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The lossless Burrows-Wheeler Compression Algorithm has received considerable attention over recent years for 
both its simplicity and effectiveness. It is based on a permutation of the input sequence − the Burrows-Wheeler 
Transform − which groups symbols with a similar context close together. In the original version, this  
permutation was followed by a Move-To-Front transformation and a final entropy coding stage. Later versions 
used different algorithms which come after the Burrows-Wheeler Transform, since the stages after the Burrows-
Wheeler Transform have a significant influence on the compression rate. This article describes improved 
algorithms for the run length encoding, inversion frequencies and weighted frequency count stages that follow 
the Burrows-Wheeler Transform. Results for compression rates are presented for different variations of the 
algorithm together with compression and decompression times. Finally, an implementation with a compression 
rate of 2.238 bps on the Calgary Corpus is introduced, which is the best result published in this field to date.  
 
Categories and Subject Descriptors: E.4 [Coding and Information Theory] - Data compaction and 
compression; H1.1 [Models and Principles]: Systems and Information Theory - Information theory; Value of 
information 
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1. INTRODUCTION  

The family of the block sorting algorithms based on the Burrows-Wheeler Transform 

(BWT) has grown over the past few years starting with the first implementation described 

by Burrows and Wheeler [1994]. Several authors have presented improvements to the 

original algorithm. Andersson and Nilsson have published several papers about Radix 

Sort, which can be used as a first sorting step during the BWT [1994, 1996, 1998]. In his 

final BWT research report, Fenwick described some BWT sort improvements including 

sorting long words instead of single bytes [1995]. Kurtz presented several papers about 

BWT sorting stages with suffix trees, which needed less space than other suffix tree 

implementations and are linear in time [1998, 1999].  
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Sadakane described a fast suffix array sorting scheme in 1997 and 2000. In 1999, Larsson 

presented an extended suffix array sorting scheme. Based on already sorted suffices, 

Seward developed in 2000 two fast suffix sorting algorithms called "copy" and "cache". 

Itoh and Tanaka presented a fast sorting algorithm called the two stage suffix sort [1999]. 

Kao improved the two stage suffix sort by some new techniques which are very fast for 

sequences of repeat symbols [1999]. Manzini and Ferragina published in 2002 some 

improved suffix array sorting techniques based on the results of Seward and of Itoh and 

Tanaka. 

Several techniques for the post BWT stages have been also published. Besides the MTF 

improvements from Schindler [1997], and from Balkenhol and Shtarkov [1999], an MTF 

replacement, called Inversion Frequencies, was introduced by Arnavut and Magliveras in 

1997, and in 2000 Deorowicz presented another MTF replacement, named Weighted 

Frequency Count. Both MTF replacements will be described later. 

Various modeling techniques for the entropy coding at the end of the compression 

process were presented by Fenwick [1995, 1996], Balkenhol and Shtarkov [1999] and 

Deorowicz [2000].  

This paper concentrates on improvements of the basic stages subsequent to the BWT, 

with no special preprocessing for different kinds of data like text preprocessing 

[Grabowski, 1999; Kruse and Mukherjee, 1999; Franceschini et al., 2000; Awan et al., 

2001; Isal and Moffat, 2001; Isal et al., 2002] or binary preprocessing before the BWT. 

Several improved variants will be presented and compared using compression rate, 

compression time and decompression time with other compression algorithms. Finally, a 

complete compression algorithm will be introduced, which uses a hybrid scheme and 

which achieves a high compression rate. 

 

2. THE BURROWS-WHEELER COMPRESSION ALGORITHM 

2.1 Typical scheme 
A typical scheme of the Burrows-Wheeler Compression Algorithm (BWCA) is presented 

in Figure 1 and consists of four stages. Each stage is a transformation of the input data 

and reaches the output data to the next stage. The stages are processed sequentially from 

left to right. The first stage is the BWT. This stage sorts the data in a way that symbols 

with a similar context are grouped closely together. The BWT stage keeps the number of 

symbols during the transformation constant. The second stage is called in this article 

Global Structure Transformation (GST), which transforms the local context of the 

symbols to a global context [Balkenhol and Kurtz, 1998; Deorowicz, 2000]. A typical 
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representative of a GST stage is the Move-To-Front transformation (MTF), which was 

used by Burrows and Wheeler in their original publication and which was the first 

algorithm used as a GST stage in a BWCA. The MTF stage is a List Update Algorithm 

(LUA), which replaces the input symbols with corresponding ranking values (Bentley et 

al., 1986). Just like the BWT stage, a LUA stage does not alter the number of symbols. 

The third stage typically shrinks the number of symbols by applying a Run Length 

Encoding scheme (RLE). Different algorithms have been presented for this purpose, with 

the Zero Run Transformation (RLE0) from Wheeler found to be an efficient one 

[Fenwick, 1996]. The last stage is an Entropy Coding stage (EC), which compresses the 

symbols by using an adapted model. 

 

 

 

 

 
Fig. 1. Typical scheme of the Burrows-Wheeler Compression Algorithm 

 

In order to elucidate the operation modes of the different stages, Figure 2(a) - 2(e) 

displays the transformed data of the input string "abracadabraabracadabra" in 

hexadecimal. The input data of the BWT stage is shown in Figure 2(a). As can be seen in 

Figure 2(b) the output data of the BWT stage contains many sequences of repeating 

symbols and has a local structure, i.e. symbols with a similar context form small 

fragments. The GST stage − in this example an MTF scheme is used − transforms the 

local structure of the BWT output to a global structure by using a ranking scheme 

according to the last recently used symbols and produces sequences of continuous zeros 

which are displayed in Figure 2(c). The RLE0 stage removes the zero runs in Figure 2(d) 

and the final EC stage produces a bit output by using an arithmetic coding scheme in 

Figure 2(e). 

