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The lossless Burrows-Wheeler Compression Algorithm has received considerable attention over recent years for
both its simplicity and effectiveness. It is based on a permutation of the input sequence - the Burrows-Wheeler
Transform - which groups symbols with a similar context close together. In the origina version, this
permutation was followed by a Move-To-Front transformation and a final entropy coding stage. Later versions
used different algorithms which come after the Burrows-Wheeler Transform, since the stages after the Burrows-
Wheeler Transform have a significant influence on the compression rate. This article describes improved
agorithms for the run length encoding, inversion frequencies and weighted frequency count stages that follow
the Burrows-Wheeler Transform. Results for compression rates are presented for different variations of the
agorithm together with compression and decompression times. Finally, an implementation with a compression
rate of 2.238 bps on the Calgary Corpusisintroduced, which is the best result published in thisfield to date.
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1. INTRODUCTION

The family of the block sorting algorithms based on the Burrows-Wheeler Transform
(BWT) has grown over the past few years starting with the first implementation described
by Burrows and Wheeler [1994]. Severa authors have presented improvements to the
origina agorithm. Andersson and Nilsson have published several papers about Radix
Sort, which can be used as afirst sorting step during the BWT [1994, 1996, 1998]. In his
final BWT research report, Fenwick described some BWT sort improvements including
sorting long words instead of single bytes [1995]. Kurtz presented several papers about
BWT sorting stages with suffix trees, which needed less space than other suffix tree

implementations and are linear in time [1998, 1999].
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Sadakane described a fast suffix array sorting scheme in 1997 and 2000. In 1999, Larsson
presented an extended suffix array sorting scheme. Based on already sorted suffices,
Seward developed in 2000 two fast suffix sorting algorithms called "copy" and "cache".
Itoh and Tanaka presented a fast sorting algorithm called the two stage suffix sort [1999].
Kao improved the two stage suffix sort by some new techniques which are very fast for
sequences of repeat symbols [1999]. Manzini and Ferragina published in 2002 some
improved suffix array sorting techniques based on the results of Seward and of Itoh and
Tanaka.

Severa techniques for the post BWT stages have been also published. Besides the MTF
improvements from Schindler [1997], and from Balkenhol and Shtarkov [1999], an MTF
replacement, called Inversion Frequencies, was introduced by Arnavut and Magliverasin
1997, and in 2000 Deorowicz presented another MTF replacement, named Weighted
Frequency Count. Both MTF replacements will be described later.

Various modeling techniques for the entropy coding at the end of the compression
process were presented by Fenwick [1995, 1996], Balkenhol and Shtarkov [1999] and
Deorowicz [2000].

This paper concentrates on improvements of the basic stages subsequent to the BWT,
with no specia preprocessing for different kinds of data like text preprocessing
[Grabowski, 1999; Kruse and Mukherjee, 1999; Franceschini et al., 2000; Awan et a.,
2001; Isal and Moffat, 2001; Isal et a., 2002] or binary preprocessing before the BWT.
Severa improved variants will be presented and compared using compression rate,
compression time and decompression time with other compression algorithms. Findly, a
complete compression algorithm will be introduced, which uses a hybrid scheme and

which achieves a high compression rate.

2. THE BURROWS-WHEELER COMPRESSION ALGORITHM

2.1 Typical scheme

A typical scheme of the Burrows-Wheeler Compression Algorithm (BWCA) is presented
in Figure 1 and consists of four stages. Each stage is a transformation of the input data
and reaches the output data to the next stage. The stages are processed sequentially from
left to right. The first stage is the BWT. This stage sorts the data in a way that symbols
with asimilar context are grouped closely together. The BWT stage keeps the number of
symbols during the transformation constant. The second stage is called in this article
Globa Structure Transformation (GST), which transforms the local context of the
symbols to a global context [Balkenhol and Kurtz, 1998; Deorowicz, 2000]. A typical
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representative of a GST stage is the Move-To-Front transformation (MTF), which was
used by Burrows and Wheeler in their original publication and which was the first
algorithm used as a GST stage in a BWCA. The MTF stage is a List Update Algorithm
(LUA), which replaces the input symbols with corresponding ranking values (Bentley et
al., 1986). Just like the BWT stage, a LUA stage does not alter the number of symbols.
The third stage typically shrinks the number of symbols by applying a Run Length
Encoding scheme (RLE). Different algorithms have been presented for this purpose, with
the Zero Run Transformation (RLEO) from Wheeler found to be an efficient one
[Fenwick, 1996]. The last stage is an Entropy Coding stage (EC), which compresses the
symbols by using an adapted model.

—» BWT —» GST —» RLEO —p»| EC —»

Fig. 1. Typical scheme of the Burrows-Wheeler Compression Algorithm

In order to elucidate the operation modes of the different stages, Figure 2(a) - 2(e)
displays the transformed data of the input string "abracadabraabracadabra' in
hexadecimal. The input data of the BWT stage is shown in Figure 2(a). As can be seenin
Figure 2(b) the output data of the BWT stage contains many sequences of repeating
symbols and has a loca structure, i.e. symbols with a similar context form small
fragments. The GST stage - in this example an MTF scheme is used - transforms the
local structure of the BWT output to a globa structure by using a ranking scheme
according to the last recently used symbols and produces sequences of continuous zeros
which are displayed in Figure 2(c). The RLEO stage removes the zero runs in Figure 2(d)
and the fina EC stage produces a bit output by using an arithmetic coding scheme in

Figure 2(e).

