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Abstract 
We consider the problem of compressibility of protein sequences. Based on an observed genome-scale 
long-range correlation in concatenated protein sequences from different organisms, we propose a method 
to exploit this unusual redundancy in compressing the protein sequences. The result is a significant 
reduction in the number of bits required for representing the sequences. We report results in bits per 
symbol (bps) of 2.27, 2.55, 3.11 and 3.44 for protein sequences from M. jannaschii, H. influenzae, S. 
cerevisiae, and H. sapiens respectively, the same  protein sequences used by Nevill-Manning and Witten 
in the “Protein is incompressible” paper [23]. The observed long-range correlations could have significant 
implications beyond compression and complexity analysis of protein sequences.  

1. Introduction 
Proteins are large molecules and are responsible for differing functions in an organism. There are different 
types of protein, and the exact function of a given protein depends on its three dimensional structure. Proteins 
are made up of amino acids, which are often joined in chains to form polypeptides (or simply peptides for 
smaller sequences). Proteins are formed from an alphabet of 20 amino acids. Each amino acid has a 
corresponding DNA triple, taken from the 4-symbol DNA (or RNA) alphabet. According to the Central 
Dogma of molecular biology [8], the information flow is unidirectional: from DNA to RNA to Proteins. That 
is, the exact sequence of amino acids in a give protein sequence is determined by the primary DNA sequence 
of the genes that produced the protein. The exact rules used in this mapping from DNA bases to amino acids is 
defined in the Genetic Code[11]. The genetic code is a non-overlapping block  code, whereby three successive 
RNA nucleotides code for one amino acid, or for a stop translation signal. The areas of the DNA that contain 
genes are thus called coding regions, while the remaining parts are called non-coding regions.  

Given the recent exponential growth of available biological sequences, the need for efficient storage 
and communication of such data has heightened significantly. Compression methods have emerged to address 
this challenge, with varying degrees of success. Protein in particular is known to be very difficult to compress, 
especially when compared with the general DNA which could have various forms of repetition. The interest in 
compression is, however, not just for efficient storage and data transport. For biological sequences in 
particular, the intrinsic relationship between complexity, redundancy and compression imply that an algorithm 
that can compress biological sequences could provide a means for analyzing such sequences for hidden 
structures. Such hidden structures could be exploited for various applications, from sequence classification to 
construction of phylogenic trees, to comparative genomics. 

2 Protein Sequence Compression  
Given that we represent the information in protein sequences using 20 symbols, if the sequences were to be 
completely random (that is, completely unpredictable or incompressible [20]), then, we should need )20(log2

or about 4.32 bits to code each amino acid. Traditional compression methods that have done very well on text 
often find it difficult to compress biological sequences, such as DNA or protein sequences.  In fact, using the 
classical compression methods (such as word-based Huffman, arithmetic coding, or LZ-based methods) 
directly on such sequences often result in data expansion, rather than compression [13, 27].  The major reason 
is the fact that these methods often use models that were derived for traditional text, and hence fail to consider 
certain special characteristics of biological sequences.  Biological sequences are however known to convey 
important purposeful information between different generations of an organism. Moreover, biological 
sequences are known to contain different types of repetitions and other hidden regularities. Long runs of 
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tandem repeats and of randomly interspersed repeats are prominent features of DNA sequences. Thus, from 
the viewpoint of compression and sequence understanding, the repetitions inherent in biological sequences 
imply redundancies which can provide an avenue for a signifcant compaction. The identification of such 
dependencies is the starting point for biological sequence compression.  

Different specialized algorithms have been proposed for compressing biological sequences, with 
varying degrees of success. Examples here include BIOCOMPRESS1 and BIOCOMPRESS2 [13], CFACT [27], 
GENCOMPRESS [6], and GTAC [19], and the context-tree weighting method of Masumoto et al [22]. Maximum 
likelihood approaches to DNA sequence compression were proposed in [18], while methods that use offline 
dictionaries were reported in [3] and [2]. Loewenstern and Yainilos [21] proposed a method to estimate the 
entropy of DNA sequences by using inexact matches based on a family of distance measures. The different 
algorithms differ primarily in the type(s) of repetitions they consider, and in how the repetitions are 
represented and exploited to achieve compression.  

