
Improvements to the Burrows-Wheeler
Compression Algorithm: After BWT Stages
JUERGEN ABEL
University Duisburg-Essen

__

The lossless Burrows-Wheeler Compression Algorithm has received considerable attention over recent years for
both its simplicity and effectiveness. It is based on a permutation of the input sequence − the Burrows-Wheeler
Transform − which groups symbols with a similar context close together. In the original version, this
permutation was followed by a Move-To-Front transformation and a final entropy coding stage. Later versions
used different algorithms which come after the Burrows-Wheeler Transform, since the stages after the Burrows-
Wheeler Transform have a significant influence on the compression rate. This article describes improved
algorithms for the run length encoding, inversion frequencies and weighted frequency count stages that follow
the Burrows-Wheeler Transform. Results for compression rates are presented for different variations of the
algorithm together with compression and decompression times. Finally, an implementation with a compression
rate of 2.238 bps on the Calgary Corpus is introduced, which is the best result published in this field to date.

Categories and Subject Descriptors: E.4 [Coding and Information Theory] - Data compaction and
compression; H1.1 [Models and Principles]: Systems and Information Theory - Information theory; Value of
information

General Terms: algorithms, data compression

Additional Key Words and Phrases: Burrows-Wheeler Transform, text compression, block sorting,
compression, move to front coding, weighted frequency count, inversion frequencies, run length encoding,
entropy coding, BWT, BWCA, MTF, IF, WFC, RLE, EC, GST, SIF, AWFC
__

1. INTRODUCTION

The family of the block sorting algorithms based on the Burrows-Wheeler Transform

(BWT) has grown over the past few years starting with the first implementation described

by Burrows and Wheeler [1994]. Several authors have presented improvements to the

original algorithm. Andersson and Nilsson have published several papers about Radix

Sort, which can be used as a first sorting step during the BWT [1994, 1996, 1998]. In his

final BWT research report, Fenwick described some BWT sort improvements including

sorting long words instead of single bytes [1995]. Kurtz presented several papers about

BWT sorting stages with suffix trees, which needed less space than other suffix tree

implementations and are linear in time [1998, 1999].

Author's address: Juergen Abel, University Duisburg-Essen, Department "Communications Systems", Faculty
of Engineering Sciences, Bismarckstrasse 81, D-47057 Duisburg, Germany; Email juergen.abel@acm.org

This preprint from 31.03.2003 is posted for personal use only and not for redistribution.

- 2 -

Sadakane described a fast suffix array sorting scheme in 1997 and 2000. In 1999, Larsson

presented an extended suffix array sorting scheme. Based on already sorted suffices,

Seward developed in 2000 two fast suffix sorting algorithms called "copy" and "cache".

Itoh and Tanaka presented a fast sorting algorithm called the two stage suffix sort [1999].

Kao improved the two stage suffix sort by some new techniques which are very fast for

sequences of repeat symbols [1999]. Manzini and Ferragina published in 2002 some

improved suffix array sorting techniques based on the results of Seward and of Itoh and

Tanaka.

Several techniques for the post BWT stages have been also published. Besides the MTF

improvements from Schindler [1997], and from Balkenhol and Shtarkov [1999], an MTF

replacement, called Inversion Frequencies, was introduced by Arnavut and Magliveras in

1997, and in 2000 Deorowicz presented another MTF replacement, named Weighted

Frequency Count. Both MTF replacements will be described later.

Various modeling techniques for the entropy coding at the end of the compression

process were presented by Fenwick [1995, 1996], Balkenhol and Shtarkov [1999] and

Deorowicz [2000].

This paper concentrates on improvements of the basic stages subsequent to the BWT,

with no special preprocessing for different kinds of data like text preprocessing

[Grabowski, 1999; Kruse and Mukherjee, 1999; Franceschini et al., 2000; Awan et al.,

2001; Isal and Moffat, 2001; Isal et al., 2002] or binary preprocessing before the BWT.

Several improved variants will be presented and compared using compression rate,

compression time and decompression time with other compression algorithms. Finally, a

complete compression algorithm will be introduced, which uses a hybrid scheme and

which achieves a high compression rate.

2. THE BURROWS-WHEELER COMPRESSION ALGORITHM

2.1 Typical scheme
A typical scheme of the Burrows-Wheeler Compression Algorithm (BWCA) is presented

in Figure 1 and consists of four stages. Each stage is a transformation of the input data

and reaches the output data to the next stage. The stages are processed sequentially from

left to right. The first stage is the BWT. This stage sorts the data in a way that symbols

with a similar context are grouped closely together. The BWT stage keeps the number of

symbols during the transformation constant. The second stage is called in this article

Global Structure Transformation (GST), which transforms the local context of the

symbols to a global context [Balkenhol and Kurtz, 1998; Deorowicz, 2000]. A typical

- 3 -

representative of a GST stage is the Move-To-Front transformation (MTF), which was

used by Burrows and Wheeler in their original publication and which was the first

algorithm used as a GST stage in a BWCA. The MTF stage is a List Update Algorithm

(LUA), which replaces the input symbols with corresponding ranking values (Bentley et

al., 1986). Just like the BWT stage, a LUA stage does not alter the number of symbols.

The third stage typically shrinks the number of symbols by applying a Run Length

Encoding scheme (RLE). Different algorithms have been presented for this purpose, with

the Zero Run Transformation (RLE0) from Wheeler found to be an efficient one

[Fenwick, 1996]. The last stage is an Entropy Coding stage (EC), which compresses the

symbols by using an adapted model.

Fig. 1. Typical scheme of the Burrows-Wheeler Compression Algorithm

In order to elucidate the operation modes of the different stages, Figure 2(a) - 2(e)

displays the transformed data of the input string "abracadabraabracadabra" in

hexadecimal. The input data of the BWT stage is shown in Figure 2(a). As can be seen in

Figure 2(b) the output data of the BWT stage contains many sequences of repeating

symbols and has a local structure, i.e. symbols with a similar context form small

fragments. The GST stage − in this example an MTF scheme is used − transforms the

local structure of the BWT output to a global structure by using a ranking scheme

according to the last recently used symbols and produces sequences of continuous zeros

which are displayed in Figure 2(c). The RLE0 stage removes the zero runs in Figure 2(d)

and the final EC stage produces a bit output by using an arithmetic coding scheme in

Figure 2(e).