(2) BWT input : 61 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
(b) BWT output : 61 72 72 64 64 61 72 72 63 63 61 61 61 61 61 61 61 61 62 62 62 62
(c) GST output : 61 72 00 65 00 02 02 00 65 00 02 00 00 00 00 00 00 00 65 00 00 00
(d) RLEO output: 63 74 00 67 00 04 04 00 67 00 04 00 00 00 67 00 00

(e) EC output : 00 OD O1 8D B3 FF 81 00 72 A8 E8 2B

Fig. 2. Transformed data of the input string "abracadabraabracadabra” by the different stages



In the following, the focus is on developing improvements, and on exploring the

reordering and possible replacement of stages, which follow the BWT stage.

2.2 Definitions

For the description of the algorithms, the following notation will be used. Let A be an
ordered set, called aphabet, with size |A|. Let X = XoX%... X1 denote a sequence with
lengthnand x 1 A. Thefirst index of a sequence is 0. Each stage has an input sequence
Xin and an output sequence Xy as well as a corresponding input aphabet A, and an
output alphabet A, The stage processes the symbols of X, and calculates the
corresponding symbols of X, After finishing one stage, Xo of this stage will be used as
Xin of the following stage. The maximal size for X, is caled the blocksize b,. Up to the
GST stage, Ain and Aq Will have a bit width of 8 bits resulting in |Ain| = |Aou| = 256. Since
some GST stages have output symbols with values greater than 255, the bit width of A,
and A, after the GST stage will be assumed as 32 bits in order to be able to handle
values greater than 255. Furthermore, the binary representation sequence of asymbol a is
caled B,, for example B4 = "100" and B; = "111". The compression rate and speed is
measured on the Calgary Corpus [Bell et al., 1989, 1990], a standard set of files used for

benchmarking compression algorithms.

2.2 Run Length Encoding

In the past, different RLE schemes were presented [Fenwick, 1996; Maniscalco, 2000,
2001]. The main function of the RLE is to support the probability estimation of the next
stage. Long runs of a symbol a tend to overestimate the global symbol probability of a
for fragments, where a occurs only occasionally. The result is that within these disjointed
fragments, the probability value for a is too high which leads to lower compression.
Balkenhol and Shtarkov name this phenomenon “the pressure of runs’ [1999]. The RLE
stage helps to decrease this pressure. In order to improve the probability estimation of the
EC stage, the common BWCA schemes position the RLE stage directly in front of the EC
stage.

One common RLE stage for BWT based compressors is the Zero Run Transformation
(RLEQ) from Wheeler [Fenwick, 1996]. Wheeler suggested to code only the runs of the O
symbols and no runs of other symbols, since 0 is the symbol with the most runs. Hereto
an offset of 1 is added to symbols greater than 0. The run length is incremented by one
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and all bits of its binary representation except the most significant bit —which is always 1
— are stored with the symbols 0 and 1.

Some authors suggested an RLE stage before the BWT stage for speed optimization, but
such a stage deteriorates the compression rate in general [Deorowicz, 2000]. Since there
are sorting algorithms now known which sort the runs of symbols practicaly in linear
time [Itoh and Tanaka, 1999; Kao, 1999; Seward, 2000; Manzini and Ferragina, 2002],

thereis no reason to use such a stage before the BWT stage anymore.

2.3 Inversion Frequencies

Several GST stages have been unveiled since the birth of the BWCA in 1994. Their
purpose is to produce an output sequence which is more compressible by the entropy
coder than the output sequence of the original MTF stage. One of these MTF
replacements is the algorithm from Arnavut and Magliveras [1997], which they named
Inversion Freguencies (IF). The IF algorithm is not a LUA. It produces for each symbol
al A, apart sequence S.. For each alphabet symbol a the input sequence X, is scanned
and if the current dement of X, is equal to a, the number of symbols greater than a
between the current position and the last position of a is output. In order to reproduce X,
from the set of S, either the frequencies of the alphabet symbols or a terminator symbol
behind each S, is needed in addition. One advantage of the IF algorithm is the fact that
the part sequence of the last symbol z of the aphabet, caled S, consists only of the
symbol 0. Therefore S, is not needed in order to reproduce the original sequence and the
length of X, gets smaller than the length of Xi,. X, Of IF is different from Xy of MTF
in more aspects. X, of the MTF stage contains many zero runs, which represent runs of
equal symbols, and these runs are equally distributed over the whole sequence. X, of the
IF stage consists of several part sequences S,, onefor each al A, except the last symbol
z S, of higher symbols have typically smaller values than S, of lower symbols, since the
number of alphabet symbols, which are greater than the scanned symbol, are smaller. S,
for the last symbols of A;, have usually many long runs of zeros. In order to represent this
behavior, Figure 3 compares the share of the zeros of the file book1 over the file position
for both the MTF stage output and for the |F stage output. For a better comparison, S,is
included in Xy of IF. As can be seen, the average share of zeros in the output of IF is
rising towards the end of the file until it reaches 100% at the end. In the output of MTF,

the average share of zeros fluctuates around 60%.
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Fig. 3. Share of the zeros in percent of the (a) MTF output position and (b) IF output position of book1