 

 

 

 

 
 

 

Fig. 2. Transformed data of the input string "abracadabraabracadabra" by the different stages 

 
BWT 

 
GST 

 
RLE0 

 
EC 

(a) BWT input : 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61 
 
(b) BWT output : 61 72 72 64 64 61 72 72 63 63 61 61 61 61 61 61 61 61 62 62 62 62 
 
(c) GST output : 61 72 00 65 00 02 02 00 65 00 02 00 00 00 00 00 00 00 65 00 00 00 
 
(d) RLE0 output : 63 74 00 67 00 04 04 00 67 00 04 00 00 00 67 00 00 
 
(e) EC output : 00 0D 01 8D B3 FF 81 00 72 A8 E8 2B 
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In the following, the focus is on developing improvements, and on exploring the 

reordering and possible replacement of stages, which follow the BWT stage.  

  

2.2 Definitions 
For the description of the algorithms, the following notation will be used. Let A be an 

ordered set, called alphabet, with size |A|. Let X = x0x1x2…xn-1 denote a sequence with 

length n and xi ∈ A. The first index of a sequence is 0. Each stage has an input sequence 

Xin and an output sequence Xout as well as a corresponding input alphabet Ain and an 

output alphabet Aout. The stage processes the symbols of Xin and calculates the 

corresponding symbols of Xout. After finishing one stage, Xout of this stage will be used as 

Xin of the following stage. The maximal size for Xin is called the blocksize bn. Up to the 

GST stage, Ain and Aout will have a bit width of 8 bits resulting in |Ain| = |Aout| = 256. Since 

some GST stages have output symbols with values greater than 255, the bit width of Ain 

and Aout after the GST stage will be assumed as 32 bits in order to be able to handle 

values greater than 255. Furthermore, the binary representation sequence of a symbol a is 

called Ba, for example B4 = "100" and B7 = "111". The compression rate and speed is 

measured on the Calgary Corpus [Bell et al., 1989, 1990], a standard set of files used for 

benchmarking compression algorithms. 

 

2.2 Run Length Encoding 
In the past, different RLE schemes were presented [Fenwick, 1996; Maniscalco, 2000, 

2001]. The main function of the RLE is to support the probability estimation of the next 

stage. Long runs of a symbol a tend to overestimate the global symbol probability of a 

for fragments, where a occurs only occasionally. The result is that within these disjointed 

fragments, the probability value for a is too high which leads to lower compression. 

Balkenhol and Shtarkov name this phenomenon “the pressure of runs” [1999]. The RLE 

stage helps to decrease this pressure. In order to improve the probability estimation of the 

EC stage, the common BWCA schemes position the RLE stage directly in front of the EC 

stage. 

One common RLE stage for BWT based compressors is the Zero Run Transformation 

(RLE0) from Wheeler [Fenwick, 1996]. Wheeler suggested to code only the runs of the 0 

symbols and no runs of other symbols, since 0 is the symbol with the most runs. Hereto 

an offset of 1 is added to symbols greater than 0. The run length is incremented by one 
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and all bits of its binary representation except the most significant bit – which is always 1 

– are stored with the symbols 0 and 1. 

Some authors suggested an RLE stage before the BWT stage for speed optimization, but 

such a stage deteriorates the compression rate in general [Deorowicz, 2000]. Since there 

are sorting algorithms now known which sort the runs of symbols practically in linear 

time [Itoh and Tanaka, 1999; Kao, 1999; Seward, 2000; Manzini and Ferragina, 2002], 

there is no reason to use such a stage before the BWT stage anymore. 

 

2.3 Inversion Frequencies 
Several GST stages have been unveiled since the birth of the BWCA in 1994. Their 

purpose is to produce an output sequence which is more compressible by the entropy 

coder than the output sequence of the original MTF stage. One of these MTF 

replacements is the algorithm from Arnavut and Magliveras [1997], which they named 

Inversion Frequencies (IF). The IF algorithm is not a LUA. It produces for each symbol  

a ∈ Ain a part sequence Sa. For each alphabet symbol a the input sequence Xin is scanned 

and if the current element of Xin is equal to a, the number of symbols greater than a 

between the current position and the last position of a is output. In order to reproduce Xin 

from the set of Sa either the frequencies of the alphabet symbols or a terminator symbol 

behind each Sa is needed in addition. One advantage of the IF algorithm is the fact that 

the part sequence of the last symbol z of the alphabet, called Sz, consists only of the 

symbol 0. Therefore Sz is not needed in order to reproduce the original sequence and the 

length of Xout gets smaller than the length of Xin. Xout of IF is different from Xout of MTF 

in more aspects. Xout of the MTF stage contains many zero runs, which represent runs of 

equal symbols, and these runs are equally distributed over the whole sequence. Xout of the 

IF stage consists of several part sequences Sa, one for each a ∈ Ain except the last symbol 

z. Sa of higher symbols have typically smaller values than Sa of lower symbols, since the 

number of alphabet symbols, which are greater than the scanned symbol, are smaller. Sa 

for the last symbols of Ain have usually many long runs of zeros. In order to represent this 

behavior, Figure 3 compares the share of the zeros of the file book1 over the file position 

for both the MTF stage output and for the IF stage output. For a better comparison, Sz is 

included in Xout of IF. As can be seen, the average share of zeros in the output of IF is 

rising towards the end of the file until it reaches 100% at the end. In the output of MTF, 

the average share of zeros fluctuates around 60%. 
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Fig. 3. Share of the zeros in percent of the (a) MTF output position and (b) IF output position of book1 