Compression methods have also been proposed with specific consideration of protein sequences. In a 
well-cited paper [23], the PPM algorithm [7] was modified by considering mutation probabilities for the amino 
acids that make up protein sequences. Though the results produced were relatively better than those from the 
original PPM (which led to data expansion), the compression was not significant. This led the authors to 
conclude that protein is not compressible by any appreciable degree. In [22] context tree weighting was 
combined with simple LZ77 parsing to provide a better compression over the same data corpus used in [23]. 
While this is a significant result, the method did not do well on 2 of the 4 sequences in the corpus.  More 
recently, Sampath [28] presented a block-based method that could provide a significant compression on one 
sequence in the corpus (the HI sequence, from Haemophilus influenzae), with compression ratios of up to 
3.66bps.  However, attempts to use the same method on the other three sequences lead to data expansion.  

2.1 Why protein is difficult to compress 
In the following, we use the term “protein sequence” to refer to the entire collection of all the proteins in an 
organism (as was done in [23]). This is different from the use of the terminology in other related work (such as 
in [11]) to refer to the sequence of amino acids in one polypeptide.  

(a) (b) 
Fig 1: Sorted probabilities (a) and higher order entropy (b) for the four sequences in the protein corpus. The protein sequences are taken 
from four organisms:  HI: H. influenzae; MJ: M.jannaschii;  HS: H. sapiens; SC: S. cerevisiae

Even with the degeneracy of the genetic code, it is well established that protein sequences are particularly 
difficult to compress. One reason is the problem of multiplicity and individuality of protein sequences [10].  
Given the relation between sequence complexity and complexity of organisms, one can expect that for 
complex higher organisms, their protein sequence should be difficult to model, and hence compress.  Another 
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major difficulty lies in the apparent randomness of the symbols in a protein sequence. In Fig. 1(a) we show the 
individual probabilities for the four protein sequences in the Protein Corpus used by Nevill-Manning and 
Witten [23]. For each sequence, the symbols (x-axis) are sorted in increasing order of their probability. The 
first observation is the very small range of values for the probabilities (from around 0.043 ~0.057) for any 
given sequence. The amino acid Tryptophan (Trp, symbol W) did not occur in the HS sequence. A smaller 
range for the probabilities imply more closeness to the uniform distribution, and hence less compressibility. It 
can be observed that HS (H. Sapiens) and SC (S. cerevisiae) seem to have a higher complexity. This difficulty 
in compression is further illustrated in Fig. 1 (b), which shows the higher order entropy for the sequences.  

We can also consider the problem of compressibility of protein sequences by looking at the 
performance of current state of the art compression algorithms on such sequences. Table 1 shows that protein 
is in fact difficult to compress. Traditional compression algorithms (BWT, PPM, WinZip (LZ-based)) all 
expand, rather than compress the sequences. That is, they require more than 4.32 bits per symbol (bps) to 
represent the protein sequences. A better result is produced by specific algorithms for protein sequence 
compression, but none was able to produce a universally good compression across all the sequences. Most of 
them still require more than 4bps. (The biological sequence compression algorithms in the table are 
GenCompress[6], CP [23], lzaCTW [22] and blockCode [28]).  

2.2 Why protein should be compressible 
Given the Central Dogma, we can say that the protein sequence (at least at the primary sequence level) is a 
function of the original DNA sequence. From information theory, we know that the entropy of a function of a 
random variable cannot be any greater than the entropy of the original random variable. Thus, the protein 
sequence cannot have more entropy than the original DNA sequence from which it is formed [11]. But this is 
only with respect to the coding regions of the DNA sequence.  Further, with the assumption that organisms are 
purposeful, and not just a random collection of symbols, we can expect that there will be constraints placed on 
how the DNA sequences (hence protein sequences) are ordered. Such constraints are likely to lead to some 
form of redundancy, which could be exploited for compression.  

We also expect that nature will find a way to protect important genes or gene products in a given 
organism. This means that there is likely to be some other form of redundancy in biological sequences, at least, 
for the purpose of more reliable transmission of genetic information from one generation to the other. The 
various forms of repetitions in biological sequences could be one way to ensure this reliability. More 
importantly, the phenomenon of gene duplications, multiple gene copies, and histone clusters in genomes of 
higher organisms imply that their protein sequences (at least, at the primary sequence level) will have some 
redundancy.  For instance, [14] reports of 1509 duplicate paralogous genes from 5766 yeast open reading 
frames for baker’s yeast, S. cerevisiae. Similar observations on the extent of duplicate genes in other model 
organisms were reported in [15].  A number of experiments have shown that the inactivation of certain genes 
has no apparent phenotypical effect on the fitness of certain species [9, 12, 14, 24, 25]. This observation relates 
to the functional redundancy of genes in different organisms, and it has been observed that most of these 
functionally similar genes tend to be quite similar at both the transcription level and at the sequence level [26].   