2.4 Weighted Frequency Count

Another GST stage is the Weighted Frequency Count algorithm (WFC) presented by
Deorowicz in 2002. The WFC is a representative of a LUA and is closer to MTF than to
IF. It replaces the input symbol x with a corresponding ranking value ry. The difference
between WFC and MTF is the function, which calculatesr,. Inside the MTF agorithm, ry
is the index of the current input symbol x within the list L of alphabet symbols. Upon
each request of X, the current index ry of the symbol within L is output and the symbol is
moved to the front of L, i.e. to index 0. Since a symbol is moved straight to the front of L
without taking the former frequency distribution of the symbol into account, the MTF
stage pushes many times more frequent symbols aside by less frequently used symbols.
This leads to higher ranking values for frequently used symbols and hampers the
compression at the EC stage, since lower values are cheaper to compress with the
commonly used EC models. The WFC stage calculates ry by a function, which takesinto
account the symbol frequencies and the distance of the last occurrences of x inside a
diding window of size .. [Deorowicz, 2002]. More frequently used symbols get alower
ry than less frequently used symbols, which supports the following EC probability
estimation. Table | presents the average ranking values ry of the MTF and WFC stage
together with the corresponding execution times in seconds for al files of the Calgary
Corpus. The average ranking values are the averages of the output sequences of the
corresponding stages. The MTF and WFC stages are both performed with an RLE stage
processed beforehand.
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Table |. Average ranking values r, and execution timesin seconds

for the MTF and WFC stage

File MTF WFC MTF WFC

Average ry Averagery, TimeinSecs Timein Secs
bib 4.45 4.29 0.01 0.12
book1 3.25 2.97 0.05 0.98
book2 3.52 3.28 0.03 0.68
geo 48.74 44.01 0.03 0.91
news 5.57 5.12 0.03 0.58
obj1 34.59 32.64 0.01 0.13
obj2 18.59 17.81 0.02 0.71
paperil 4.65 4.48 0.01 0.08
paper2 3.95 3.73 0.01 0.11
pic 6.12 5.20 0.01 0.23
progc 5.66 5.48 0.01 0.06
progl 3.62 3.47 0.01 0.08
progp 4,00 3.93 0.01 0.05
trans 4.14 4.00 0.01 0.08
Average 10.78 10.03
Sum 0.25 4.80

In all cases, the average ranking values for the WFC stage are smaller or equal than for
the MTF stage, therefore the WFC output sequence is higher compressible. The drawback
of the WFC stage is the high time consumption, about 20 times as high as for the MTF
stage, since the function recalculates the rankings of al aphabet symbols for each
symbol x of Xi.

2.5 Other MTF Replacements

Beside MTF, WFC and IF, there have been more GST stages published, like the MTF1
algorithm from Balkenhol, Kurtz and Shtarkov [1999], the MTF-2 agorithm from
Balkenhol and Shtarkov [1999] and the Distance Coding agorithm from Binder [Binder,
2000; Deorowicz, 2002]. The MTF-1 and MTF-2 agorithms are close to the MTF
algorithm. MTF-1 moves only the symbol from the second position to the front of the list,
symbols with higher positions are moved to the second position. MTF-2 differs from
MTF-1, by the fact, that symbols from the second position are moved to the front of the
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list only if the last ranking value was not zero, i.e. if the same symbol occurred again.
The DC algorithm is more related to the IF agorithm and is based on the Interval
Encoding scheme from Elias [1987]. For each symbol of the input sequence, the DC
algorithm outputs the distance to the next occurrence of the same symbol. If the symbol
does not occur again, a zero is output. Binder [2000] proposed three improvements to the
basic algorithm. If the length of the input sequence is transmitted too, the last sequence of
ending zeros is redundant. Furthermore, for calculating the distance to the next
occurrence of the same symbol, only unknown symbols have to be counted. The last
improvement means that if the last symbol is equal to the current symbol, nothing has to
be output and DC proceeds to the next symbol. The main difference to the Interval

Encoding of Eliasis, that DC does not count known symbols and skips repeated symbols.
Comparisons of published results [Deorowicz, 2002] with the experiences of the author
of this paper indicate that the IF stage and the WFC stage tend to produce the best

compression rates.

3. IMPROVEMENTS TO RUN LENGTH ENCODING

3.1 General operation

RLE is a simple and popular data compression algorithm. The sequence of length | of a
repeated symbol s is replaced by a shorter sequence, usually containing one or more
symbols of s, length information and sometimes an escape symbol c. RLE algorithms
differ from each other mainly in three points: the threshold t, the marking of the start of a
run and the coding of the length information. If | is smaller than t, the run keeps
unchanged, and if | is greater or equal to t, the run is replaced. The start of a run can be
indicated by athreshold run or an escape symbol c. If athreshold run is used, the start is
characterized by a small sequence of s, which has a length greater or equal to t. If an
escape symbol ¢ indicates the start of a run, s is normally put behind c in order to
characterize the run symbol. The escape symbol ¢ must not be an element of Ay, or
occurrences of ¢ have to be coded in such a manner that they are not mixed up with the
start of a run. The length information | can be coded in different ways. Usualy | is put
directly behind the threshold run or behind s.

