Wiegand
Fraunhofer Heinrich Hertz Institute, Germany

A Dual-Critic Reinforcement Learning Framework for Frame-Level Bit Allocation in HEVC/H.265

Yung-Han Ho¹, Guo-Lun Jin¹, Yun Liang¹, Wen-Hsiao Peng¹, and Xiao-bo Li²
¹National Chiao Tung University, Taiwan, ²Alibaba Group

Multi-density Convolutional Neural Network for In-Loop Filter in Video Coding

Zhao Wang, Changyue Ma, Ru-Ling Liao, and Yan Ye
Damo Academy, Alibaba Group, China

An Efficient QP Variable Convolutional Neural Network Based In-Loop Filter for Intra Coding

Zhijie Huang, Xiaopeng Guo, Mingyu Shang, Jie Gao, and Jun Sun
Peking University, China

SESSION 2

SLFC: Scalable Light Field Coding

Hadi Amirpour¹, Christian Timmerer¹,², and Mohammad Ghanbari¹,³
¹Alpen-Adria-Universität Klagenfurt, Austria, ²Bitmovin, Austria, ³University of Essex, UK

Lossy Compression for Integrating Event Cameras

Andrew C. Freeman and Ketan Mayer-Patel
University of North Carolina

Compression of Point Cloud Geometry Through a Single Projection

Dion E. O. Tzamarias, Kevin Chow, Ian Blanes, and Joan Serra-Sagristà
Universitat Autònoma de Barcelona, Spain

Multiscale Point Cloud Geometry Compression

Jianqiang Wang¹, Dandan Ding², Zhu Li³, and Zhan Ma¹
¹Nanjing University, ²Hangzhou Normal University, ³University of Missouri at Kansas

SESSION 3

A Grammar Compressor for Collections of Reads with Applications to the Construction of the BWT

Diego Díaz-Domínguez and Gonzalo Navarro
University of Chile

Backward Weighted Coding

Aharon Fruchtman¹, Yoav Gross¹, Shmuel T. Klein², and Dana Shapira¹
¹Ariel University, Israel, ²Bar Ilan University, Israel

ndzip: A High-Throughput Parallel Lossless Compressor for Scientific Data

Fabian Knorr, Peter Thoman, and Thomas Fahringr
University of Innsbruck, Austria
SESSION 4

Compact Representation of Spatial Hierarchies and Topological Relationships 113
José Fuentes-Sepúlveda1, Diego Gatica1,2, Gonzalo Navarro1,2,
M. Andrea Rodríguez1,2, and Diego Seco1,2
1Universidad de Concepción, Chile, 2Millennium Institute for Foundational
Research on Data, Chile

Succinct Representations of Intersection Graphs on a Circle... 123
Hüseyin Acan1, Sankardeep Chakraborty2, Seungbum Jo3, Kei Nakashima4,
Kunihiko Sadakane4, and Srinivasa Rao Satti5
1Drexel University, USA, 2National Institute of Informatics, Japan, 3Chungbuk
National University, South Korea, 4The University of Tokyo, Japan,
5NTNU, Norway

SESSION 5, Special Session - "Neural Networks for Compression"

Neural Networks Optimally Compress the Sawbridge.. 143
Aaron B. Wagner1 and Johannes Ballé2
1Cornell University, 2Google Research, USA

DZip: Improved General-Purpose Lossless Compression Based on Novel Neural
Network Modeling .. 153
Mohit Goyal1, Kedar Tatwawadi2, Shubham Chandak2, and Idoia Ochoa1,3
1University of Illinois, 2Stanford University, 3University of Navarra, Spain

End-to-end Optimized Image Compression for Machines, a Study... 163
Lahiru D. Chamain1, Fabien Racapé2, Jean Bégaint2, Akshay Pushparaja2,
and Simon Feltman2
1University of California, Davis, 2InterDigital- AI Lab, USA

Super Resolution for Compressed Screen Content Video .. 173
Meng Wang1, Jizheng Xu2, Li Zhang2, Junru Li3, and Shiqi Wang1
1City University of Hong Kong, China, 2ByteDance Inc., USA, 3Peking University,
China

Compressive Sensing via Unfolded \ell_0-Constrained Convolutional Sparse Coding.......... 183
Jiaqi Sun, Wernui Dai, Chenglin Li, Junni Zou, and Hongkai Xiong
Shanghai Jiao Tong University, China
SESSION 6

PHONI: Streamed Matching Statistics with Multi-genome References

Christina Boucher¹, Travis Gagie², Tomohiro I³, Dominik Koepl⁴, Ben Langmead⁵, Giovanni Manzini⁶, Gonzalo Navarro⁷, Alejandro Pacheco⁸, and Massimiliano Rossi¹