Table 1: Failure of compression algorithms on protein sequences. Results in bits/symbol (smaller values imply better performance).  
 General Compression Algorithms Biological Sequence Compression Algorithms 

PPM BWT WinZip Gzip PPMD Gen 
Compress CP(0) CP(1) CP(2) CP(3) Lza 

CTW-8
Block 
Code 

HI 4.881 4.49 4.671 4.672 4.151 4.156 4.156 4.149 4.146 4.143 4.118 3.665 
MJ 4.734 4.45 4.589 4.588 4.061 4.062 4.068 4.06 4.056 4.051 4.028 5.102 
SC 4.854 4.49 4.638 4.64 4.157 3.97 4.163 4.158 4.152 4.146 3.952 5.175 
HS 4.639 4.43 4.605 4.605 4.119 3.972 4.133 4.126 4.12 4.112 3.920 5.087 

Initial empirical evidence that protein sequences could indeed be significantly compressed can be seen in the 
partial success of the block coding algorithm of Sampath [28] and the context-tree weighting methods of 
Matsumoto et al [22]. See Table 1. The methods were able to compress some protein sequences in the corpus 
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below the 4.0bps mark. In particular, the block coding method was able to compress the HI sequence to about 
3.66bps, although the method performed very poorly on all the other sequences. This is still a very significant 
result: it dispels the view that protein is incompressible, and shows that a carefully constructed algorithm could 
work well on a restricted set of input sequences. As was suggested by the author, this ability to compress only 
the sequences from HI could mean that H.influenzae is a unique organism. We note that, from the viewpoint of 
compressibility, neither the higher-order entropy, nor the simple probability distribution of the symbols 
supports this view that HI is unique. Although generality of the algorithm is still a problem, especially when 
viewed from the definition of “incompressibility” in [23], the fact that such a relatively low compression can 
be achieved on a protein sequence is significant in its own right. This raises the hope that some unknown 
constraints may be at play in such sequences, which if identified could have implications not only for the 
compaction of the sequences, but on general analysis of such sequences.  

2.3 Problems with current approaches  
In our view, one major problem with current approaches to protein sequence compression in particular, and 
biological sequence compression in general is the focus on statistical compression methods. As seen from the 
practical results from existing algorithms, simple Markovian models clearly are not adequate. The statistical 
significance of repetitions may not be enough to build an adequate model for the symbol probabilities. Further, 
most methods seem to perform simple pattern searches, while biological sequences are known to have various 
types of repetition, whether one considers approximate or exact repetition. More importantly, the methods tend 
to ignore the fact that biological phenomena such as gene duplication could lead to long-range genome-wide 
correlation in rotein sequences, with possible large-scale duplications occurring between different 
chromosomes. Our approach is to exploit these genome-wide long-range correlations in protein sequences. 

3. Long-Range Correlation in Protein Sequences 
The coding regions in genomic sequences are generally less repetitive than the non-coding regions [11, 21]. 
Thus, it is widely agreed that protein sequences generally have more entropy, and hence exhibit more 
randomness than general DNA sequences. A repetition-based complexity profile has recently been proposed 
for prokaryotic sequences [29]. In fact, protein has been touted as being incompressible [23]. In studying the 
SCP (sorted common prefix) statistics of genomic sequences, we bumped unto an unusual observation: an 
unprecedented redundancy in protein sequences! (See Table 3, compare with Table 2). The protein sequences†

were the same used by Nevill-Manning and Witten in the “Protein is Incompressible” paper [23]. Each of the 
four files in the corpus contains a concatenated sequence of all the proteins in the genome of one single 
organism (except for that of H.Sapiens, which is not complete). The observation is the unusually high values 
of Kmax in the SCP statistics for the protein sequences. (Kmax is the maximum common prefix for a given 
sequence). This means that, certain (set of) genes in some area of the genome are repeated in exactly the same 
order at some other point(s), further down the genome. Apart from the mere size of the repeated subsequences 
(as given by Kmax), an equally important aspect is the relatively long range of separation between the repeats. 
For H. sapiens and S. cerevisiae, the occurrences with Kmax are separated by more than 350,000 protein 
symbols (or > 1,050, 000 base pairs). Since the protein sequences are concatenated, this means that the 
repetition could involve genes located in different chromosomes. For protein sequences (see Table 3), we can 
observe the overlapping nature:  Kmax tends to be larger than the difference between the starting indices.  