 

2.4 Weighted Frequency Count 
Another GST stage is the Weighted Frequency Count algorithm (WFC) presented by 

Deorowicz in 2002. The WFC is a representative of a LUA and is closer to MTF than to 

IF. It replaces the input symbol x with a corresponding ranking value rx. The difference 

between WFC and MTF is the function, which calculates rx. Inside the MTF algorithm, rx 

is the index of the current input symbol x within the list L of alphabet symbols. Upon 

each request of x, the current index rx of the symbol within L is output and the symbol is 

moved to the front of L, i.e. to index 0. Since a symbol is moved straight to the front of L 

without taking the former frequency distribution of the symbol into account, the MTF 

stage pushes many times more frequent symbols aside by less frequently used symbols. 

This leads to higher ranking values for frequently used symbols and hampers the 

compression at the EC stage, since lower values are cheaper to compress with the 

commonly used EC models. The WFC stage calculates rx by a function, which takes into 

account the symbol frequencies and the distance of the last occurrences of x inside a 

sliding window of size tmax [Deorowicz, 2002]. More frequently used symbols get a lower 

rx than less frequently used symbols, which supports the following EC probability 

estimation. Table I presents the average ranking values rx of the MTF and WFC stage 

together with the corresponding execution times in seconds for all files of the Calgary 

Corpus. The average ranking values are the averages of the output sequences of the 

corresponding stages. The MTF and WFC stages are both performed with an RLE stage 

processed beforehand. 
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Table I. Average ranking values rx and execution times in seconds  

for the MTF and WFC stage 

File MTF 

Average rx 

WFC 

Average rx 

MTF 

Time in Secs 

WFC 

Time in Secs 

bib 4.45 4.29 0.01 0.12 

book1 3.25 2.97 0.05 0.98 

book2 3.52 3.28 0.03 0.68 
geo 48.74 44.01 0.03 0.91 

news 5.57 5.12 0.03 0.58 

obj1 34.59 32.64 0.01 0.13 

obj2 18.59 17.81 0.02 0.71 

paper1 4.65 4.48 0.01 0.08 

paper2 3.95 3.73 0.01 0.11 

pic 6.12 5.20 0.01 0.23 

progc 5.66 5.48 0.01 0.06 
progl 3.62 3.47 0.01 0.08 

progp 4.00 3.93 0.01 0.05 

trans 4.14 4.00 0.01 0.08 

Average 

Sum 

10.78 10.03  

0.25 

 

4.80 

 

In all cases, the average ranking values for the WFC stage are smaller or equal than for 

the MTF stage, therefore the WFC output sequence is higher compressible. The drawback 

of the WFC stage is the high time consumption, about 20 times as high as for the MTF 

stage, since the function recalculates the rankings of all alphabet symbols for each 

symbol x of Xin. 

 

2.5 Other MTF Replacements 
Beside MTF, WFC and IF, there have been more GST stages published, like the MTF-1 

algorithm from Balkenhol, Kurtz and Shtarkov [1999], the MTF-2 algorithm from 

Balkenhol and Shtarkov [1999] and the Distance Coding algorithm from Binder [Binder, 

2000; Deorowicz, 2002]. The MTF-1 and MTF-2 algorithms are close to the MTF 

algorithm. MTF-1 moves only the symbol from the second position to the front of the list, 

symbols with higher positions are moved to the second position. MTF-2 differs from 

MTF-1, by the fact, that symbols from the second position are moved to the front of the 
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list only if the last ranking value was not zero, i.e. if the same symbol occurred again. 

The DC algorithm is more related to the IF algorithm and is based on the Interval 

Encoding scheme from Elias [1987]. For each symbol of the input sequence, the DC 

algorithm outputs the distance to the next occurrence of the same symbol. If the symbol 

does not occur again, a zero is output. Binder [2000] proposed three improvements to the 

basic algorithm. If the length of the input sequence is transmitted too, the last sequence of 

ending zeros is redundant. Furthermore, for calculating the distance to the next 

occurrence of the same symbol, only unknown symbols have to be counted. The last 

improvement means that if the last symbol is equal to the current symbol, nothing has to 

be output and DC proceeds to the next symbol. The main difference to the Interval 

Encoding of Elias is, that DC does not count known symbols and skips repeated symbols. 

Comparisons of published results [Deorowicz, 2002] with the experiences of the author 

of this paper indicate that the IF stage and the WFC stage tend to produce the best 

compression rates. 

 

3. IMPROVEMENTS TO RUN LENGTH ENCODING 

3.1 General operation 
RLE is a simple and popular data compression algorithm. The sequence of length l of a 

repeated symbol s is replaced by a shorter sequence, usually containing one or more 

symbols of s, length information and sometimes an escape symbol c. RLE algorithms 

differ from each other mainly in three points: the threshold t, the marking of the start of a 

run and the coding of the length information. If l is smaller than t, the run keeps 

unchanged, and if l is greater or equal to t, the run is replaced. The start of a run can be 

indicated by a threshold run or an escape symbol c. If a threshold run is used, the start is 

characterized by a small sequence of s, which has a length greater or equal to t. If an 

escape symbol c indicates the start of a run, s is normally put behind c in order to 

characterize the run symbol. The escape symbol c must not be an element of Ain or 

occurrences of c have to be coded in such a manner that they are not mixed up with the 

start of a run. The length information l can be coded in different ways. Usually l is put 

directly behind the threshold run or behind s. 