¹University of Florida, ²Dalhousie University, Canada, ³Kyutech, Japan, ⁴TMDU, Japan, ⁵Johns Hopkins University, ⁶University of Eastern Piedmont, Italy, ⁷University of Chile

Efficiently Merging r-Indexes

Marco Oliva¹, Massimiliano Rossi¹, Jouni Sirén², Giovanni Manzini³, Tamer Kahveci¹, Travis Gagie⁴, and Christina Boucher¹

¹University of Florida, ²University of California Santa Cruz, ³University of Eastern Piedmont, Italy, ⁴Dalhousie University, Canada

SESSION 7, Special Session - "Compression and Quantization in Learning"

Low Rank Based End-to-End Deep Neural Network Compression

Swayambhoo Jain, Shahab Hamidi-Rad, and Fabien Racapé

Interdigital AI Lab, USA

Neural Network Compression via Additive Combination of Reshaped, Low-Rank Matrices

Yerlan Idelbayev and Miguel Á. Carreira-Perpiñán

University of California, Merced

Rate-Distortion Optimized Coding for Efficient CNN Compression

Zhe Wang¹, Jie Lin¹, Mohamed Sabry Aly², Sean Young³, Vijay Chandrasekhar¹,², and Bernd Girod³

¹Institute for Infocomm Research, Singapore, ²Nanyang Technological University, Singapore, ³Stanford University, USA

SESSION 8

Average Performance of Adaptive Streaming

Yuriy A. Reznik

Brightcove, Inc., USA

Low Delay Robust Audio Coding by Noise Shaping, Fractional Sampling, and Source Prediction

Jan Østergaard

Aalborg University, Denmark

Privacy-Preserving Compressed Sensing for Image Simultaneous Compression-Encryption Applications

Bo Zhang¹, Di Xiao², Mengdi Wang², and Jia Liang²

¹Army Engineering University, China, ²Chongqing University, China
SESSION 9
Fast and Compact Set Intersection Through Recursive Universe Partitioning 293
Giulio Ermanno Pibiri
ISTI-CNR, Italy
Tree-Structured Quantization on Grassmann and Stiefel Manifolds 303
Stefan Schwarz and Markus Rupp
Technische Universitaet (TU), Austria
On Universal Codes for Integers: Wallace Tree, Elias Omega and Beyond 313
Lloyd Allison, Arun S. Konagurthu, and Daniel F. Schmidt
Monash University, Australia
Near-Lossless Compression for Sparse Source Using Convolutional Low Density Generator Matrix Codes .. 323
Tingting Zhu and Xiao Ma
Sun Yat-sen University, China

Poster Session
(listed alphabetically by first author)
Dynamic Point Cloud Texture Video Compression Using the Edge Position Difference Oriented Motion Model .. 335
Ashek Ahmmed1,2, Manoranjan Paul2, and Mark Pickering1
1University of New South Wales, Australia, 2Charles Sturt University, Australia
The Twelvefold Way of Non-Sequential Lossless Compression 336
University of Illinois at Urbana-Champaign
Approximate Hashing for Bioinformatics ... 337
Guy Arbitman1, Shmuel T. Klein1, Pierre Peterlongo2, and Dana Shapira3
1Bar Ilan University, 2Israel, Inria, Univ Rennes, France, 3Ariel University, Israel
Efficient Algorithms for Decode Efficient Prefix Codes ... 338
Shashwat Banchhor1, Rishikesh R. Gajjala1, Yogish Sabharwal2, and Sandeep Sen1,3
1Indian Institute of Technology, India, 2IBM Research, India, 3Shiv Nadar University, India
Guided Blocks WOM Codes .. 339
Gilad Baruch1, Shmuel T. Klein1, and Dana Shapira2
1Bar Ilan University, Israel, 2Ariel University, Israel
A Disk-Based Index for Trajectories with an In-Memory Compressed Cache

Daniela Campos¹, Adrián Gómez-Brandón², and Gonzalo Navarro¹

¹Universidad de Chile, ²Universidade da Coruña, Spain

Improving Run Length Encoding by Preprocessing

Sven Fiergolla and Petra Wolf

University Trier, Germany

A Viewport-Adaptive Rate Control Approach for Omnidirectional Video Coding

Yichen Guo, Mai Xu, Li Yang, and Rui Ding

Beihang University

Intra Block Partition Structure Prediction via Convolutional Neural Network

Xu Han¹, Shanshe Wang², Yong Chen³, Siwei Ma², and Wen Gao²

¹Shanghai Jiao Tong University, China, ²Peking University, China, ³Hangzhou Arcvideo Tech Co., Ltd., China

JQF: Optimal JPEG Quantization Table Fusion by Simulated Annealing on Texture Images and Predicting Textures