Fig. 2. Transformed data of the input string "abracadabraabracadabra" by the different stages

BWT

GST

RLE0

EC

(a) BWT input : 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61

(b) BWT output : 61 72 72 64 64 61 72 72 63 63 61 61 61 61 61 61 61 61 62 62 62 62

(c) GST output : 61 72 00 65 00 02 02 00 65 00 02 00 00 00 00 00 00 00 65 00 00 00

(d) RLE0 output : 63 74 00 67 00 04 04 00 67 00 04 00 00 00 67 00 00

(e) EC output : 00 0D 01 8D B3 FF 81 00 72 A8 E8 2B

- 4 -

In the following, the focus is on developing improvements, and on exploring the

reordering and possible replacement of stages, which follow the BWT stage.

2.2 Definitions
For the description of the algorithms, the following notation will be used. Let A be an

ordered set, called alphabet, with size |A|. Let X = x0x1x2…xn-1 denote a sequence with

length n and xi ∈ A. The first index of a sequence is 0. Each stage has an input sequence

Xin and an output sequence Xout as well as a corresponding input alphabet Ain and an

output alphabet Aout. The stage processes the symbols of Xin and calculates the

corresponding symbols of Xout. After finishing one stage, Xout of this stage will be used as

Xin of the following stage. The maximal size for Xin is called the blocksize bn. Up to the

GST stage, Ain and Aout will have a bit width of 8 bits resulting in |Ain| = |Aout| = 256. Since

some GST stages have output symbols with values greater than 255, the bit width of Ain

and Aout after the GST stage will be assumed as 32 bits in order to be able to handle

values greater than 255. Furthermore, the binary representation sequence of a symbol a is

called Ba, for example B4 = "100" and B7 = "111". The compression rate and speed is

measured on the Calgary Corpus [Bell et al., 1989, 1990], a standard set of files used for

benchmarking compression algorithms.

2.2 Run Length Encoding
In the past, different RLE schemes were presented [Fenwick, 1996; Maniscalco, 2000,

2001]. The main function of the RLE is to support the probability estimation of the next

stage. Long runs of a symbol a tend to overestimate the global symbol probability of a

for fragments, where a occurs only occasionally. The result is that within these disjointed

fragments, the probability value for a is too high which leads to lower compression.

Balkenhol and Shtarkov name this phenomenon “the pressure of runs” [1999]. The RLE

stage helps to decrease this pressure. In order to improve the probability estimation of the

EC stage, the common BWCA schemes position the RLE stage directly in front of the EC

stage.

One common RLE stage for BWT based compressors is the Zero Run Transformation

(RLE0) from Wheeler [Fenwick, 1996]. Wheeler suggested to code only the runs of the 0

symbols and no runs of other symbols, since 0 is the symbol with the most runs. Hereto

an offset of 1 is added to symbols greater than 0. The run length is incremented by one

- 5 -

and all bits of its binary representation except the most significant bit – which is always 1

– are stored with the symbols 0 and 1.

Some authors suggested an RLE stage before the BWT stage for speed optimization, but

such a stage deteriorates the compression rate in general [Deorowicz, 2000]. Since there

are sorting algorithms now known which sort the runs of symbols practically in linear

time [Itoh and Tanaka, 1999; Kao, 1999; Seward, 2000; Manzini and Ferragina, 2002],

there is no reason to use such a stage before the BWT stage anymore.

2.3 Inversion Frequencies
Several GST stages have been unveiled since the birth of the BWCA in 1994. Their

purpose is to produce an output sequence which is more compressible by the entropy

coder than the output sequence of the original MTF stage. One of these MTF

replacements is the algorithm from Arnavut and Magliveras [1997], which they named

Inversion Frequencies (IF). The IF algorithm is not a LUA. It produces for each symbol

a ∈ Ain a part sequence Sa. For each alphabet symbol a the input sequence Xin is scanned

and if the current element of Xin is equal to a, the number of symbols greater than a

between the current position and the last position of a is output. In order to reproduce Xin

from the set of Sa either the frequencies of the alphabet symbols or a terminator symbol

behind each Sa is needed in addition. One advantage of the IF algorithm is the fact that

the part sequence of the last symbol z of the alphabet, called Sz, consists only of the

symbol 0. Therefore Sz is not needed in order to reproduce the original sequence and the

length of Xout gets smaller than the length of Xin. Xout of IF is different from Xout of MTF

in more aspects. Xout of the MTF stage contains many zero runs, which represent runs of

equal symbols, and these runs are equally distributed over the whole sequence. Xout of the

IF stage consists of several part sequences Sa, one for each a ∈ Ain except the last symbol

z. Sa of higher symbols have typically smaller values than Sa of lower symbols, since the

number of alphabet symbols, which are greater than the scanned symbol, are smaller. Sa

for the last symbols of Ain have usually many long runs of zeros. In order to represent this

behavior, Figure 3 compares the share of the zeros of the file book1 over the file position

for both the MTF stage output and for the IF stage output. For a better comparison, Sz is

included in Xout of IF. As can be seen, the average share of zeros in the output of IF is

rising towards the end of the file until it reaches 100% at the end. In the output of MTF,

the average share of zeros fluctuates around 60%.

- 6 -

Fig. 3. Share of the zeros in percent of the (a) MTF output position and (b) IF output position of book1

2.4 Weighted Frequency Count
Another GST stage is the Weighted Frequency Count algorithm (WFC) presented by

Deorowicz in 2002. The WFC is a representative of a LUA and is closer to MTF than to

IF. It replaces the input symbol x with a corresponding ranking value rx. The difference

between WFC and MTF is the function, which calculates rx. Inside the MTF algorithm, rx

is the index of the current input symbol x within the list L of alphabet symbols. Upon

each request of x, the current index rx of the symbol within L is output and the symbol is

moved to the front of L, i.e. to index 0. Since a symbol is moved straight to the front of L

without taking the former frequency distribution of the symbol into account, the MTF

stage pushes many times more frequent symbols aside by less frequently used symbols.

This leads to higher ranking values for frequently used symbols and hampers the

compression at the EC stage, since lower values are cheaper to compress with the

commonly used EC models. The WFC stage calculates rx by a function, which takes into

account the symbol frequencies and the distance of the last occurrences of x inside a

sliding window of size tmax [Deorowicz, 2002]. More frequently used symbols get a lower

rx than less frequently used symbols, which supports the following EC probability

estimation. Table I presents the average ranking values rx of the MTF and WFC stage

together with the corresponding execution times in seconds for all files of the Calgary

Corpus. The average ranking values are the averages of the output sequences of the

corresponding stages. The MTF and WFC stages are both performed with an RLE stage

processed beforehand.