To our knowledge, this scale of redundancy has never been observed in protein sequences of a 
genome. Although multiple gene copies and repeated histone clusters are known to be present in most 
eukaryotic genomes [16], their number and their size are not enough to explain the above observation. More 
importantly, the orders in which the genes are arranged in the genome tend to be conserved as they are being 
repeated at a different location along the genome. Apparently, this redundancy has not been previously 
observed with computational methods, because protein sequences are not usually considered in the way it was 
considered by Nevill-Manning and Witten [23]. The reason could come from the following: (I) Most 
computational analysis of protein sequences treat each gene independent of the other, and not in the 
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concatenated form as was done in [23]. (II) They are usually based on protein sequences from different 
species, and not the complete set of protein sequences from a large genome, such as the human genome. (III) 
They do not expect to find such long range repetitions in protein, and hence, choice of parameters may exclude 
such unusual cases. (IV) Most repeat finding algorithms do not consider overlapping repeats. (V) Large 
complete genomes have only recently become available. Thus, simple methods to find repeats would fail to 
identify such long-range redundancies that could span chromosomal boundaries. 

A: humEpsBarr. B: HUMGHCSA. C: MitoMPOMTCG.  
D: YSCCHRIII. E: YSCCHRIV. F: E.coli. 

This observation goes against the grain of conventional assumptions about protein sequences in the data 
compression community. The biological implications are numerous, for instance in the regulation and control 
of gene expressions. Protein sequences from the same genome could exhibit very long-range periodicities. But 
these are interrupted and masked by the introns – the non-coding areas in the genome. One could use this as a 
basis for a check for correct splice sites of subsequent genes, (after the correct identification of some initial 
genes). There could also be some evolutionary implications: nature not only conserves the important genes by 
replications in the same genome, but it also conserves their orders.  Biological and evolutionary evidence of 
the prevalence of genome-wide gene duplications and their implications have been studied in [12, 17]. 

3.1 Efficient analysis of sequence correlation  
We use the SCP data structure described in [1] as the basic structure to analyze the protein sequences. Let T be 
an input sequence of length Tu = . Suppose we pre-compute the longest-common-prefix (LCP) between all
pairs of the sorted suffixes from a sequence, T.  Using the relationship between the BWT [5] and the suffix 
tree, in addition to the auxiliary arrays previously described in [2, 4], we can obtain these sorted suffixes in 
linear time. We store this information in a table. Since the table is based on the sorted suffixes, we call this the 
sorted common prefix (SCP). Although the SCP and traditional LCP store the same basic information, the 
structure of the SCP is completely different. Also, the sorted nature of the suffixes for the SCP has implications 
in the computation of this table, and its diverse uses.  Given the i-th and j-th sorted suffixes, ( iSS and 

jSS respectively), if SCP(i,j)=k, it means that the first k positions in the i-th suffix and the j-th suffix are exact 

matches (i.e. [1... ] [1... ]i jSS k SS k= , and ]1[]1[ +≠+ kSSkSS ji ). We observe the following properties about the 
SCP structure. Let i,j,k, be indices for the sorted suffixes, such that i<j, and j<k. Then, 

jkkiSCPjiSCP >∀≥ ),,(),( . Also, 0),(if ≥jiSCP  and ,0),( =kiSCP 0),(,then =>∀ kjSCPjk . More 
generally, let ),( kiSCPx = . Then, ,jk >∀ ),(),( kiSCPkjSCP = ( )],...,1[],,...,1[ uxSSuxSSSCP kj +++

( )],...,1[],,...,1[ uxSSuxSSSCPx kj +++= . The SCP is symmetric: SCP (j,k)= SCP(k,j). It is also usually sparse, 
although not always. Example, with T = AAAAA, we will have a full SCP table, where the row entries are of the 
form 1 1 1 1; 2 2 2; 3 3; 4.  Essentially, any pair of suffixes with an SCP value different from 0 has some 
repetition which may or may not lead to a compression gain.  Further, the block nature of the SCP means that 
we can compute the SCP for each symbol block, without reference to the other symbol blocks, leading to a 
lower complexity in the calculations.  