Chen-Hsiu Huang and Ja-Ling Wu

National Taiwan University, Taiwan

Quad-Tree Based Sample Refinement Filter for Video Coding

Yunrui Jian¹, Jiaqi Zhang², Chuanmin Jia¹, Suhong Wang¹, Shanshe Wang¹, and Siwei Ma¹

¹Peking University, China, ²University of Chinese Academy of Science, China

Compact Polyominoes

Shahin Kamali

University of Manitoba, Canada

Video-Decoder Power Consumption on Android Devices: Power-Estimation Method, Dataset Creation, and Analysis Results

Roman Kazantsev, Vladimir Yanushkovsky, and Dmitriy Vatolin

Lomonosov Moscow State University, Russia

Deep Scattering Network with Max-Pooling

Taekyung Ki¹ and Youngmi Hur¹,²

¹Yonsei University, South Korea, ²Korea Institute for Advanced Study, South Korea

SRQ: Self-Reference Quantization Scheme for Lightweight Neural Network

Xiaobin Li, Hongxu Jiang, Shuangxi Huang, Fangzheng Tian, Runhua Zhang, and Dong Dong

BeiHang University, China

Convolutional Neural Network-Based Split Prediction for VVC Intra Speedup

Yue Li, Li Zhang, and Jizheng Xu

ByteDance Inc.

Modulated Variable-Rate Deep Video Compression

Jianping Lin¹, Dong Liu¹, Jie Liang², Houqiang Li¹, and Feng Wu¹

¹University of Science and Technology of China, ²Simon Fraser University, Canada
Video Enhancement Network Based on Max-Pooling and Hierarchical Feature Fusion .. 352

Zheng Liu1, Yu Han1, Honggang Qi1, Jinwen Zan2, Qixiang Ye1, Guoqin Cui2, and Yundong Zhang2
1University of Chinese Academy of Sciences, 2Chongqing Vimicro AI Chip Technology Co., Ltd

Lossless Compression for Video Streams with Frequency Prediction and Macro Block Merging .. 353

Jixiang Luo, Shaohui Li, Wenrui Dai, De Cheng, Gang Li, Chenglin Li, Junni Zou, and Hongkai Xiong
Shanghai Jiao Tong University, China

The Rate-Distortion-Accuracy Tradeoff: JPEG Case Study .. 354

Xiyang Luo, Hossein Talebi, Feng Yang, Michael Elad, and Peyman Milanfar
Google Research

Reducing Image Compression Artifacts for Deep Neural Networks .. 355

Li Ma1,2, Peixi Peng1,2, Peiyin Xing1, Yaowei Wang1,2, and Yonghong Tian1,2
1Peking University, P.R. China, 2Pengcheng Laboratory, P.R. China

An Empirical Analysis of Recurrent Learning Algorithms in Neural Lossy Image Compression Systems .. 356

Ankur Mali1, Alexander G. Ororbia2, Dan Kifer1, and C. Lee Giles1
1The Pennsylvania State University, 2Rochester Institute of Technology

Low Complexity Video Compression for Fixed Focus Cameras .. 357

Kumar Manas, Mohit Jindal, and Preety Singh
The LNM Institute of Information Technology, India

Parallel Processing of Grammar Compression .. 358

Masaki Matsushita and Yasushi Inoguchi
Japan Advanced Institute of Science and Technology, Japan

Optimized Adaptive Loop Filter in Versatile Video Coding .. 359

Xuewei Meng1, Jiaqi Zhang2, Chuanmin Jia1, Xinfeng Zhang2, Shanshe Wang1, and Siwei Ma1
1Peking University, China, 2University of Chinese Academy of Sciences, China

Reducing Latency and Bandwidth for Video Streaming Using Keypoint Extraction and Digital Puppetry .. 360

Roshan Prabhakar1, Shubham Chandak2, Carina Chiu2, Renee Liang4, Huong Nguyen3, Kedar Tatwawadi2, and Tsachy Weissman2
1Fremont High School, USA, 2Stanford University, 3Prospect High School, USA, 4Northwood High School, USA, 5Leesville Road High School, USA

Convolutional Neural Network for Image Compression with Application to JPEG Standard .. 361

Dariusz Puchala and Kamil Stokfiszewski
Lodz University of Technology, Poland

HH-CompWordNet: Holistic Handwritten Word Recognition in the Compressed Domain .. 362

Bulla Rajesh1, Priyanshu Jain1, Mohammed Javed1, and David Doermann2
Indian Institute of Information Technology, India, 2University at Buffalo
A Comparison of Classical and Deep Learning-Based Techniques for Compressing Signals in a Union of Subspaces ... 363