- 7 -

Table I. Average ranking values rx and execution times in seconds

for the MTF and WFC stage

File MTF

Average rx

WFC

Average rx

MTF

Time in Secs

WFC

Time in Secs

bib 4.45 4.29 0.01 0.12

book1 3.25 2.97 0.05 0.98

book2 3.52 3.28 0.03 0.68
geo 48.74 44.01 0.03 0.91

news 5.57 5.12 0.03 0.58

obj1 34.59 32.64 0.01 0.13

obj2 18.59 17.81 0.02 0.71

paper1 4.65 4.48 0.01 0.08

paper2 3.95 3.73 0.01 0.11

pic 6.12 5.20 0.01 0.23

progc 5.66 5.48 0.01 0.06
progl 3.62 3.47 0.01 0.08

progp 4.00 3.93 0.01 0.05

trans 4.14 4.00 0.01 0.08

Average

Sum

10.78 10.03

0.25

4.80

In all cases, the average ranking values for the WFC stage are smaller or equal than for

the MTF stage, therefore the WFC output sequence is higher compressible. The drawback

of the WFC stage is the high time consumption, about 20 times as high as for the MTF

stage, since the function recalculates the rankings of all alphabet symbols for each

symbol x of Xin.

2.5 Other MTF Replacements
Beside MTF, WFC and IF, there have been more GST stages published, like the MTF-1

algorithm from Balkenhol, Kurtz and Shtarkov [1999], the MTF-2 algorithm from

Balkenhol and Shtarkov [1999] and the Distance Coding algorithm from Binder [Binder,

2000; Deorowicz, 2002]. The MTF-1 and MTF-2 algorithms are close to the MTF

algorithm. MTF-1 moves only the symbol from the second position to the front of the list,

symbols with higher positions are moved to the second position. MTF-2 differs from

MTF-1, by the fact, that symbols from the second position are moved to the front of the

- 8 -

list only if the last ranking value was not zero, i.e. if the same symbol occurred again.

The DC algorithm is more related to the IF algorithm and is based on the Interval

Encoding scheme from Elias [1987]. For each symbol of the input sequence, the DC

algorithm outputs the distance to the next occurrence of the same symbol. If the symbol

does not occur again, a zero is output. Binder [2000] proposed three improvements to the

basic algorithm. If the length of the input sequence is transmitted too, the last sequence of

ending zeros is redundant. Furthermore, for calculating the distance to the next

occurrence of the same symbol, only unknown symbols have to be counted. The last

improvement means that if the last symbol is equal to the current symbol, nothing has to

be output and DC proceeds to the next symbol. The main difference to the Interval

Encoding of Elias is, that DC does not count known symbols and skips repeated symbols.

Comparisons of published results [Deorowicz, 2002] with the experiences of the author

of this paper indicate that the IF stage and the WFC stage tend to produce the best

compression rates.

3. IMPROVEMENTS TO RUN LENGTH ENCODING

3.1 General operation
RLE is a simple and popular data compression algorithm. The sequence of length l of a

repeated symbol s is replaced by a shorter sequence, usually containing one or more

symbols of s, length information and sometimes an escape symbol c. RLE algorithms

differ from each other mainly in three points: the threshold t, the marking of the start of a

run and the coding of the length information. If l is smaller than t, the run keeps

unchanged, and if l is greater or equal to t, the run is replaced. The start of a run can be

indicated by a threshold run or an escape symbol c. If a threshold run is used, the start is

characterized by a small sequence of s, which has a length greater or equal to t. If an

escape symbol c indicates the start of a run, s is normally put behind c in order to

characterize the run symbol. The escape symbol c must not be an element of Ain or

occurrences of c have to be coded in such a manner that they are not mixed up with the

start of a run. The length information l can be coded in different ways. Usually l is put

directly behind the threshold run or behind s.

Maniscalco [2001] describes an algorithm which uses a variable length code and divides

the length information into two parts: an exponent part e and a binary representation part

Ba. The exponent part e, called the size of the variable length code in Maniscalco’s paper,

reflects the logarithm of l. The binary representation part Ba, called the value of the

- 9 -

variable length code by Maniscalco, contains the bits of the binary representation of l.

Such a structure leads to an elegant and efficient RLE algorithm for the BWCA.

Two RLE algorithms are introduced and discussed in the next section. One is based on

the variable length code of Maniscalco and is called RLE-EXP. The other algorithm is a

new algorithm named RLE-BIT and is based on the idea of using two escape symbols

rather than one.

3.2 A new position for the RLE stage
Gringeler had the idea to position the RLE stage directly after the BWT stage instead of

in front of the EC stage [2002]. There are two reasons for the new order. Since the length

of Xout of the RLE stage is usually smaller than the one of Xin, the GST stage has to

process less symbols with an RLE stage in front. In addition, an RLE stage is usually

faster than a GST stage, so the whole compression process becomes faster. The second

reason is that the coding of the runs lowers the pressure of runs already at the GST stage

and that leads usually to a better compressible GST output sequence. The compression

rates for a BWCA with an RLE stage before (RLE-BIT, see Section 3.4) and an RLE

after a WFC stage (RLE0, [Fenwick, 1996]) are compared in Table II. Positioning the

RLE stage in front of the WFC stage achieves a compression gain of 1.3%.

Table II. Compression rates with RLE stage before and after the WFC stage in bps

File RLE after WFC RLE before WFC

bib 1.923 1.888

book1 2.302 2.265

book2 1.982 1.942
geo 4.180 4.190

news 2.423 2.386

obj1 3.765 3.732

obj2 2.441 2.365

paper1 2.423 2.382

paper2 2.367 2.332

pic 0.703 0.709

progc 2.454 2.419
progl 1.681 1.659

progp 1.690 1.659

trans 1.459 1.440

Average 2.271 2.241

- 10 -

3.3 The RLE-EXP algorithm
Since the escape symbol c is different from the run symbol s, c disrupts the local symbol

context. Therefore, the usage of a threshold run instead of an escape symbol normally

leads in BWCA implementations to better results [Maniscalco, 2001]. The following

RLE-EXP algorithm is based on a threshold run. The threshold run consists of two parts:

a fixed length run of size t and a variable length run of size e. Both runs consists of

sequences of s. Size e is defined by the following equation:

)1(log2 −= Le .

The variable length run contains the information of the logarithm of the length of L,

which is identical to the length of the binary representation Ba. Ba would disrupt the local

symbol context if placed behind the threshold run. Therefore, Ba is placed as a bit

sequence in a separate data stream called the RLE Mantissa Buffer (RMB). During the

decoding, the algorithm decodes e first and then reads Ba from RMB. The data of RMB

will not be processed by the GST stage but is coded directly within the EC stage. Hence

the RLE-EXP algorithm replaces each run of length l by a run of length t + e and a bit

sequence Ba in RMB, which is processed separately. Especially long runs are encoded

very efficiently because of the logarithmic structure. Since the pressure of runs is taken

out before the GST stage already, there is no need anymore for a further RLE0 stage in

front of the EC stage. The entire algorithm is presented in Figure 4.