Maniscalco [2001] describes an algorithm which uses a variable length code and divides
the length information into two parts: an exponent part e and a binary representation part
B.. The exponent part e, called the size of the variable length code in Maniscalco’s paper,
reflects the logarithm of |. The binary representation part B,, called the value of the
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variable length code by Maniscalco, contains the bits of the binary representation of I.
Such a structure leads to an elegant and efficient RLE algorithm for the BWCA.
Two RLE agorithms are introduced and discussed in the next section. One is based on
the variable length code of Maniscalco and is called RLE-EXP. The other algorithm is a
new agorithm named RLE-BIT and is based on the idea of using two escape symbols
rather than one.
3.2 A new position for the RLE stage
Gringeler had the idea to position the RLE stage directly after the BWT stage instead of
in front of the EC stage [2002]. There are two reasons for the new order. Since the length
of Xout Of the RLE stage is usualy smaller than the one of X;,, the GST stage has to
process less symbols with an RLE stage in front. In addition, an RLE stage is usualy
faster than a GST stage, so the whole compression process becomes faster. The second
reason is that the coding of the runs lowers the pressure of runs aready at the GST stage
and that leads usually to a better compressible GST output sequence. The compression
rates for a BWCA with an RLE stage before (RLE-BIT, see Section 3.4) and an RLE
after a WFC stage (RLEO, [Fenwick, 1996]) are compared in Table II. Positioning the
RLE stage in front of the WFC stage achieves a compression gain of 1.3%.

Table I1. Compression rates with RLE stage before and after the WFC stage in bps

File RLE after WFC RLE before WFC
bib 1.923 1.888
book1 2.302 2.265
book?2 1.982 1.942
geo 4.180 4,190
news 2.423 2.386
obj1 3.765 3.732
obj2 2441 2.365
paperil 2.423 2.382
paper2 2.367 2.332
pic 0.703 0.709
progc 2454 2419
progl 1.681 1.659
progp 1.690 1.659
trans 1.459 1.440

Average 2.271 2.241
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3.3 The RLE-EXP algorithm
Since the escape symbol c is different from the run symbol s, ¢ disrupts the local symbol
context. Therefore, the usage of a threshold run instead of an escape symbol normally
leads in BWCA implementations to better results [Maniscalco, 2001]. The following
RLE-EXP algorithm is based on a threshold run. The threshold run consists of two parts:
a fixed length run of size t and a variable length run of size e. Both runs consists of
sequences of s. Size e is defined by the following equation:

e=log,(L-1).
The variable length run contains the information of the logarithm of the length of L,
which isidentical to the length of the binary representation B,. B, would disrupt the local
symbol context if placed behind the threshold run. Therefore, B, is placed as a hit
seguence in a separate data stream called the RLE Mantissa Buffer (RMB). During the
decoding, the algorithm decodes e first and then reads B, from RMB. The data of RMB
will not be processed by the GST stage but is coded directly within the EC stage. Hence
the RLE-EXP algorithm replaces each run of length | by a run of length t + e and a hit
sequence B, in RMB, which is processed separately. Especially long runs are encoded
very efficiently because of the logarithmic structure. Since the pressure of runs is taken
out before the GST stage already, there is no need anymore for a further RLEO stage in
front of the EC stage. The entire algorithm is presented in Figure 4.

—»{ BWT —» REEE —»f GST |—p EC (—»

EXP
RMB T

Fig. 4. The RLE-EXP agorithm

Table 111 presents some examples of threshold runs with t = 2. The RLE-EXP agorithm
works especially well with the IF algorithm.
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Tablelll. Threshold runswitht =2

Original Run L e B, (binary) Threshold Run
aa 2 0 - aa

aaa 3 1 0 aaa

aaaa 4 1 aaa

80828, 5 2 00 aaaa

808808, 6 2 01 aaaa

8088282 7 2 10 aaaa

80882828, 8 2 11 aaaa
808828088, 9 3 000 80828,
808808808a 10 3 001 80828,

3.4 The RLE-BIT algorithm

Apart from the use of athreshold run asin the RLE-EXP agorithm, the start of arun can
be encoded by escape symbols. Since escape symbols usually disturb the symbol context
of the GST stage, a new technique is introduced in this paper, which does not hamper the
GST context. Hereto the RLE-BIT agorithm is split into two parts, with both processes
being very fast and which bypasses the run information around the GST stage. The first
part is caled RLE-BIT-0 and is located before the GST stage. The second part is called
RLE-BIT-1 and is located after the GST stage. RLE-BIT-0 stores the position and the
length of each run in a separate temporary buffer TB and removes all symbols of thisrun
except the very first one. Therefore the output sequence of RLE-BIT-0 contains no runs
of symbols anymore and the length of the output sequence of RLE-BIT-0 is shorter than
the corresponding length of an output sequence of RLE-EXP. After the GST stage, RLE-
BIT-1 inserts a sequence of escape symbols at the former position of the run in order to

encode the run length. Figure 5 represents the function of the RLE-BIT algorithm.