Fig. 2 shows the different forms of large scale repetitions (gene duplications) we observed in the 
protein sequences. S1 is the repeated pattern. Some repetitions are overlapped with previous repetitions (case 

  Table 2: SCP Statistics for Common DNA Sequences 

 Seq   size, u  Kmax  Kmax/u  Start 
 Index1 

 Start 
 Index2  Diff 

A 172280 32442 0.188 12145 15217 3072 
B 66495 408 0.00614 8572 1958 6614 
C 186609 191 0.00102 121038 38876 82162
D 316613 1682 0.00531 12335 199487 187152
E 1531929 3573 0.00233 528048 531933 3885 
F 4638690 2815 0.00061 4165800 4207196 41396

Table 3: SCP Statistics for Concatenated Protein Sequences 

Seq size, u # of  
genes  Kmax Kmax/u  Start 

Index1 
 Start 
Index2   Diff 

HI 448770 1740 220685 0.492 53200 8 53192 
MJ 509508 1680 343105 0.673 34899 3 34896 
SC 2900346 8220 886531 0.306 480296 29 480267 
HS 3295749 5733 392004 0.119 358676 24 358652 
HI: H. influenzae; MJ: M. jannaschii;  HS: H. sapiens; SC: S. cerevisiae
Diff=|Index1-Index2| 
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A), or are completely contained in some previous repetition (case B), while others could occur thousands of 
amino acids down the protein sequence (case C).  In some other cases, the repeated subsequences could span 
two different adjourning repetitions (case D). We observed that in all the sequences in the protein corpus, the 
large scale repetitions tend to be tandem duplications.  

In [1], it was shown that, for a fixed alphabet, the SCP can be computed using an )(uO number of 
comparisons. We, however, note that the compression results are independent of how we extract the long 
range tandem duplications or other repetitions in the sequence. The important issue is that we extract and 
exploit them in the compression. But the compression time clearly depends on the method we use to extract 
these. 

Fig. 2: Different forms of repetitions observed in the protein sequences, as exposed by the SCP. A: overlapping  repeats 
(pattern S1 occurred 5 times);  B: One subsequence covers the other subsequence. We break them down into smaller sequences 
S1; C: repeated sequences are separated by possibly long stretches of amino acids between them. This is the most common 
case; D: The triple overlap case. We break the overlaps down into subsequence S1.

4. Compressing Protein Sequences 
Fig. 3 is a flowchart of the proposed compression algorithm. 
After each parse, we obtain two outputs – the dictionary items 
and the remaining sequences. The dictionary consists of 
information about the repeated patterns, such as repetition 
length, position number of occurrence, etc, needed for later 
decoding. Since both of these may contain redundancy, to 
achieve maximum compression gain, we pass these two to the 
core algorithm again until no compression could be achieved. 
For two repeating sequences that overlap (cases A, B and D in 
Fig. 2), we cannot replace one of them without cutting the 
length of the second. In this scenario, we will construct a 
shorter subsequence to represent these two, as shown in Fig. 
2. After identifying the various forms of correlation in the 
sequence, the next problem becomes how to use these to 
compress the protein sequence. This will typically involve 
performing some form of substitution using the discovered 
repetition structures. Thus, we need to parse the input 
sequence to indicate the positions of the repeats and where 
and how they are to be substituted. We use an off-line 
dictionary based approach. First, we remove the repeats from 
the original sequence, and move them into an off-line 
dictionary (or index) of repeats. Then we code all occurrences 
of the repeat with reference to the position of the repeat in the 
dictionary. The size of the pointers is likely to be generally smaller than when we use on-line dictionary 
(especially with absolute references), since the number of repeats should be much smaller than the size of the 
input sequence. But we have to compress and send the off-line dictionary as part of the compressed string. To 
guarantee compression, we can enforce a condition that whenever an item is inserted in the dictionary, it 
should not lead to an expansion of the data. We also have to consider whether referencing using the pointers 
should be relative or absolute.  