Fig. 4. The RLE-EXP algorithm

Table III presents some examples of threshold runs with t = 2. The RLE-EXP algorithm

works especially well with the IF algorithm.

BWT

RLE-
EXP

GST

EC

RMB

- 11 -

Table III. Threshold runs with t = 2

Original Run L e Ba (binary) Threshold Run

aa 2 0 − aa

aaa 3 1 0 aaa

aaaa 4 1 1 aaa

aaaaa 5 2 00 aaaa

aaaaaa 6 2 01 aaaa

aaaaaaa 7 2 10 aaaa

aaaaaaaa 8 2 11 aaaa

aaaaaaaaa 9 3 000 aaaaa

aaaaaaaaaa 10 3 001 aaaaa

3.4 The RLE-BIT algorithm
Apart from the use of a threshold run as in the RLE-EXP algorithm, the start of a run can

be encoded by escape symbols. Since escape symbols usually disturb the symbol context

of the GST stage, a new technique is introduced in this paper, which does not hamper the

GST context. Hereto the RLE-BIT algorithm is split into two parts, with both processes

being very fast and which bypasses the run information around the GST stage. The first

part is called RLE-BIT-0 and is located before the GST stage. The second part is called

RLE-BIT-1 and is located after the GST stage. RLE-BIT-0 stores the position and the

length of each run in a separate temporary buffer TB and removes all symbols of this run

except the very first one. Therefore the output sequence of RLE-BIT-0 contains no runs

of symbols anymore and the length of the output sequence of RLE-BIT-0 is shorter than

the corresponding length of an output sequence of RLE-EXP. After the GST stage, RLE-

BIT-1 inserts a sequence of escape symbols at the former position of the run in order to

encode the run length. Figure 5 represents the function of the RLE-BIT algorithm.

Fig. 5. The RLE-BIT algorithm

BWT

RLE-
BIT-0

GST

EC

TB

RLE-
BIT-1

- 12 -

The run length is encoded by the escape symbols 0 and 1. All bits of the binary

representation of the run length except the most significant bit are saved with the symbols

0 and 1, similar to the second part of the Elias code and the RLE0 coding. Table IV

displays some examples of encoded run lengths for different length L.

Table IV. RLE-BIT encodings of run lengths

Original Run L Encoding

aa 2 0

aaa 3 1

aaaa 4 00

aaaaa 5 01

aaaaaa 6 10

aaaaaaa 7 11

aaaaaaaa 8 000

aaaaaaaaa 9 001

aaaaaaaaaa 10 010

All symbols from the output sequence of the GST stage get incremented by 2 in order to

be able to decode the escape symbols unambiguously. Since RLE-BIT-1 inserts the

escape symbols at the former position of the run, the length of Xout of the GST stage must

be the same as the length of Xin. Because the length of Xout at the IF stage is smaller than

Xin, the RLE-BIT algorithm does not work with the IF stage.

4. IMPROVEMENTS TO THE INVERSION FREQUENCIES

4.1 Symbol Sorting by Frequency Distribution
The IF stage produces for each symbol a of Ain a part sequence Sa. During this process,

only symbols which are greater than a are counted. Hence, if symbols with a high

frequency distribution are processed first, the part sequences of the following symbols,

with a lower frequency distribution get smaller values. On the other hand, the part

sequences for symbols with a high frequency distribution are longer than the part

sequences for symbols with a lower frequency distribution. In order to point out the

influence of the frequency distribution, Ain of the IF stage is permuted either in ascending

frequency order or in decreasing frequency order. Table V denotes the compression rates

for an original alphabet and for both permuted alphabets. In most cases, the ascending

alphabet permutation produces better compression rates than the original alphabet. Only

- 13 -

the files geo and obj1, which are both binary files, have a worse compression rate. If the

alphabet is sorted by descending frequencies, both binary files get a better compression

rate than the one from the original alphabet. The file pic gets a better compression rate

for both sorting orders. Therefore, the alphabet permutation of the IF stage has a strong

influence on the compression rate and the remaining question is which direction to select

for the respective file.

Table V. Compression rates in bps for IF stages with an original alphabet, a permuted

alphabet sorted by ascending frequencies and

a permuted alphabet sorted by descending frequencies.

Compression rates better than the rates with the original alphabet are printed bold

File Original

Alphabet

Ascending

Alphabet

Descending

Alphabet

bib 1.922 1.916 1.934

book1 2.227 2.226 2.238
book2 1.939 1.929 1.945

geo 4.383 4.434 4.214
news 2.417 2.399 2.429

obj1 3.849 3.849 3.824
obj2 2.430 2.418 2.436

paper1 2.433 2.411 2.448

paper2 2.346 2.336 2.358
pic 0.707 0.706 0.704
progc 2.480 2.464 2.499

progl 1.713 1.696 1.721

progp 1.726 1.713 1.737

trans 1.516 1.500 1.541

Average 2.292 2.286 2.288

4.2 Sorting Order
In order to find the optimal sorting direction, some characteristics of the frequency

distribution of Ain can be used. For each symbol a of Ain, let fa be the number of

occurrences of a within Xin, i.e. the symbol distribution. Let Favg denote the average

frequency count of Xin with length n by

- 14 -

in

avg A
nF = .

Further, G is defined as the set of symbols, for which fa is greater or equal to 2 Favg by

 { }avga FfaG 2| >= .

Then S describes the percentage share of symbols a of the alphabet Ain, for which fa is

greater or equal to 2 Favg by

||

100
inA

G
S = .

Table VI reveals S for each file of the Calgary Corpus.

Table VI. S as the percentage share of symbols a of the alphabet, for which fa ≥ 2 Favg

File Share

bib 13.41

book1 15.85

book2 15.46

geo 5.86
news 15.15

obj1 9.38

obj2 10.94

paper1 14.58

paper2 16.30

pic 11.32

progc 13.98

progl 18.18
progp 14.44

trans 17.17

Average 13.72

The values of S for the files geo and obj1, which achieve the best compression rate with a

descending sort order, are the lowest ones in the table and are below 10. Therefore, the IF

stage is improved by a sorting of the alphabet where the sorting direction is dependent on

the symbol distribution. Hereto, the IF stage calculates in the first place the frequency

distribution of the symbols and the corresponding value of S, and performs afterwards a

permutation of Ain either in ascending order or in decreasing order depending on S. As a

- 15 -

threshold for S, the value of 10 is used: if for one file, S is greater or equal to 10, the

alphabet permutation is performed in ascending frequency order, in the other case in

decreasing frequency order.