Maniscalco [2001] describes an algorithm which uses a variable length code and divides 

the length information into two parts: an exponent part e and a binary representation part 

Ba. The exponent part e, called the size of the variable length code in Maniscalco’s paper, 

reflects the logarithm of l. The binary representation part Ba, called the value of the 
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variable length code by Maniscalco, contains the bits of the binary representation of l. 

Such a structure leads to an elegant and efficient RLE algorithm for the BWCA. 

Two RLE algorithms are introduced and discussed in the next section. One is based on 

the variable length code of Maniscalco and is called RLE-EXP. The other algorithm is a 

new algorithm named RLE-BIT and is based on the idea of using two escape symbols 

rather than one. 

3.2 A new position for the RLE stage 
Gringeler had the idea to position the RLE stage directly after the BWT stage instead of 

in front of the EC stage [2002]. There are two reasons for the new order. Since the length 

of Xout of the RLE stage is usually smaller than the one of Xin, the GST stage has to 

process less symbols with an RLE stage in front. In addition, an RLE stage is usually 

faster than a GST stage, so the whole compression process becomes faster. The second 

reason is that the coding of the runs lowers the pressure of runs already at the GST stage 

and that leads usually to a better compressible GST output sequence. The compression 

rates for a BWCA with an RLE stage before (RLE-BIT, see Section 3.4) and an RLE 

after a WFC stage (RLE0, [Fenwick, 1996]) are compared in Table II. Positioning the 

RLE stage in front of the WFC stage achieves a compression gain of 1.3%. 

Table II. Compression rates with RLE stage before and after the WFC stage in bps 

File RLE after WFC RLE before WFC 

bib 1.923 1.888 

book1 2.302 2.265 

book2 1.982 1.942 
geo 4.180 4.190 

news 2.423 2.386 

obj1 3.765 3.732 

obj2 2.441 2.365 

paper1 2.423 2.382 

paper2 2.367 2.332 

pic 0.703 0.709 

progc 2.454 2.419 
progl 1.681 1.659 

progp 1.690 1.659 

trans 1.459 1.440 

Average 2.271 2.241 
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3.3 The RLE-EXP algorithm 
Since the escape symbol c is different from the run symbol s, c disrupts the local symbol 

context. Therefore, the usage of a threshold run instead of an escape symbol normally 

leads in BWCA implementations to better results [Maniscalco, 2001]. The following 

RLE-EXP algorithm is based on a threshold run. The threshold run consists of two parts: 

a fixed length run of size t and a variable length run of size e. Both runs consists of 

sequences of s. Size e is defined by the following equation: 

 )1(log2 −= Le . 

The variable length run contains the information of the logarithm of the length of L, 

which is identical to the length of the binary representation Ba. Ba would disrupt the local 

symbol context if placed behind the threshold run. Therefore, Ba is placed as a bit 

sequence in a separate data stream called the RLE Mantissa Buffer (RMB). During the 

decoding, the algorithm decodes e first and then reads Ba from RMB. The data of RMB 

will not be processed by the GST stage but is coded directly within the EC stage. Hence 

the RLE-EXP algorithm replaces each run of length l by a run of length t + e and a bit 

sequence Ba in RMB, which is processed separately. Especially long runs are encoded 

very efficiently because of the logarithmic structure. Since the pressure of runs is taken 

out before the GST stage already, there is no need anymore for a further RLE0 stage in 

front of the EC stage. The entire algorithm is presented in Figure 4. 

 

 

 

 

 

 
Fig. 4. The RLE-EXP algorithm 

 

Table III presents some examples of threshold runs with t = 2. The RLE-EXP algorithm 

works especially well with the IF algorithm. 
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GST 

 
EC 

RMB 
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Table III. Threshold runs with t = 2 

Original Run L e Ba (binary) Threshold Run 

aa 2 0 − aa 

aaa 3 1 0 aaa 

aaaa 4 1 1 aaa 

aaaaa 5 2 00 aaaa 

aaaaaa 6 2 01 aaaa 

aaaaaaa 7 2 10 aaaa 

aaaaaaaa 8 2 11 aaaa 

aaaaaaaaa 9 3 000 aaaaa 

aaaaaaaaaa 10 3 001 aaaaa 

 

3.4 The RLE-BIT algorithm 
Apart from the use of a threshold run as in the RLE-EXP algorithm, the start of a run can 

be encoded by escape symbols. Since escape symbols usually disturb the symbol context 

of the GST stage, a new technique is introduced in this paper, which does not hamper the 

GST context. Hereto the RLE-BIT algorithm is split into two parts, with both processes 

being very fast and which bypasses the run information around the GST stage. The first 

part is called RLE-BIT-0 and is located before the GST stage. The second part is called 

RLE-BIT-1 and is located after the GST stage. RLE-BIT-0 stores the position and the 

length of each run in a separate temporary buffer TB and removes all symbols of this run 

except the very first one. Therefore the output sequence of RLE-BIT-0 contains no runs 

of symbols anymore and the length of the output sequence of RLE-BIT-0 is shorter than 

the corresponding length of an output sequence of RLE-EXP. After the GST stage, RLE-

BIT-1 inserts a sequence of escape symbols at the former position of the run in order to 

encode the run length. Figure 5 represents the function of the RLE-BIT algorithm. 