Fig. 4: Flowchart for proposed compression 
            algorithm. 
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4.2 Parsing and encoding  
Our approach here is to use the vocabulary parsing scheme (vps) proposed in [2]. For simplicity we use the 
VPS1 algorithm, which provides offline dictionary compression with pointers in the dictionary. The 
compression performance will depend on a number of factors, such as: the size of the pointers and the way 
they are coded; the type of referencing used - absolute or relative; the size of the dictionary (i.e. number of 
distinct repetition structures); and the type of referencing used in the dictionary (if any).  

Under algorithm VPS1, we remove each repeated substring from the input sequence, and move it to an 
external dictionary. In the dictionary, we record the positions in the sequence where each repetition occurred, 
along with the repetition type. Thus there is no reference or pointer information in the original sequence. The 
parsed string is just a concatenation of the remaining subsequences after the repeats have been removed. To 
capture the case of different repetition types, we include repetition codes for each type of repetition in the 
dictionary.  

Example. Consider the following sample sequence,  S:

 P1  P2  P3  P4  P5  P6  P7

x1 MMCTGTCMM x2 MM x3 GTCMM x4 TG x5 MMCTG x6 TTGMCMGTT x7 MM 

When we move the repeated sequences into the dictionary, the remaining parsed sequence will be: 
Parse(S) : x1x2x3x4x5x6x7

The xi's represent some other parts of the sequence that are not included in the repetition structure. Thus, the 
parsed sequence from Algorithm VPS1 is very simple. The dictionary however is a little more complicated. 
Using the following notations: ri  = i-th repetition pattern, l(r)=|r|=length of  repeat pattern r, η(r)  = total 
number of occurrences of r, t(r)  = repetition code for current occurrence of r,  we can represent the dictionary 
structure for the sample sequence as follows:  

The performance of the above scheme depends critically on the 
internal representations used for the dictionary. We use the 
term vocabulary to refer to the ensemble of repeat structures 
without reference to their specific locations in the sequence. 
For simplicity, we consider only the case with one type of 
repeat. The analysis can be extended to the general case with 
different types of repeats. We analyze the expected 
compression gain for the offline scheme using the above 
dictionary organization. We note that we do not need to 

explicitly encode l(r) and η(r) since these can be computed on the fly. By using self-delimiting and uniquely 
decodable codes, we avoid direct coding of the delimiters in the above representations.  

We use the following additional notations: Pr,j = position of the j-th occurrence of repeat pattern r; κ = 
dictionary size  (i.e. number of distinct repetitions); u = |S| = size of the sequence, Σ = input alphabet, (|Σ|=20 
for protein sequences); ⎡ ⎤Σ= logβ  = number of bits required  to code each amino acid‡; ⎡ ⎤nnb log)( = =
number of bits required to represent an integer n; C(X) cost of coding sequence X; { })(max ii

rlL = - the 

maximum length of the repeats; 0 and 1 are flag bits.  
Vocabulary Encoding: 
Vocabulary: 0000 κrrr ...21

Positions: 
0000 )(,2,1,)2(,22,21,2)1(,12,11,1 ,...,...,...,,..., κηκκκηη PPPPPPPPP

Using the above representation, we have the following: 
                                               
‡All logarithms are to base 2, unless otherwise noted.

index Repeat Pattern l(r) t(r) η(r) positions 
1 MMCTGTCMM 9 1 1 P1

   3 1 P6

2 GTCMM 5 1 1 P3

   2 1 P5

3 MM 2 1 2 P2, P7

4 TG 2 1 2 P4

   t(r): 1: direct repeat; 2: reverse repeat;  
          3: complimented palindrome 
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Cost of original sequence: ( ) . log .C S S u β= ⎡ Σ ⎤ =⎢ ⎥
Cost of parsed sequence (i.e. remaining sequence after removing repeats): 
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The cost of dictionary representation is then the combined cost of the vocabulary and the positions: 
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With 11 += ββ , we have an underestimation of the gain: 
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Using the compression gain above, we can reduce the time required for parsing and computation of 
compression gain by performing the required computations based on the length of the repeat. We see that 
with 1=κ , the minimal length that can guarantee a positive compression gain will be given by:  

( )
( ) log 2

( )
( ) 1 1

r u
l r

r
η β

β η
+ +⎡ ⎤⎢ ⎥≥

− −
Thus, for a protein sequence with 1 million symbols, say, using the simplest case of repeats that appear at least 
2 times, we get a minimal length for the repeat sequence to be 14.  