The improved IF stage in this paper is called Sorted Inversion Frequencies (SIF) because

of the sorting permutation.

4.3 EC Stage
The choice of the model at the EC stage is very important in order to achieve a good

compression rate. Since |Aout| of the SIF stage is greater than 256, a binary coder is used

for Xout of the SIF stage. Each symbol a of Xout is divided in two parts: the exponential

part e and the binary representation Ba:

)(log2 aBe a == .

Part e is coded with a hierarchical model [Fenwick, 1996] with 2 levels, the first level

handles values from 0 until 4 and the second level handles all values greater or equal to 5.

A typical BWCA blocksize bn is 1 MB, resulting in a maximum for e of 20.

The bit sequences Ba are processed more extensively. They get sorted by their length e.

All Ba which have a length of 1, get coded by a model M1 with values 0 and 1. All bit

sequences Ba with a length of 2 are treated as a single value between 0 and 3 and get

coded by a model M2. Accordingly, bit sequences Ba with a length of 3 are treated as a

single value between 0 and 7 and get coded by a model M3. All Ba with a length of 4 or

greater are divided in two parts. The first part consists of the first 3 bits of Ba, which are

processed by M3. The rest of the bits of Ba are coded sequentially by a separate model M0

with values 0 and 1. The reason for using separated models for the first 3 bits of Ba is

because the first bits have a stronger context relation than the rest of the bits, i.e. the

distribution of the first bits is not as random as the distribution of the rest of the bits.

Since the sequences of e are stored alongside the bit sequences Ba, it is possible to decode

Xout later from e and Ba unambiguously.

Apart from Xout of the SIF stage, the Ba data from the RMB of the RLE-EXP stage must

be encoded too as pictured in Figure 4. Hereto the bit sequences Ba from the RMB get

coded in the same way as the bit sequences Ba from Xout.

5. IMPROVEMENTS TO THE WEIGHTED FREQUENCY COUNT

5.1 Finer Graduation
The WFC implementation of Deorowicz gets the best compression rate, 2.249 bps for the

Calgary Corpus by the weight function w6q, which uses 5 logarithmic quantized levels

- 16 -

[2002]. For the implementation of this algorithm, a wide set of different weighting

functions was examined. The weighting functions were based on logarithmic levels

because of efficient computation as described in the paper of Deorowicz. Since the

compression rate depends on several parameters beside the weight function and the

number of logarithmic levels, like the kind of RLE algorithm and the model of the EC

stage, it is not easy to predict which weight function and number of levels will lead

generally to the best compression results. The approach of this paper uses a finer

graduation by using more levels than Deorowicz, and usually leads to improved results.

Of course, more levels need more time to calculate since the number of counters, where

the values are changing, rises proportional to the number of levels [Deorowicz, 2002].

When using the RLE-BIT stage and the model of the EC stage, the best compression rate

was achieved at 12 logarithmic levels instead of only 5. For the size of the sliding

window tmax, the same value as by Deorowicz is used:

 2048=maxt .

5.2 Calculated Weights
The individual weights of the weight function are of central significance for the

compression rate. Since the structure and symbol distribution varies from file to file, a

weighting function with fixed weights independent from the file structure will not lead to

optimal compression rates for all files. For some files, a function with stronger weights is

best suited for symbols of the immediate past than for older symbols. For other files, a

weighting function, which weights older symbols almost the same as more recent

symbols, gives better results. Therefore, the present implementation does not use fixed

weights, but calculates the weights depending on the symbol distribution.

Hereto the parameter S is defined as in the SIF stage, which describes the percentage

share of symbols a of the alphabet Ain, for which the frequency count fa of a inside Xin is

greater or equal to 2 Favg by

in

avg A
nF = ,

 { }avga FfaG 2| >= ,

||

100
inA

G
S = .

Further, f (l) is defined as an integer function with parameters p0, p1 and S:

- 17 -
















≥
+

−

=

=

=

2
)(

)1(

12

02

)(

2
1

0,,

14

17

,,

10

10

l
lSp

plf

l

l

lf

Spp

Spp .

Then the weight function)(,, 10
tw Spp for the present implementation, starting from 0, is

defined as:



















≥

−≤≤

−≤≤

−≤≤

−≤≤

=

=

20480

122)11(

...

122)3(

122)2(

122)1(

0)0(

)(

1110
,,

32
,,

21
,,

10
,,

,,

,,

10

10

10

10

10

10

t

tf

tf

tf

tf

tf

tw

Spp

Spp

Spp

Spp

Spp

Spp .

Table VII displays the compression rates for different values of p0 and p1. The parameters

p0 and p1 were chosen empirically, whereas the value of S is determined by the symbol

distribution of the respective file.

- 18 -

Table VII. Compression rates in bps for)(,, 10
tw Spp .

Best compression rates in a row are printed bold

File p0=2400

p1=4000

p0=2600

p1=4200

p0=2800

p1=4400

p0=2400

p1=4400

p0=2800

p1=4000

p0=2600

p1=4185

bib 1.887 1.888 1.892 1.887 1.904 1.888

book1 2.270 2.266 2.264 2.279 2.264 2.265
book2 1.943 1.942 1.942 1.949 1.948 1.942
geo 4.198 4.190 4.185 4.225 4.219 4.190

news 2.390 2.387 2.385 2.399 2.386 2.386

obj1 3.732 3.732 3.739 3.737 3.798 3.733

obj2 2.362 2.365 2.370 2.362 2.440 2.365

paper1 2.380 2.382 2.386 2.382 2.399 2.382

paper2 2.336 2.332 2.331 2.341 2.333 2.332
pic 0.711 0.709 0.718 0.715 0.758 0.709
progc 2.418 2.419 2.424 2.421 2.435 2.420

progl 1.660 1.659 1.659 1.664 1.660 1.659
progp 1.656 1.659 1.664 1.654 1.675 1.659

trans 1.442 1.440 1.439 1.444 1.439 1.440

Average 2.242 2.241 2.243 2.247 2.261 2.241

The best overall compression rate was achieved by the following parameter values:

 26000 =p ,

 41851 =p .

The improved algorithm with the calculated weights)(,, 10
tw Spp is called Advanced

Weighted Frequency Count (AWFC).