 

 

 

 

 

 
Fig. 5. The RLE-BIT algorithm 
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The run length is encoded by the escape symbols 0 and 1. All bits of the binary 

representation of the run length except the most significant bit are saved with the symbols 

0 and 1, similar to the second part of the Elias code and the RLE0 coding. Table IV 

displays some examples of encoded run lengths for different length L. 

 

Table IV. RLE-BIT encodings of run lengths 

Original Run L Encoding 

aa 2 0 

aaa 3 1 

aaaa 4 00 

aaaaa 5 01 

aaaaaa 6 10 

aaaaaaa 7 11 

aaaaaaaa 8 000 

aaaaaaaaa 9 001 

aaaaaaaaaa 10 010 

 

All symbols from the output sequence of the GST stage get incremented by 2 in order to 

be able to decode the escape symbols unambiguously. Since RLE-BIT-1 inserts the 

escape symbols at the former position of the run, the length of Xout of the GST stage must 

be the same as the length of Xin. Because the length of Xout at the IF stage is smaller than 

Xin, the RLE-BIT algorithm does not work with the IF stage. 

  

4. IMPROVEMENTS TO THE INVERSION FREQUENCIES 

4.1 Symbol Sorting by Frequency Distribution 
The IF stage produces for each symbol a of Ain a part sequence Sa. During this process, 

only symbols which are greater than a are counted. Hence, if symbols with a high 

frequency distribution are processed first, the part sequences of the following symbols, 

with a lower frequency distribution get smaller values. On the other hand, the part 

sequences for symbols with a high frequency distribution are longer than the part 

sequences for symbols with a lower frequency distribution. In order to point out the 

influence of the frequency distribution, Ain of the IF stage is permuted either in ascending 

frequency order or in decreasing frequency order. Table V denotes the compression rates 

for an original alphabet and for both permuted alphabets. In most cases, the ascending 

alphabet permutation produces better compression rates than the original alphabet. Only 
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the files geo and obj1, which are both binary files, have a worse compression rate. If the 

alphabet is sorted by descending frequencies, both binary files get a better compression 

rate than the one from the original alphabet. The file pic gets a better compression rate 

for both sorting orders. Therefore, the alphabet permutation of the IF stage has a strong 

influence on the compression rate and the remaining question is which direction to select 

for the respective file. 

 

Table V. Compression rates in bps for IF stages with an original alphabet, a permuted 

alphabet sorted by ascending frequencies and  

a permuted alphabet sorted by descending frequencies. 

Compression rates better than the rates with the original alphabet are printed bold 

File Original  

Alphabet 

Ascending  

Alphabet 

Descending 

Alphabet 

bib 1.922 1.916 1.934 

book1 2.227 2.226 2.238 
book2 1.939 1.929 1.945 

geo 4.383 4.434 4.214 
news 2.417 2.399 2.429 

obj1 3.849 3.849 3.824 
obj2 2.430 2.418 2.436 

paper1 2.433 2.411 2.448 

paper2 2.346 2.336 2.358 
pic 0.707 0.706 0.704 
progc 2.480 2.464 2.499 

progl 1.713 1.696 1.721 

progp 1.726 1.713 1.737 

trans 1.516 1.500 1.541 

Average 2.292 2.286 2.288 

 

4.2 Sorting Order 
In order to find the optimal sorting direction, some characteristics of the frequency 

distribution of Ain can be used. For each symbol a of Ain, let fa be the number of 

occurrences of a within Xin, i.e. the symbol distribution. Let Favg denote the average 

frequency count of Xin with length n by 
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in

avg A
nF = . 

Further, G is defined as the set of symbols, for which fa is greater or equal to 2 Favg by 

 { }avga FfaG 2| >= . 

Then S describes the percentage share of symbols a of the alphabet Ain, for which fa is 

greater or equal to 2 Favg by 

 
||

100
inA

G
S = . 

Table VI reveals S for each file of the Calgary Corpus. 

 

Table VI. S as the percentage share of symbols a of the alphabet, for which fa ≥ 2 Favg 

File Share 

bib 13.41 

book1 15.85 

book2 15.46 

geo 5.86 
news 15.15 

obj1 9.38 

obj2 10.94 

paper1 14.58 

paper2 16.30 

pic 11.32 

progc 13.98 

progl 18.18 
progp 14.44 

trans 17.17 

Average 13.72 

 

The values of S for the files geo and obj1, which achieve the best compression rate with a 

descending sort order, are the lowest ones in the table and are below 10. Therefore, the IF 

stage is improved by a sorting of the alphabet where the sorting direction is dependent on 

the symbol distribution. Hereto, the IF stage calculates in the first place the frequency 

distribution of the symbols and the corresponding value of S, and performs afterwards a 

permutation of Ain either in ascending order or in decreasing order depending on S. As a 
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threshold for S, the value of 10 is used: if for one file, S is greater or equal to 10, the 

alphabet permutation is performed in ascending frequency order, in the other case in 

decreasing frequency order. 

The improved IF stage in this paper is called Sorted Inversion Frequencies (SIF) because 

of the sorting permutation. 

  

4.3 EC Stage 
The choice of the model at the EC stage is very important in order to achieve a good 

compression rate. Since |Aout| of the SIF stage is greater than 256, a binary coder is used 

for Xout of the SIF stage. Each symbol a of Xout is divided in two parts: the exponential 

part e and the binary representation Ba: 

 )(log2 aBe a == . 

Part e is coded with a hierarchical model [Fenwick, 1996] with 2 levels, the first level 

handles values from 0 until 4 and the second level handles all values greater or equal to 5. 