Sriram Ravula¹ and Swayambhoo Jain²

¹The University of Texas at Austin, ²Interdigital Inc., USA

Domain-Specific Language Abstractions for Compression .. 364

Jessica Ray¹, Ajay Brahmakshatriya¹, Richard Wang¹, Shoaib Kamil², Albert Reuther², Vivienne Sze¹, and Saman Amarasinghe¹

¹MIT CSAIL, ²Adobe Research, ³MIT Lincoln Laboratory

Regularized Semi-Nonnegative Matrix Factorization ... 365

Anthony Rhodes and Bin Jiang

Portland State University

On Random Editing in LZ-End ... 366

Daniel Roedt¹, Ulrich Speidel², Vimal Kumar¹, and Ryan K. L. Ko³

¹University of Waikato, New Zealand, ²University of Auckland, New Zealand, ³University of Queensland, Australia

Graph Based Transforms Based on Graph Neural Networks for Predictive Transform Coding .. 367

Debaleena Roy, Tanaya Guha, and Victor Sanchez

University of Warwick, United Kingdom

Parallel Implementations of Lambda Domain and R-Lambda Model Rate Control Schemes in a Practical HEVC Encoder ... 368

Joose Sainio, Alexandre Mercat, and Jarno Vanne

Tampere University, Finland

Hybrid Intra-Prediction in Lossless Video Coding Using Overfitted Neural Networks .. 369

Victor Sanchez¹, Miguel Hernández-Cabronero², and Joan Serra-Sagristà²

¹University of Warwick, United Kingdom, ²Universitat Autònoma de Barcelona, Spain

On the Choice of Sampling Rates in Multi-rate Sampling .. 370

Esteban Selva¹,², Apostolos Kountouris², and Yves Louet¹

¹IETR/CentraleSupelec, France, ²Orange Labs, France

Compressing Deep Networks Using Fisher Score of Feature Maps 371

Mohammadreza Soltani, Suya Wu, Yuerong Li, Robert Ravier, Jie Ding, and Vahid Tarokh

Duke University

Accelerating Knuth-Morris-Pratt String Matching over LZ77 Compressed Text 372

Xiuwen Sun, Di Wu, Da Mo, Jie Cui, and Hong Zhong

Anhui University

3D-CVQE: An Effective 3D-CNN Quality Enhancement for Compressed Video Using Limited Coding Information ... 373

Xuan Sun, Pengyu Liu, Kebin Jia, and Congcong Wang

Beijing University of Technology
Bi-Prediction Enhancement with Deep Frame Prediction Network for Versatile Video Coding.. 374

Hao Tao, Jian Qian, Li Yu, and Hongkui Wang
Huazhong Univ. of Sci. & Tech.

Flow-Grounded Dynamic Texture Synthesis for Video Compression ... 375

Suhong Wang¹, Xinfeng Zhang², Shanshe Wang¹, Siwei Ma¹, and Wen Gao¹
¹Peking University, China, ²University of Chinese Academy of Sciences, China

Research on Knowledge Distillation of Generative Adversarial Networks 376

Wei Wang, Baohua Zhang, Tao Cui, Yimeng Chai, and Yue Li
¹Nankai University, China, ²Chinese Academy of Sciences, China

Improved LZ77 Compression... 377

Cody (Yingquan) Wu
Tenafe Inc.

Short Video Performance Evaluation of AV1 Coding Tools ... 378

Peiyin Xing¹,², Yangang Cai¹,², Xufeng Li¹,², and Yonghong Tian¹,²
¹Peking University, P.R. China, ²Pengcheng Laboratory, P.R. China

Point AE-DCGAN: A Deep Learning Model for 3D Point Cloud Lossy Geometry Compression .. 379

Jiacheng Xu¹, Zhijun Fang¹, Yongbin Gao¹, Siwei Ma², Yaochu Jin², Heng Zhou¹,
and Anjie Wang²
¹Shanghai University of Engineering Science, P.R. China, ²Peking University, P.R. China,
³University of Surrey, UK

Invertible Resampling-Based Layered Image Compression ... 380

Youmin Xu and Jian Zhang
Peking University, P.R. China

Joint Asymmetric Convolution Block and Local/Global Context Optimization for Learned Image Compression ... 381

Zongmiao Ye, Ziwei Li, Xiaofeng Huang, and Haibing Yin
Hangzhou Dianzi University, China

Fast GLCM-Based Intra Block Partition for VVC .. 382

Huanchen Zhang, Li Yu, Tiansong Li, and Hongkui Wang
Huazhong University of Science and Technology, China

Deformable Convolution Network Based Invertibility-Driven Interpolation Filter for HEVC ... 383

Qiuyang Zhang, Xiaofeng Huang, Haibing Yin, and Weihong Niu
Hangzhou Dianzi University, China