5.3 EC Stage
Since |Aout| of the RLE-BIT-1 stage is equal to 258 and therefore much smaller than |Aout|

of the SIF stage, the composition of the model for the AWFC implementation is simpler

than the model for the SIF implementation.

The model is divided into three parts, whose first part handles the symbols 0, 1 and 2,

which are the most frequent symbols. The symbols 0 and 1 are the escape symbols of the

RLE-BIT stage. All symbols greater than 2 are handled by the second and third part of

- 19 -

the model. Since the symbols 0 and 1 represent runs of zeros, this structure is similar to

the ternary structure which Balkenhol and Shtarkov have suggested [1999].

Part two and three build a structured coding model with two levels. The first level as a

selector divides the symbols in eight disjoint subsets: {3}, {4, ..., 5}, {6, ..., 9}, {10, ...,

15}, {16, ..., 31}, {32, ..., 69}, {70, ..., 149} and {150, ..., 257}. The second level handles

the offset of the current symbol in each group [Fenwick, 1996]. For example the symbol

11 would be coded in the first level as 3, since it is in the fourth subset, and in the second

level as 1, since it is the second symbol of the subset.

6. AN IMPROVED BURROWS-WHEELER COMPRESSION ALGORITHM

6.1 Selecting the GST Stage
Since the structure of the output sequence of the AWFC and SIF stage is very different, it

is not easy to predict which GST stage for a respective file is better suitable in order to

achieve the best compression rate. There is one property of the SIF stage which can be

used in this context. The number of additional information beside the part sequences

which the SIF stage needs for decoding, like symbol frequencies and terminator symbols,

is proportional to |Ain| of the input sequence. Since |Ain| is limited to 256, the quotient r

with

n

A
r in=

is getting smaller for larger input sizes n, which means that larger files need a smaller

proportion of additional information than smaller files. As a result, the SIF scheme gives

usually better results on larger files.

The results of the SIF scheme and of the AWFC scheme are displayed in Table VIII.

- 20 -

Table VIII. Compression rates in bps for the SIF and the AWFC scheme.

Best compression rates for each row are printed in bold font

File Size SIF AWFC

bib 111,261 1.916 1.888
book1 768,771 2.226 2.265

book2 610,856 1.929 1.942
geo 102,400 4.214 4.190
news 377,109 2.399 2.386
obj1 21,504 3.824 3.733
obj2 246,814 2.418 2.365
paper1 53,161 2.411 2.382
paper2 82,199 2.336 2.332
pic 513,216 0.706 0.709

progc 39,611 2.464 2.420
progl 71,646 1.696 1.659
progp 49,379 1.713 1.659
trans 93,695 1.500 1.440

Average 2.268 2.241

The files book1, book2 and pic, which are the biggest files, get a better compression rate

when processed by the SIF scheme, whereas all other files compress better with the

AWFC scheme. Another reason why the SIF scheme is more suitable for larger files is its

higher speed compared to the AWFC scheme. In order to achieve the best possible

compression rate, the final implementation of this article uses a hybrid GST algorithm.

For smaller files, the GST stage consists of an AWFC stage and is combined with the

RLE-BIT-0/1 stages and a matching EC stage as described above. Larger files use an SIF

stage as the GST stage bundled with an RLE-EXP stage and a EC stage, adapted on the

SIF output as described above. Despite the fact that the file news, which is greater than

256 KB, gets a better compression with AWFC than with SIF, experiences on other

corpora show that a threshold TSIF of

 TSIF = 256 KB

achieves generally the best results. All files smaller than TSIF get processed with the

AWFC scheme, and files greater or equal than TSIF get processed with the SIF scheme.

Figure 6 illustrates the final BWCA with the hybrid GST stage.

- 21 -

Fig. 6. The final BWCA with the hybrid GST stage

6.2 Comparisons of Compression Rates and Times
In Table IX, the results of the compression rates for the Calgary Corpus are compared

between known algorithms from the literature and the hybrid BWCA presented in this

paper. Table X shows the compression and decompression times from GZIP, a

widespread compression program which is freely available, and from the hybrid approach

presented in this paper. Hence the speed can be compared indirectly to compression

programs on other operating systems, since GZIP is available on most operating systems.

The following algorithms are itemized:

• GZIP93-V1.2.4 with option -9 − from Jean-loup Gailly and Mark Adler, based on

LZ77 [1993],

• PPM*95 − from William Teahan [1995],

• cPPMII64-02 − from Dmitry Shkarin [2002],

• CTW95 − from Frans Willems, Yuri Shtarkov and Tjalling Tjalkens, based on CTW

[1995],

• VW98 − from Paul Volf and Frans Willems, based on PPM* and CTW [1998],

• BW94 − from Michael Burrows and David Wheeler, based on BWT [1994],

• F96 − from Peter Fenwick, based on BWT [1996],

• BS99 − from Bernhard Balkenhol and Yuri Shtarkov, based on BWT [1999],

• D02 − from Sebastian Deorowicz, based on BWT [2002],

• A03 − the BWT approach presented in this paper.

RLE-
EXP

SIF

RMB

EC

BWT

RLE-
BIT-0

AWF

C

EC

TB

RLE-
BIT-1

n<Tsif

Yes

No

- 22 -

The results show that A03 produces the best average compression rate of all BWT based

algorithms. A comparison must also take into account that most PPM and CTW based

approaches need higher computational resources. A03 needs about double as much time

as GZIP93 for compression and about five times as much as GZIP93 for decompression,

which is significantly less than most PPM and CTW approaches.

The execution time of the BWT, RLE, SIF, AWFC and EC stages are very different from

file to file. During compression, the BWT and EC stage of A03 need about the same time

on average. The IF stage of A03 needs about 50% of the time of the BWT/EC stage and

the WFC stage takes about 100% more time than BWT/EC in average during

compression. During decompression the BWT stage of A03 is about ten times faster than

the EC stage on average.

All tests were performed on a WINDOWS 2000 PC with a 700 MHz Pentium III

processor.