RLE- RLE-
—» BWT = g1 » CST = gy P EC >

1B T

Fig. 5. The RLE-BIT algorithm
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The run length is encoded by the escape symbols 0 and 1. All bits of the binary
representation of the run length except the most significant bit are saved with the symbols
0 and 1, similar to the second part of the Elias code and the RLEO coding. Table IV

displays some examples of encoded run lengths for different length L.

Table V. RLE-BIT encodings of run lengths

Original Run L Encoding
aa 2 0

aaa 3 1

aaaa 4 00

80828, 5 01
808808, 6 10
8822823 7 11
80882828, 8 000
808828088, 9 001
8088088088 10 010

All symbols from the output sequence of the GST stage get incremented by 2 in order to
be able to decode the escape symbols unambiguously. Since RLE-BIT-1 inserts the
escape symbols at the former position of the run, the length of X, of the GST stage must
be the same as the length of X;,. Because the length of X, at the IF stage is smaller than
Xin, the RLE-BIT agorithm does not work with the |F stage.

4. IMPROVEMENTS TO THE INVERSION FREQUENCIES

4.1 Symbol Sorting by Frequency Distribution

The IF stage produces for each symbol aof A, a part sequence S,. During this process,
only symbols which are greater than a are counted. Hence, if symbols with a high
frequency distribution are processed first, the part sequences of the following symbols,
with a lower frequency distribution get smaller values. On the other hand, the part
sequences for symbols with a high frequency distribution are longer than the part
sequences for symbols with a lower frequency distribution. In order to point out the
influence of the frequency distribution, A, of the IF stage is permuted either in ascending
frequency order or in decreasing frequency order. Table V denotes the compression rates
for an origina alphabet and for both permuted alphabets. In most cases, the ascending
alphabet permutation produces better compression rates than the origina alphabet. Only
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the files geo and obj1, which are both binary files, have a worse compression rate. If the
alphabet is sorted by descending frequencies, both binary files get a better compression
rate than the one from the original aphabet. The file pic gets a better compression rate
for both sorting orders. Therefore, the alphabet permutation of the IF stage has a strong
influence on the compression rate and the remaining question is which direction to select

for the respectivefile.

Table V. Compression ratesin bps for | F stages with an original al phabet, a permuted
alphabet sorted by ascending frequencies and
a permuted al phabet sorted by descending frequencies.
Compression rates better than the rates with the original alphabet are printed bold

File Original Ascending Descending

Alphabet Alphabet Alphabet
bib 1.922 1.916 1.934
book1 2.227 2.226 2.238
book2 1.939 1.929 1.945
geo 4.383 4434 4214
news 2417 2.399 2429
obj1 3.849 3.849 3.824
obj2 2.430 2418 2.436
paperl 2.433 2411 2.448
paper2 2.346 2.336 2.358
pic 0.707 0.706 0.704
progc 2.480 2.464 2.499
progl 1.713 1.696 1721
progp 1.726 1.713 1.737
trans 1516 1.500 1541
Average 2.292 2.286 2.288

4.2 Sorting Order

In order to find the optima sorting direction, some characteristics of the frequency
distribution of A, can be used. For each symbol aof A, let f, be the number of
occurrencesof awithin X, i.e. the symbol distribution. Let F,,4 denote the average

frequency count of X;, with length n by
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n

F .
avg |A|n|
Further, G is defined as the set of symbols, for which f, is grester or equal to 2 F,,4 by
G={al fa > 2Fay/-.

Then S describes the percentage share of symbols a of the alphabet A, for which f,is
greater or equal to 2 Faq by

9]
S=100——.
| Ain |
Table VI reveals Sfor each file of the Calgary Corpus.

Table VI. Sas the percentage share of symbols a of the a phabet, for which ;3 2 Fayq

File Share
bib 1341
book1 15.85
book2 15.46
geo 5.86
news 15.15
obj1 9.38
obj2 10.94
paperil 14.58
paper2 16.30
pic 11.32
progc 13.98
progl 18.18
progp 14.44
trans 17.17
Average 13.72

Thevalues of Sfor thefiles geo and obj 1, which achieve the best compression rate with a
descending sort order, are the lowest ones in the table and are below 10. Therefore, the IF
stage isimproved by a sorting of the al phabet where the sorting direction is dependent on
the symbol distribution. Hereto, the |IF stage calculates in the first place the frequency
distribution of the symbols and the corresponding value of S, and performs afterwards a

permutation of A, either in ascending order or in decreasing order depending on S Asa
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threshold for S, the value of 10 is used: if for one file, Sis greater or equal to 10, the
alphabet permutation is performed in ascending frequency order, in the other case in
decreasing frequency order.

The improved IF stage in this paper is called Sorted Inversion Frequencies (SIF) because
of the sorting permutation.