A typical BWCA blocksize bn is 1 MB, resulting in a maximum for e of 20. 

The bit sequences Ba are processed more extensively. They get sorted by their length e. 

All Ba which have a length of 1, get coded by a model M1 with values 0 and 1. All bit 

sequences Ba with a length of 2 are treated as a single value between 0 and 3 and get 

coded by a model M2. Accordingly, bit sequences Ba with a length of 3 are treated as a 

single value between 0 and 7 and get coded by a model M3. All Ba with a length of 4 or 

greater are divided in two parts. The first part consists of the first 3 bits of Ba, which are 

processed by M3. The rest of the bits of Ba are coded sequentially by a separate model M0 

with values 0 and 1. The reason for using separated models for the first 3 bits of Ba is 

because the first bits have a stronger context relation than the rest of the bits, i.e. the 

distribution of the first bits is not as random as the distribution of the rest of the bits. 

Since the sequences of e are stored alongside the bit sequences Ba, it is possible to decode 

Xout later from e and Ba unambiguously. 

Apart from Xout of the SIF stage, the Ba data from the RMB of the RLE-EXP stage must 

be encoded too as pictured in Figure 4. Hereto the bit sequences Ba from the RMB get 

coded in the same way as the bit sequences Ba from Xout. 

 

5. IMPROVEMENTS TO THE WEIGHTED FREQUENCY COUNT 

5.1 Finer Graduation 
The WFC implementation of Deorowicz gets the best compression rate, 2.249 bps for the 

Calgary Corpus by the weight function w6q, which uses 5 logarithmic quantized levels 
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[2002]. For the implementation of this algorithm, a wide set of different weighting 

functions was examined. The weighting functions were based on logarithmic levels 

because of efficient computation as described in the paper of Deorowicz. Since the 

compression rate depends on several parameters beside the weight function and the 

number of logarithmic levels, like the kind of RLE algorithm and the model of the EC 

stage, it is not easy to predict which weight function and number of levels will lead 

generally to the best compression results. The approach of this paper uses a finer 

graduation by using more levels than Deorowicz, and usually leads to improved results. 

Of course, more levels need more time to calculate since the number of counters, where 

the values are changing, rises proportional to the number of levels [Deorowicz, 2002]. 

When using the RLE-BIT stage and the model of the EC stage, the best compression rate 

was achieved at 12 logarithmic levels instead of only 5. For the size of the sliding 

window tmax, the same value as by Deorowicz is used: 

 2048=maxt . 

 

5.2 Calculated Weights 
The individual weights of the weight function are of central significance for the 

compression rate. Since the structure and symbol distribution varies from file to file, a 

weighting function with fixed weights independent from the file structure will not lead to 

optimal compression rates for all files. For some files, a function with stronger weights is 

best suited for symbols of the immediate past than for older symbols. For other files, a 

weighting function, which weights older symbols almost the same as more recent 

symbols, gives better results. Therefore, the present implementation does not use fixed 

weights, but calculates the weights depending on the symbol distribution. 

Hereto the parameter S is defined as in the SIF stage, which describes the percentage 

share of symbols a of the alphabet Ain, for which the frequency count fa of a inside Xin is 

greater or equal to 2 Favg by 

 
in

avg A
nF = , 

 { }avga FfaG 2| >= , 

 
||

100
inA

G
S = . 

Further, f (l) is defined as an integer function with parameters p0, p1 and S: 
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Then the weight function )(,, 10
tw Spp for the present implementation, starting from 0, is 

defined as: 
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Table VII displays the compression rates for different values of p0 and p1. The parameters 

p0 and p1 were chosen empirically, whereas the value of S is determined by the symbol 

distribution of the respective file. 
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Table VII. Compression rates in bps for )(,, 10
tw Spp . 

Best compression rates in a row are printed bold 

File p0=2400 

p1=4000 

p0=2600 

p1=4200 

p0=2800 

p1=4400 

p0=2400 

p1=4400 

p0=2800 

p1=4000 

p0=2600 

p1=4185 

bib 1.887 1.888 1.892 1.887 1.904 1.888 

book1 2.270 2.266 2.264 2.279 2.264 2.265 
book2 1.943 1.942 1.942 1.949 1.948 1.942 
geo 4.198 4.190 4.185 4.225 4.219 4.190 

news 2.390 2.387 2.385 2.399 2.386 2.386 

obj1 3.732 3.732 3.739 3.737 3.798 3.733 

obj2 2.362 2.365 2.370 2.362 2.440 2.365 

paper1 2.380 2.382 2.386 2.382 2.399 2.382 

paper2 2.336 2.332 2.331 2.341 2.333 2.332 
pic 0.711 0.709 0.718 0.715 0.758 0.709 
progc 2.418 2.419 2.424 2.421 2.435 2.420 

progl 1.660 1.659 1.659 1.664 1.660 1.659 
progp 1.656 1.659 1.664 1.654 1.675 1.659 

trans 1.442 1.440 1.439 1.444 1.439 1.440 

Average 2.242 2.241 2.243 2.247 2.261 2.241 

 

The best overall compression rate was achieved by the following parameter values: 

 26000 =p , 

 41851 =p . 

The improved algorithm with the calculated weights )(,, 10
tw Spp  is called Advanced 

Weighted Frequency Count (AWFC). 

 

5.3 EC Stage 
Since |Aout| of the RLE-BIT-1 stage is equal to 258 and therefore much smaller than |Aout| 

of the SIF stage, the composition of the model for the AWFC implementation is simpler 

than the model for the SIF implementation. 