Table IX. Compression rates for the Calgary Corpus in bps

File GZIP

93

PPM*

95

cPPMII

64-02

CTW

95

VW98 BW94 F96 BS99 D02 A03

bib 2.516 1.86 1.676 1.79 1.71 2.02 1.95 1.91 1.896 1.888

book1 3.256 2.41 2.135 2.19 2.15 2.48 2.39 2.27 2.274 2.226

book2 2.702 2.00 1.782 1.87 1.82 2.10 2.04 1.96 1.958 1.929

geo 5.355 4.78 4.158 4.46 4.53 4.73 4.50 4.16 4.152 4.190
news 3.072 2.37 2.137 2.29 2.21 2.56 2.50 2.42 2.409 2.399

obj1 3.839 3.83 3.498 3.68 3.61 3.88 3.87 3.73 3.695 3.733

obj2 2.628 2.31 2.110 2.31 2.25 2.53 2.46 2.45 2.414 2.365

paper1 2.792 2.33 2.142 2.25 2.15 2.52 2.46 2.41 2.403 2.382

paper2 2.880 2.34 2.124 2.21 2.14 2.50 2.41 2.36 2.347 2.332

pic 0.816 0.84 0.704 0.79 0.76 0.79 0.77 0.72 0.717 0.706

progc 2.679 2.34 2.161 2.29 2.20 2.54 2.49 2.45 2.431 2.420

progl 1.807 1.61 1.390 1.56 1.48 1.75 1.72 1.68 1.670 1.659
progp 1.812 1.55 1.391 1.60 1.46 1.74 1.70 1.68 1.672 1.659

trans 1.611 1.39 1.172 1.34 1.26 1.52 1.50 1.46 1.452 1.440

Avg. 2.697 2.28 2.041 2.19 2.12 2.40 2.34 2.26 2.249 2.238

- 23 -

Table X. Compression and decompression times

for the Calgary Corpus in seconds

File Comp. Time

GZIP

Decomp. Time

GZIP

Comp. Time

A03

Decomp. Time

A03

bib 0.09 0.05 0.23 0.20

book1 0.62 0.25 1.23 1.10
book2 0.41 0.18 0.86 0.79

geo 0.28 0.07 1.11 1.11

news 0.25 0.13 0.56 0.55

obj1 0.04 0.04 0.18 0.18

obj2 0.23 0.09 0.96 0.91

paper1 0.05 0.04 0.14 0.13

paper2 0.07 0.04 0.20 0.18

pic 0.64 0.09 0.31 0.31
progc 0.04 0.04 0.11 0.10

progl 0.07 0.04 0.14 0.12

progp 0.05 0.03 0.10 0.08

trans 0.07 0.04 0.17 0.14

Sum 2.91 1.13 6.30 5.90

7. CONCLUSIONS

The Burrows-Wheeler Compression Algorithm achieves good compression rates

combined with high speed. Within this field, the post BWT stages play a central role in

order to realize the best possible results. Implementations of post BWT stages typically

consist of three stages: a Global Structure Transformation (GST), a Run Length Encoding

(RLE) stage and an Entropy Coder (EC) stage.

This paper presents a new position for the RLE stage together with adapted RLE

techniques. The first technique, called RLE-EXP and based on the variable length code of

Maniscalco, uses a threshold run with a logarithmic length and compresses the mantissa

information of the run length outside the normal symbol buffer directly with an adapted

entropy coder. The second technique, called RLE-BIT, is a new RLE algorithm and

removes all runs from the symbol buffer before the GST stage and codes the run length

information back into the buffer after the GST stage by using two escape symbols.

- 24 -

An improved version of the Inversion Frequencies algorithm, called Sorted Inversion

Frequencies (SIF), was introduced, which performs a sorting permutation of the input

alphabet either in ascending or descending order depending on the symbol distribution.

This permutation together with an adapted EC model helps to upgrade the compression

rate and to accelerate the execution.

A variation of the Weighted Frequency Count algorithm, called Advanced Weighted

Frequency Count (AWFC), improves compression by using more logarithmic levels than

the original implementation and by using a calculating scheme for the weights depending

on the symbol distribution. Together with a special EC model, a better compression rate

to the original implementation is achieved.

SIF and AWFC stages were combined in a hybrid scheme, the SIF stage with the RLE-

EXP stage and the AWFC stage with the RLE-BIT stages. Files smaller than 256 KB are

treated by the AWFC scheme and files larger or equal to 256 KB are processed by the

SIF scheme.

This hybrid scheme achieves a compression rate for the Calgary Corpus of 2.238 bps.

The compression speed achieves around 45% of the speed of GZIP and the

decompression speed achieves about 20% of the speed of GZIP.

At this point of time, it is difficult to predict if further improved techniques of already

known GST algorithms will give better compression rates or whether the development of

a totally new approach for the GST algorithm could lead to better compression rates and

higher speeds. In any case, the distance between the compression rates of the BWCA and

the compression rates of the strongest compression algorithms known, the PPM and

CTW methods, is getting smaller.

ACKNOWLEDGMENTS

Special thanks go to William Teahan, who provided extensive comments on this work.

The RLE discussions with Yaakov Gringeler and several remarks on this work by

Sebastian Deorowicz, Szymon Grabowski, Uwe Herklotz, Michael Maniscalco and

Vadim Yoockin are appreciated very much.

REFERENCES
ANDERSSON, A. AND NILSSON, S. 1994. A New Efficient Radix Sort. In 35th Symposium on Foundations
of Computer Science, 714−721.

ANDERSSON, A. AND NILSSON, S. 1998. Implementing Radixsort. The ACM Journal of Experimental
Algorithmics. Volume 3, Article 7.

- 25 -

ARNAVUT, Z. AND MAGLIVERAS, S.S. 1997. Block Sorting and Compression. In Proceedings of the IEEE
Data Compression Conference 1997, Snowbird, Utah, STORER, J.A. AND COHN, M. Eds. 181−190.

AWAN, F.S., ZHANG, N., MOTGI, N., IQBAL, R.T. AND MUKHERJEE, A. 2001. LIPT: A reversible
lossless text transform to improve compression performance. In Proceedings of the IEEE Data Compression
Conference 2001, Snowbird, Utah, STORER, J.A. AND COHN, M. Eds. 481.

BALKENHOL, B. AND KURTZ, S. 1998. Universal Data Compression Based on the Burrows-Wheeler
Transformation: Theory and Practice. IEEE Transactions on Computers, 49(10), 1043−1053.

BALKENHOL, B., KURTZ, S. AND SHTARKOV, Y.M. 1999. Modifications of the Burrows and Wheeler
Data Compression Algorithm. In Proceedings of the IEEE Data Compression Conference 1999, Snowbird,
Utah, STORER, J.A. AND COHN, M. Eds. 188−197.

BALKENHOL, B. AND SHTARKOV, Y.M. 1999. One attempt of a compression algorithm using the BWT.
SFB343: Discrete Structures in Mathematics, Falculty of Mathematics, University of Bielefeld, Preprint,
99−133.

BELL, T.C., CLEARY, J.G. AND WITTEN, I.H. 1990. Text Compression. Prentice-Hall, Englewood Cliffs,
NJ.