4.3 EC Stage
The choice of the model at the EC stage is very important in order to achieve a good
compression rate. Since |Aqy| Of the SIF stage is greater than 256, a binary coder is used
for Xot Of the SIF stage. Each symbol a of X, is divided in two parts: the exponential
part e and the binary representation B,:

e=|B,|=log,(a).
Part e is coded with a hierarchical model [Fenwick, 1996] with 2 levels, the first leve
handles values from 0 until 4 and the second level handles al values greater or equal to 5.
A typical BWCA blocksize b, is 1 MB, resulting in a maximum for e of 20.
The bit sequences B, are processed more extensively. They get sorted by their length e.
All B, which have a length of 1, get coded by a model M; with values 0 and 1. All bit
sequences B, with a length of 2 are treated as a single value between 0 and 3 and get
coded by a model M,. Accordingly, bit sequences B, with a length of 3 are treated asa
single value between 0 and 7 and get coded by a model Ms. All B, with alength of 4 or
greater are divided in two parts. The first part consists of the first 3 bits of B,, which are
processed by Ms. The rest of the bits of B, are coded sequentially by a separate model My
with values 0 and 1. The reason for using separated models for the first 3 bits of B, is
because the first bits have a stronger context relation than the rest of the bits, i.e. the
distribution of the first bitsis not as random as the distribution of the rest of the bits.
Since the sequences of e are stored alongside the bit sequences B,, it is possible to decode
Xout later from e and B, unambiguously.
Apart from X, of the SIF stage, the B, data from the RMB of the RLE-EXP stage must
be encoded too as pictured in Figure 4. Hereto the bit sequences B, from the RMB get

coded in the same way as the bit sequences B, from Xo.

5. IMPROVEMENTS TO THE WEIGHTED FREQUENCY COUNT
5.1 Finer Graduation
The WFC implementation of Deorowicz gets the best compression rate, 2.249 bps for the

Calgary Corpus by the weight function weq, which uses 5 logarithmic quantized levels
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[2002]. For the implementation of this algorithm, a wide set of different weighting
functions was examined. The weighting functions were based on logarithmic levels
because of efficient computation as described in the paper of Deorowicz. Since the
compression rate depends on several parameters beside the weight function and the
number of logarithmic levels, like the kind of RLE agorithm and the model of the EC
stage, it is not easy to predict which weight function and number of levels will lead
generally to the best compression results. The approach of this paper uses a finer
graduation by using more levels than Deorowicz, and usually leads to improved results.
Of course, more levels need more time to calculate since the number of counters, where
the values are changing, rises proportional to the number of levels [Deorowicz, 2002].
When using the RLE-BIT stage and the model of the EC stage, the best compression rate
was achieved at 12 logarithmic levels instead of only 5. For the size of the diding
window tnax, the same value as by Deorowicz is used:
tmax = 2048.

5.2 Calculated Weights

The individua weights of the weight function are of central significance for the
compression rate. Since the structure and symbol distribution varies from file to file, a
weighting function with fixed weights independent from the file structure will not lead to
optimal compression rates for all files. For some files, a function with stronger weightsis
best suited for symbols of the immediate past than for older symbols. For other files, a
weighting function, which weights older symbols almost the same as more recent
symbols, gives better results. Therefore, the present implementation does not use fixed
weights, but calculates the weights depending on the symbol distribution.

Hereto the parameter Sis defined as in the SIF stage, which describes the percentage
share of symbols a of the alphabet A, for which the frequency count f, of ainside X, is
greater or equal to 2 Faq by

_n

Fan |Am| '

G={al fa > 2Fay/,

s:1ooﬂ.
| An |

Further, f (1) is defined as an integer function with parameters po, p; and S
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Then the weight function Wpo,ppS(t) for the present implementation, starting from O, is

defined as:
.:.pr,M,S(O) t:o 1
.:.fpo,pl,s(l) 20¢gtg2t-1
i foppLs(@ etg2%-1

Wy, py 5 (1) _ifpo,pl,s(S) 22 EtE2d 1 .

-I.-u
I 10 11
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Table VI displays the compression rates for different values of py and p;. The parameters
po and p; were chosen empirically, whereas the value of Sis determined by the symbol

distribution of the respectivefile.
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Table VII. Compression rates in bps for Wpo,pLS(t) .

Best compression ratesin arow are printed bold

File Po=2400  pe=2600 pP=2800 pPr=2400 pPe=2800 pP=2600

p;=4000  p;=4200 p;=4400 p;=4400 p,;=4000 p;=4185
bib 1.887 1.888 1.892 1.887 1.904 1.888
bookl 2.270 2.266 2.264 2.279 2.264 2.265
book2 1.943 1.942 1.942 1.949 1.948 1.942
geo 4.198 4.190 4,185 4.225 4.219 4.190
news 2.390 2.387 2.385 2.399 2.386 2.386
obj1 3.732 3.732 3.739 3.737 3.798 3.733
obj2 2.362 2.365 2.370 2.362 2.440 2.365
paperl 2.380 2.382 2.386 2.382 2.399 2.382
paper2 2.336 2.332 2.331 2341 2.333 2.332
pic 0.711 0.709 0.718 0.715 0.758 0.709
progc 2.418 2.419 2424 2421 2.435 2.420
progl 1.660 1.659 1.659 1.664 1.660 1.659
progp 1.656 1.659 1.664 1.654 1.675 1.659
trans 1.442 1.440 1.439 1.444 1.439 1.440
Average 2.242 2.241 2.243 2.247 2.261 2.241

The best overall compression rate was achieved by the following parameter values:
Po = 2600,

p; = 4185.
The improved agorithm with the calculated weights Wpo,pl,S(t) is caled Advanced

Weighted Frequency Count (AWFC).