The model is divided into three parts, whose first part handles the symbols 0, 1 and 2, 

which are the most frequent symbols. The symbols 0 and 1 are the escape symbols of the 

RLE-BIT stage. All symbols greater than 2 are handled by the second and third part of 
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the model. Since the symbols 0 and 1 represent runs of zeros, this structure is similar to 

the ternary structure which Balkenhol and Shtarkov have suggested [1999]. 

Part two and three build a structured coding model with two levels. The first level as a 

selector divides the symbols in eight disjoint subsets: {3}, {4, ..., 5}, {6, ..., 9}, {10, ..., 

15}, {16, ..., 31}, {32, ..., 69}, {70, ..., 149} and {150, ..., 257}. The second level handles 

the offset of the current symbol in each group [Fenwick, 1996]. For example the symbol 

11 would be coded in the first level as 3, since it is in the fourth subset, and in the second 

level as 1, since it is the second symbol of the subset. 

 

6. AN IMPROVED BURROWS-WHEELER COMPRESSION ALGORITHM 

6.1 Selecting the GST Stage 
Since the structure of the output sequence of the AWFC and SIF stage is very different, it 

is not easy to predict which GST stage for a respective file is better suitable in order to 

achieve the best compression rate. There is one property of the SIF stage which can be 

used in this context. The number of additional information beside the part sequences 

which the SIF stage needs for decoding, like symbol frequencies and terminator symbols, 

is proportional to |Ain| of the input sequence. Since |Ain| is limited to 256, the quotient r 

with  

 
n

A
r in=  

is getting smaller for larger input sizes n, which means that larger files need a smaller 

proportion of additional information than smaller files. As a result, the SIF scheme gives 

usually better results on larger files. 

The results of the SIF scheme and of the AWFC scheme are displayed in Table VIII. 
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Table VIII. Compression rates in bps for the SIF and the AWFC scheme. 

Best compression rates for each row are printed in bold font 

File Size SIF AWFC 

bib 111,261 1.916 1.888 
book1 768,771 2.226 2.265 

book2 610,856 1.929 1.942 
geo 102,400 4.214 4.190 
news 377,109 2.399 2.386 
obj1 21,504 3.824 3.733 
obj2 246,814 2.418 2.365 
paper1 53,161 2.411 2.382 
paper2 82,199 2.336 2.332 
pic 513,216 0.706 0.709 

progc 39,611 2.464 2.420 
progl 71,646 1.696 1.659 
progp 49,379 1.713 1.659 
trans 93,695 1.500 1.440 

Average  2.268 2.241 

 

The files book1, book2 and pic, which are the biggest files, get a better compression rate 

when processed by the SIF scheme, whereas all other files compress better with the 

AWFC scheme. Another reason why the SIF scheme is more suitable for larger files is its 

higher speed compared to the AWFC scheme. In order to achieve the best possible 

compression rate, the final implementation of this article uses a hybrid GST algorithm. 

For smaller files, the GST stage consists of an AWFC stage and is combined with the 

RLE-BIT-0/1 stages and a matching EC stage as described above. Larger files use an SIF 

stage as the GST stage bundled with an RLE-EXP stage and a EC stage, adapted on the 

SIF output as described above. Despite the fact that the file news, which is greater than 

256 KB, gets a better compression with AWFC than with SIF, experiences on other 

corpora show that a threshold TSIF of 

 TSIF = 256 KB 

achieves generally the best results. All files smaller than TSIF get processed with the 

AWFC scheme, and files greater or equal than TSIF get processed with the SIF scheme. 

Figure 6 illustrates the final BWCA with the hybrid GST stage. 
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Fig. 6. The final BWCA with the hybrid GST stage 

 

6.2 Comparisons of Compression Rates and Times 
In Table IX, the results of the compression rates for the Calgary Corpus are compared 

between known algorithms from the literature and the hybrid BWCA presented in this 

paper. Table X shows the compression and decompression times from GZIP, a 

widespread compression program which is freely available, and from the hybrid approach 

presented in this paper. Hence the speed can be compared indirectly to compression 

programs on other operating systems, since GZIP is available on most operating systems. 

The following algorithms are itemized: 

• GZIP93-V1.2.4 with option -9 − from Jean-loup Gailly and Mark Adler, based on 

LZ77 [1993], 

• PPM*95 − from William Teahan [1995], 

• cPPMII64-02 − from Dmitry Shkarin [2002], 

• CTW95 − from Frans Willems, Yuri Shtarkov and Tjalling Tjalkens, based on CTW 

[1995], 

• VW98 − from Paul Volf and Frans Willems, based on PPM* and CTW [1998], 

• BW94 − from Michael Burrows and David Wheeler, based on BWT [1994], 

• F96 − from Peter Fenwick, based on BWT [1996], 

• BS99 − from Bernhard Balkenhol and Yuri Shtarkov, based on BWT [1999], 

• D02 − from Sebastian Deorowicz, based on BWT [2002], 

• A03 − the BWT approach presented in this paper. 
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The results show that A03 produces the best average compression rate of all BWT based 

algorithms. A comparison must also take into account that most PPM and CTW based 

approaches need higher computational resources. A03 needs about double as much time 

as GZIP93 for compression and about five times as much as GZIP93 for decompression, 

which is significantly less than most PPM and CTW approaches. 