4.3 Multi-level hierarchical decomposition 
To further exploit the potential redundancy, we perform the 
parsing and decomposition in a hierarchical manner. That is, after 
the first parse, the remaining sequence is used again as the input to 
the parsing algorithm to discover other potential correlations that 
may have been missed by the previous parsing stages. Similarly, 
given that the dictionary entries could be very long (potentially 
tens of thousands of amino acids, see Table 3), we also feed the 
dictionary entries for further decomposition and parsing. The result 
is a recursive multi-level decomposition strategy, (see Fig. 4). At 
each level, the input sequence is decomposed into two 
components, the dictionary Di and the remaining sequence Rj. Both 
Di and Rj are further passed to the parsing algorithm for further 

decomposition. Decomposition stops when the compression gain G(S) for the input sequence is negative or 
less than a threshold. Each internal node except the root in the tree is a provisional output. Each leaf in the tree 
is part of the final output. For instance, R01 in Fig. 4 is terminated as a leaf in the tree because we cannot 
achieve any more compression gain by decomposing it further. Thus, it is coded without further parsing. It is 
obvious that the remaining sequences R typically require more rounds of passing than the dictionary items D, 
since the remaining sequences normally have longer lengths.  

10 0 1 0 1

1

1

0 10

0

D0 R1

D00 R01 D10 R11

D000 R001 D100 R101 D110 R111

Input Sequence

Fig.2: Multilevel hierarchical decomposition 
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The compression results typically improve with higher levels of decomposition. Also, the time 
required for parsing and compression gain analysis, decreases very fast as the levels of decomposition 
increase, although the overall time increases with more decomposition levels. 

4.4. Results  
Table 4 shows the statistics of maximal repeats for the protein sequence and compression results using the 
above parsing scheme, and the observed long-range correlations in the sequences. Table 5 shows a comparison 
with the results from Table 1 for the biological sequence compression algorithms on the same sequence. We 
have ignored the bits required to represent the special position symbols used to indicate gene region separators 
in the protein sequences (usually less than 100 bytes per sequence). 

Table 4: Statistics of maximal repeats and compression results 
 using the observed long-range correlations. 

Table 5: Comparative compression performance using the observed 
long-range correlations. Compression results in bits/symbol (smaller
values imply better performance).  

   Size  Kmax     repeat 
  length l(r)

   number of 
occurrence η(r)

Compression 
Results (bps) 

Gen 
Compress CP(0) CP(1) CP(2) CP(3) lzaCTW

(8) 
Block 
Code 

Proposed
Method 

 HI  509508 220685 34896 7 2.546 HI 4.156 4.156 4.149 4.146 4.143 4.118 3.665 2.546 
 MJ  448770 343105 53192 5 2.273 MJ 4.062 4.068 4.06 4.056 4.051 4.028 5.102 2.273 
 SC  2900346 886531 406239 3 3.111 SC 3.97 4.163 4.158 4.152 4.146 3.952 5.175 3.111 
 HS  3295749 392004 338359 3 3.435 HS 3.972 4.133 4.126 4.12 4.112 3.920 5.087 3.435 

The superior performance of the proposed method is evident in the above tables. We notice that the improved 
performance is consistent across all the different protein sequences. This is expected, given the consistently 
high values of Kmax in Table 3. It was observed that the long range correlations that produced the highest 
compression gains are often due to large tandem duplications, with thousands of symbols in the primitive 
pattern.  

In terms of compression time, after the SCP is computed, the parsing and compression stage take 
about 7 minutes for MJ sequence, on a dual-Athlon 1.8 GHz processor server running Ubuntu Linux 5.10.   

5. Conclusion 
We have considered the problem of compressibility of protein sequences. Based on the observation of long-
range genome scale correlations in protein sequences, we proposed a simple scheme to exploit such 
correlations. Using a method based on the sorted common prefix we identify the correlated protein sequences, 
and then use a simple dictionary-based parsing and encoding scheme to provide compression.  The results 
show that the approach can provide a consistent compression of the protein sequences, at times down to less 
than 2.3bps. The improved performance was observed on all the protein sequences in the Protein Corpus. 
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