5.3 EC Stage

Since |Aq| Of the RLE-BIT-1 stage is equal to 258 and therefore much smaller than |Aqy|
of the SIF stage, the composition of the model for the AWFC implementation is simpler
than the model for the SIF implementation.

The model is divided into three parts, whose first part handles the symbols O, 1 and 2,
which are the most frequent symbols. The symbols 0 and 1 are the escape symbols of the
RLE-BIT stage. All symbols greater than 2 are handled by the second and third part of
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the model. Since the symbols 0 and 1 represent runs of zeros, this structure is similar to
the ternary structure which Balkenhol and Shtarkov have suggested [1999].

Part two and three build a structured coding model with two levels. The first level as a
selector divides the symbols in eight digoint subsets: {3}, {4, ..., 5}, {6, ..., 9}, {10, ...,
15}, {16, ..., 31},{32, ..., 69}, { 70, ..., 149} and { 150, ..., 257}. The second level handles
the offset of the current symbol in each group [Fenwick, 1996]. For example the symbol
11 would be coded in the first level as 3, sinceit isin the fourth subset, and in the second

level as 1, sinceit isthe second symbol of the subset.

6. AN IMPROVED BURROWS-WHEELER COMPRESSION ALGORITHM

6.1 Selecting the GST Stage

Since the structure of the output sequence of the AWFC and SIF stage is very different, it
is not easy to predict which GST stage for a respective file is better suitable in order to
achieve the best compression rate. There is one property of the SIF stage which can be
used in this context. The number of additional information beside the part sequences
which the SIF stage needs for decoding, like symbol frequencies and terminator symbols,
is proportional to |[An| of the input sequence. Since |Ain| is limited to 256, the quotient r
with

[An|

n

r =

is getting smaller for larger input sizes n, which means that larger files need a smaller
proportion of additional information than smaller files. As a result, the SIF scheme gives
usually better results on larger files.

The results of the SIF scheme and of the AWFC scheme are displayed in Table VIII.
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Table VIII. Compression rates in bps for the SIF and the AWFC scheme.

Best compression rates for each row are printed in bold font

File Size SIF AWFC
bib 111,261 1.916 1.888
book1 768,771 2.226 2.265
book2 610,856 1.929 1.942
geo 102,400 4.214 4.190
news 377,109 2.399 2.386
obj1 21,504 3.824 3.733
obj2 246,814 2418 2.365
paperil 53,161 2411 2.382
paper2 82,199 2.336 2.332
pic 513,216 0.706 0.709
progc 39,611 2.464 2.420
progl 71,646 1.696 1.659
progp 49,379 1713 1.659
trans 93,695 1.500 1.440
Average 2.268 2.241

The files book1, book2 and pic, which are the biggest files, get a better compression rate
when processed by the SIF scheme, whereas al other files compress better with the
AWTFC scheme. Another reason why the SIF scheme is more suitable for larger filesisits
higher speed compared to the AWFC scheme. In order to achieve the best possible
compression rate, the final implementation of this article uses a hybrid GST algorithm.
For smaller files, the GST stage consists of an AWFC stage and is combined with the
RLE-BIT-0/1 stages and a matching EC stage as described above. Larger files use an SIF
stage as the GST stage bundled with an RLE-EXP stage and a EC stage, adapted on the
SIF output as described above. Despite the fact that the file news, which is greater than
256 KB, gets a better compression with AWFC than with SIF, experiences on other
corpora show that athreshold Ty of
Tsr = 256 KB

achieves generally the best results. All files smaller than Tgr get processed with the
AWFC scheme, and files greater or equal than T get processed with the SIF scheme.
Figure 6 illustrates the final BWCA with the hybrid GST stage.
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Fig. 6. The final BWCA with the hybrid GST stage

6.2 Comparisons of Compression Rates and Times
In Table IX, the results of the compression rates for the Calgary Corpus are compared
between known agorithms from the literature and the hybrid BWCA presented in this
paper. Table X shows the compression and decompression times from GZIP, a
widespread compression program which is freely available, and from the hybrid approach
presented in this paper. Hence the speed can be compared indirectly to compression
programs on other operating systems, since GZIP is available on most operating systems.
The following algorithms are itemized:

GZIP93-V1.2.4 with option -9 - from Jean-loup Gailly and Mark Adler, based on

LZ77[1993],

PPM*95 - from William Teahan [1995],

cPPM1164-02 - from Dmitry Shkarin [2002],

CTWO95 - from Frans Willems, Yuri Shtarkov and Tjalling Tjalkens, based on CTW

[1995],

VW98 - from Paul Volf and Frans Willems, based on PPM* and CTW [1998],

BW94 - from Michael Burrows and David Wheeler, based on BWT [1994],

F96 - from Peter Fenwick, based on BWT [1996],

BS99 - from Bernhard Balkenhol and Y uri Shtarkov, based on BWT [1999],

D02 - from Sebastian Deorowicz, based on BWT [2002],

AO03 - the BWT approach presented in this paper.
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The results show that A03 produces the best average compression rate of all BWT based
algorithms. A comparison must also take into account that most PPM and CTW based
approaches need higher computational resources. A03 needs about double as much time
as GZIP93 for compression and about five times as much as GZIP93 for decompression,
which is significantly less than most PPM and CTW approaches.