The execution time of the BWT, RLE, SIF, AWFC and EC stages are very different from 

file to file. During compression, the BWT and EC stage of A03 need about the same time 

on average. The IF stage of A03 needs about 50% of the time of the BWT/EC stage and 

the WFC stage takes about 100% more time than BWT/EC in average during 

compression. During decompression the BWT stage of A03 is about ten times faster than 

the EC stage on average. 

All tests were performed on a WINDOWS 2000 PC with a 700 MHz Pentium III 

processor. 

 

Table IX. Compression rates for the Calgary Corpus in bps 

File GZIP 

93 

PPM* 

95 

cPPMII 

64-02 

CTW 

95 

VW98 BW94 F96 BS99 D02 A03 

bib 2.516 1.86 1.676 1.79 1.71 2.02 1.95 1.91 1.896 1.888 

book1 3.256 2.41 2.135 2.19 2.15 2.48 2.39 2.27 2.274 2.226 

book2 2.702 2.00 1.782 1.87 1.82 2.10 2.04 1.96 1.958 1.929 

geo 5.355 4.78 4.158 4.46 4.53 4.73 4.50 4.16 4.152 4.190 
news 3.072 2.37 2.137 2.29 2.21 2.56 2.50 2.42 2.409 2.399 

obj1 3.839 3.83 3.498 3.68 3.61 3.88 3.87 3.73 3.695 3.733 

obj2 2.628 2.31 2.110 2.31 2.25 2.53 2.46 2.45 2.414 2.365 

paper1 2.792 2.33 2.142 2.25 2.15 2.52 2.46 2.41 2.403 2.382 

paper2 2.880 2.34 2.124 2.21 2.14 2.50 2.41 2.36 2.347 2.332 

pic 0.816 0.84 0.704 0.79 0.76 0.79 0.77 0.72 0.717 0.706 

progc 2.679 2.34 2.161 2.29 2.20 2.54 2.49 2.45 2.431 2.420 

progl 1.807 1.61 1.390 1.56 1.48 1.75 1.72 1.68 1.670 1.659 
progp 1.812 1.55 1.391 1.60 1.46 1.74 1.70 1.68 1.672 1.659 

trans 1.611 1.39 1.172 1.34 1.26 1.52 1.50 1.46 1.452 1.440 

Avg. 2.697 2.28 2.041 2.19 2.12 2.40 2.34 2.26 2.249 2.238 
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Table X. Compression and decompression times 

for the Calgary Corpus in seconds 

File Comp. Time 

GZIP 

Decomp. Time 

GZIP 

Comp. Time 

A03 

Decomp. Time 

A03 

bib 0.09 0.05 0.23 0.20 

book1 0.62 0.25 1.23 1.10 
book2 0.41 0.18 0.86 0.79 

geo 0.28 0.07 1.11 1.11 

news 0.25 0.13 0.56 0.55 

obj1 0.04 0.04 0.18 0.18 

obj2 0.23 0.09 0.96 0.91 

paper1 0.05 0.04 0.14 0.13 

paper2 0.07 0.04 0.20 0.18 

pic 0.64 0.09 0.31 0.31 
progc 0.04 0.04 0.11 0.10 

progl 0.07 0.04 0.14 0.12 

progp 0.05 0.03 0.10 0.08 

trans 0.07 0.04 0.17 0.14 

Sum 2.91 1.13 6.30 5.90 

 

7. CONCLUSIONS 

The Burrows-Wheeler Compression Algorithm achieves good compression rates 

combined with high speed. Within this field, the post BWT stages play a central role in 

order to realize the best possible results. Implementations of post BWT stages typically 

consist of three stages: a Global Structure Transformation (GST), a Run Length Encoding 

(RLE) stage and an Entropy Coder (EC) stage. 

This paper presents a new position for the RLE stage together with adapted RLE 

techniques. The first technique, called RLE-EXP and based on the variable length code of 

Maniscalco, uses a threshold run with a logarithmic length and compresses the mantissa 

information of the run length outside the normal symbol buffer directly with an adapted 

entropy coder. The second technique, called RLE-BIT, is a new RLE algorithm and 

removes all runs from the symbol buffer before the GST stage and codes the run length 

information back into the buffer after the GST stage by using two escape symbols. 
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An improved version of the Inversion Frequencies algorithm, called Sorted Inversion 

Frequencies (SIF), was introduced, which performs a sorting permutation of the input 

alphabet either in ascending or descending order depending on the symbol distribution. 

This permutation together with an adapted EC model helps to upgrade the compression 

rate and to accelerate the execution. 

A variation of the Weighted Frequency Count algorithm, called Advanced Weighted 

Frequency Count (AWFC), improves compression by using more logarithmic levels than 

the original implementation and by using a calculating scheme for the weights depending 

on the symbol distribution. Together with a special EC model, a better compression rate 

to the original implementation is achieved. 

SIF and AWFC stages were combined in a hybrid scheme, the SIF stage with the RLE-

EXP stage and the AWFC stage with the RLE-BIT stages. Files smaller than 256 KB are 

treated by the AWFC scheme and files larger or equal to 256 KB are processed by the 

SIF scheme. 

This hybrid scheme achieves a compression rate for the Calgary Corpus of 2.238 bps. 

The compression speed achieves around 45% of the speed of GZIP and the 

decompression speed achieves about 20% of the speed of GZIP. 

At this point of time, it is difficult to predict if further improved techniques of already 

known GST algorithms will give better compression rates or whether the development of 

a totally new approach for the GST algorithm could lead to better compression rates and 

higher speeds. In any case, the distance between the compression rates of the BWCA and 

the compression rates of the strongest compression algorithms known, the PPM and 

CTW methods, is getting smaller. 
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