BELL, T.C., WITTEN, I.H. AND CLEARY, J.G. 1989. Modelling for Text Compression. ACM Computing
Surveys, 21(4), 557.

BENTLEY, J., SLEATOR, D., TARJAN, R. AND WEI, V. 1986. A locally adaptive data compression scheme.
Communications of the ACM, 29, 320−330.

BINDER, E. 2000. Distance Coder. Usenet group: comp.compression.
http://groups.google.com/groups?selm=390B6254.D5113AD2%40T-Online.de.

BURROWS, M. AND WHEELER, D.J. 1994. A Block-Sorting Lossless Data Compression Algorithm.
Technical report, Digital Equipment Corporation, Palo Alto, California.

DEOROWICZ, S. 2000. Improvements to Burrows-Wheeler Compression Algorithm. Software − Practice and
Experience 2000, 30(13), 1465−1483.

DEOROWICZ, S. 2002. Second step algorithms in the Burrows-Wheeler compression algorithm. Software −
Practice and Experience 2002, 32(2), 99−111.

ELIAS, P. 1987. Interval and Recency Rank Source Coding: Two On-Line Adaptive Variable-Length Schemes.
IEEE Transactions on Information Theory , Vol. 21 (2), 194−203.

FENWICK, P. 1995. Improvements to the Block Sorting Text Compression Algorithm. Technical Report 120,
University of Auckland, New Zealand, Department of Computer Science.

FENWICK, P. 1996. Block Sorting Text Compression - Final Report. Technical Report 130, University of
Auckland, New Zealand, Department of Computer Science.

FRANCESCHINI, R., KRUSE, H., ZHANG, N., IQBAL, R. AND MUKHERJEE, A. 2000. Lossless,
Reversible Transformations that Improve Text Compression Ratios. Project paper, University of Central
Florida, USA.

GAILLY, J.L. 1993. GZIP - The data compression program - Edition 1.2.4.
http://miaif.lip6.fr/docs/gnudocs/gzip.pdf.

GRABOWSKI, S. 1999. Text Preprocessing for Burrows-Wheeler Block-Sorting Compression. In VII
Konferencja Sieci i Systemy Informatyczne - Teoria, Projekty, Wdrozenia, Lodz, Poland.

GRINGELER, Y. 2002. Private correspondence.

ISAL, R.Y.K. AND MOFFAT, A. 2001. Parsing Strategies for BWT Compression. In Proceedings of the IEEE
Data Compression Conference 2001, Snowbird, Utah, STORER, J.A. AND COHN, M. Eds. 429−438.

- 26 -

ISAL, R.Y.K., MOFFAT, A. AND NGAI, A.C.H. 2002. Enhanced Word-Based Block-Sorting Text
Compression. In Proceedings of the twenty-fifth Australasian conference on Computer science, Volume 4,
January 2002, 129−138.

ITOH, H. AND TANAKA, H. 1999. An Efficient Method for Construction of Suffix Arrays. IPSJ Transactions
on Databases, Abstract Vol.41, No. SIG01 – 004.

KAO, T.-H. 2001. Improving Suffix-Array Construction Algorithms with Applications. Master's thesis,
Department of Computer Science, Gunma University, Japan.

KRUSE, H. AND MUKHERJEE, A. 1999. Improving Text Compression Ratios with the Burrows-Wheeler
Transform. In Proceedings of the IEEE Data Compression Conference 1999, Snowbird, Utah, STORER, J.A.
AND COHN, M. Eds. 536.

KURTZ, S. 1998. Reducing the Space Requirement of Suffix Trees. Report 98−03, Technische Fakultat,
Universitat Bielefeld.

KURTZ, S. AND BALKENHOL, B. 1999. Space Efficient Linear Time Computation of the Burrows and
Wheeler-Transformation. ALTHÖFER, I. ET AL. Eds. Numbers, Information and complexity, Festschrift in
honour of Rudolf Ahlswede's 60th Birthday, 375−384.

LARSSON, N.J. 1999. Structures of String Matching and Data Compression. PhD thesis, Department of
Computer Science, Lund University, Sweden.

MANISCALCO, M.A. 2000. A Run Length Encoding Scheme For Block Sort Transformed Data. Technical
paper, http://www.geocities.com/m99datacompression/papers/rle/rle.html.

MANISCALCO, M.A. 2001. A Second Modified Run Length Encoding Scheme For Block Sort Transformed
Data. Technical paper, http://www.geocities.com/m99datacompression/papers/rle2.html.

MANZINI, G. AND FERRAGINA, P. 2002. Engineering a Lightweight Suffix Array Construction Algorithm.
Lecture Notes in Computer Science, Springer Verlag, Volume 2461, 698−710.

NILSSON, S. 1996. Radix Sorting & Searching . PhD thesis, Department of Computer Science, Lund
University, Lund, Sweden.

SADAKANE, K. 1997. Improvements of Speed and Performance of Data Compression Based on Dictionary
and Context Similarity. Master's thesis, Department of Information Science, Faculty of Science, University of
Tokyo, Japan.

SADAKANE, K. 2000. Unifying Text Search And Compression -Suffix Sorting, Block Sorting and Suffix Arrays.
PhD thesis, University of Tokyo, Japan.

SCHINDLER, M. 1997, A Fast Block-sorting Algorithm for lossless Data Compression. In Proceedings of the
IEEE Data Compression Conference 1997, Snowbird, Utah, STORER, J.A. AND COHN, M. Eds. 469.

SEWARD, J. 2000. On the performance of BWT sorting algorithms. In Proceedings of the IEEE Data
Compression Conference 2000, Snowbird, Utah, STORER, J.A. AND COHN, M. Eds. 173−182.

SHKARIN, D. 2002. PPM: One step to practicality. In Proceedings of the IEEE Data Compression Conference
2002, Snowbird, Utah, STORER, J.A. AND COHN, M. Eds. 202−211.

TEAHAN, W. 1995. Probability estimation for PPM. In Proceedings of the New Zealand Computer Science
Research Students' Conference, University of Waikato, New Zealand.

VOLF, P. AND WILLEMS, F. 1998. Switching Between Two Universal Source Coding Algorithms. In
Proceedings of the IEEE Data Compression Conference 1998, Snowbird, Utah, STORER, J.A. AND COHN,
M. Eds. 491−500.

WILLEMS, F.M.J., SHTARKOV, Y.M. AND TJALKENS, T.J. 1995. The Context Tree Weighting Method:
Basic Properties. IEEE Transactions on Information Theory , Vol. IT−41 (3), 653−664.