The execution time of the BWT, RLE, SIF, AWFC and EC stages are very different from
fileto file. During compression, the BWT and EC stage of A03 need about the sametime
on average. The |F stage of A03 needs about 50% of the time of the BWT/EC stage and
the WFC stage takes about 100% more time than BWT/EC in average during
compression. During decompression the BWT stage of A03 is about ten times faster than
the EC stage on average.

All tests were performed on a WINDOWS 2000 PC with a 700 MHz Pentium Il

jprocessor.

Table IX. Compression rates for the Calgary Corpusin bps
File GZIP PPM*cPPMII CTW VW98 BW94 F9% BS99 D02 AO03
93 95 6402 95
bib 2516 18 1676 179 171 202 195 191 1.89 1.888
bookl 3256 241 2135 219 215 248 239 227 2274 2226
book2 2702 200 1782 187 182 210 204 196 1958 1.929
geo 5.355 478 4158 446 453 473 450 416 4.152 4.190
news 3.072 237 2137 229 221 256 250 242 2409 2.399
obj1 3839 383 3498 368 361 388 387 373 3695 3.733
obj2 2628 231 2110 231 225 253 246 245 2414 2.365
paperl 2792 233 2142 225 215 252 246 241 2403 2.382
paper2 2.880 234 2124 221 214 250 241 236 2347 2332
pic 0816 084 0704 079 076 079 077 0.72 0.717 0.706
progc 2679 234 2161 229 220 254 249 245 2431 2420
progl 1.807 161 1390 15 148 175 172 168 1670 1.659
progp 1.812 155 1391 160 146 174 170 168 1672 1.659
trans 1611 139 1172 134 126 152 150 146 1452 1440
Avg. 2697 228 2041 219 212 240 234 226 2249 2.238
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Table X. Compression and decompression times

for the Calgary Corpus in seconds

File Comp. Time Decomp. Time Comp. Time Decomp. Time

GzZIP GzZIP AO3 AO3
bib 0.09 0.05 0.23 0.20
book1 0.62 0.25 1.23 1.10
book2 0.41 0.18 0.86 0.79
geo 0.28 0.07 111 111
news 0.25 0.13 0.56 0.55
obj1 0.04 0.04 0.18 0.18
obj2 0.23 0.09 0.96 0.91
paperil 0.05 0.04 0.14 0.13
paper2 0.07 0.04 0.20 0.18
pic 0.64 0.09 0.31 0.31
progc 0.04 0.04 0.11 0.10
progl 0.07 0.04 0.14 0.12
progp 0.05 0.03 0.10 0.08
trans 0.07 0.04 0.17 0.14
Sum 291 113 6.30 5.90

7. CONCLUSIONS

The Burrows-Wheeler Compression Algorithm achieves good compression rates
combined with high speed. Within this field, the post BWT stages play a central role in
order to realize the best possible results. Implementations of post BWT stages typically
consist of three stages. a Global Structure Transformation (GST), a Run Length Encoding
(RLE) stage and an Entropy Coder (EC) stage.

This paper presents a new position for the RLE stage together with adapted RLE
techniques. Thefirst technique, called RLE-EXP and based on the variable length code of
Maniscalco, uses a threshold run with a logarithmic length and compresses the mantissa
information of the run length outside the normal symbol buffer directly with an adapted
entropy coder. The second technique, called RLE-BIT, is a new RLE agorithm and
removes al runs from the symbol buffer before the GST stage and codes the run length

information back into the buffer after the GST stage by using two escape symbols.
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An improved version of the Inversion Frequencies algorithm, called Sorted Inversion
Frequencies (SIF), was introduced, which performs a sorting permutation of the input
alphabet either in ascending or descending order depending on the symbol distribution.
This permutation together with an adapted EC model helps to upgrade the compression
rate and to accelerate the execution.

A variation of the Weighted Frequency Count algorithm, called Advanced Weighted
Frequency Count (AWFC), improves compression by using more logarithmic levels than
the original implementation and by using a calculating scheme for the weights depending
on the symbol distribution. Together with a special EC model, a better compression rate
to the original implementation is achieved.

SIF and AWFC stages were combined in a hybrid scheme, the SIF stage with the RLE-
EXP stage and the AWFC stage with the RLE-BIT stages. Files smaller than 256 KB are
treated by the AWFC scheme and files larger or equal to 256 KB are processed by the
SIF scheme.

This hybrid scheme achieves a compression rate for the Calgary Corpus of 2.238 bps.
The compression speed achieves around 45% of the speed of GZIP and the
decompression speed achieves about 20% of the speed of GZIP.

At this point of time, it is difficult to predict if further improved techniques of already
known GST algorithms will give better compression rates or whether the devel opment of
atotally new approach for the GST algorithm could lead to better compression rates and
higher speeds. In any case, the distance between the compression rates of the BWCA and
the compression rates of the strongest compression agorithms known, the PPM and
CTW methods, is getting smaller.
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