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Abstract

In the last decade, multiscale techniques for gray-level texture analysis have been intensively used. In this paper, we aim
to extend these techniques to color images. We introduce wavelet energy-correlation signatures and we derive the
transformation of these signatures upon linear color space transformations. Experiments are conducted on a set of 30
natural colored texture images in which color and gray-level texture classification performances are compared. It is
demonstrated that the wavelet correlation features contain more information than the intensity or the energy features of
each color plane separately. The influence of image representation in color space is evaluated. ( 1999 Pattern
Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

For image analysis, color and texture are two of the
most important properties, especially when one is dealing
with real-world images. Classical image analysis schemes
only take into account the pixel graylevels, which repres-
ents the total amount of visible light at the pixel’s posi-
tion. The performance of such schemes can be improved
by adding color information [1]. The color of a pixel is
typically represented with the RGB tristimulus values,
each corresponding to the red, green and blue frequency
bands of the visible light spectrum. Color is then a feature
in the three-dimensional RGB color space, which con-
tains information regarding the spectral distribution of
light complementary to the gray-level information.

An important topic when processing color images
is their representation. The RGB representation is
frequently being transformed into other color spaces.
A large variety of (linear and non-linear) transforms
and standard color spaces can be found in the literature
[2,3]. The performance of an image analysis system can
strongly depend on the choice of the color representation
[4,5]. However, there does not appear to be a systematic
means of determining an optimum color-coordinate sys-
tem for a particular task.

In the analysis of color images, the description of
image regions has mainly been performed using color
histograms [3,6]. When local spatial correlations are
important to characterize a region, color histograms no
longer suffice. The extra information needed to adequate-
ly describe the image regions is commonly known as
‘‘texture’’. Texture has been studied extensively and many
texture analysis schemes have been proposed [7,8]. The
fundamental property which they all have in common is
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that they exploit spatial interactions between the pixels of
a neighborhood.

A rather limited number of systems use combined
information of color and texture, and even when they
do, both aspects are mostly dealt with using separate
methods [9,10]. It is only recently that attempts are being
made to combine both aspects in a single method, by
extending gray-level texture analysis methods to color
images. This combination can be made more formal by
defining ‘‘color-texture’’ as ‘‘the set of local statistical
properties of the colors of image regions’’. Efficient char-
acterization of color texture requires the exploitation of
spatial correlations as well as correlations between color
bands.

A number of researchers have performed experiments
on color texture analysis. Caelli and Reye have proposed
a method in which they extract features from three spec-
tral channels by using three multiscale isotropic filters
[11]. A related approach by Tan and Kittler extracts
features from three channels with a discrete cosine trans-
form [12]. Both methods did not consider correlations
between spectral bands. Some recent methods have tried
to include this. The well-known occurrence matrix
method has been investigated by Hauta-Kasari et al. [13].
A Markov random field model for color textures has
been proposed by Panjwani and Healey [14]. Some work
closely related to this has elaborated on invariants with
respecto the model [15,16]. Kittler et al. have studied
pseudo-Wigner distributions and chromato-structural
features to detect defects in colored texture surfaces [17].

Despite these examples, work on color texture analysis
is still very small. The importance of a joint color-texture
characterization is, however, expected to grow rapidly in
the near future, e.g. for indexing image databases. At
present the color extensions of several major texture
analysis methods are still unexplored. We will investigate
those methods, namely the wavelet multiresolution de-
composition.

Multiresolution representations give rise to an inter-
esting class of texture analysis methods. Strong argu-
ments for their use can be found in psychovisual research,
which offers evidence that the human visual system pro-
cesses images in a multiscale way [18]. Wavelets provide
a convenient way to obtain a multiresolution representa-
tion [19,20], from which texture features are easily
extracted. The so-called energy signatures have proven to
be very powerful for texture analysis [21—24].

We propose a scheme for the classification of colored
texture images. Feature extraction using wavelet de-
composition is described. Wavelet correlation signatures
are defined which contain the energies of each color
plane, together with the cross correlation between differ-
ent planes. While the first have already been successfully
used for texture characterisation, the second represents
the coupling between texture and color. We will show
that these features transform linearly upon linear color

space transformation. The experiments will demonstrate
the usefulness of correlation signatures as texture fea-
tures. The influence of the choice of color space repres-
entation on classification performance will be investi-
gated.

The outline of this paper is as follows: in the next
section the use of the wavelet transform for feature
extraction is discussed and wavelet signatures are in-
troduced. Section 3 elaborates on various color space
transforms and investigates the behavior of the wavelet
signatures upon such transforms. Section 4 briefly ex-
plains the techniques used for image classification and in
Section 5 several experiments are conducted and their
results discussed. In the last section some conclusions are
drawn.

2. Wavelet signatures

The (continuous) wavelet transform of a 1-D signal
f (x) is defined as

(¼
a
f )(b)"P f (x)t*

a,b
(x) dx, (1)

where the wavelet t
a,b

is computed from the mother
wavelet t by translation and dilation

t
a,b

(x)"
1

Ja
tA

x!b

a B (2)

The mother wavelet t has to satisfy the admissibility
criterion to ensure that it is a localized zero-mean func-
tion. This transform can be discretized by restraining
a and b to a discrete lattice (a"2n, b3Z). Typically,
some more constraints are imposed on t to ensure that
the transform is non-redundant, complete and consti-
tutes a multiresolution representation of the original
signal. This has led to an efficient real-space implementa-
tion of the transform using quadrature mirror filters.

The extension to the 2-D case is usually performed by
using a product of 1-D filters. In practice, the transform is
computed by applying a separable filter bank to the
image:
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where b3R2, * denotes the convolution operator, B2,1
(B1,2) sub-sampling along the rows (columns) and
¸
0
"I (x) is the original image. H and G are a low- and

band-pass filter, respectively. ¸
n
is obtained by low-pass

filtering and is therefore referred to as the low-resolution
image at scale n. The D

ni
are obtained by band-pass
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filtering in a specific direction and thus contain direc-
tional detailed information at scale n; they are referred
to as the detail images. The original image I is thus
represented by a set of subimages at several scales;
M¸

d
, D

ni
Nn/0,2 ,d~1
i/1,2,3

which is a multiscale representation
of depth d of the image I.

The energy of a subimage D
ni

is defined as

E
ni
"P (D

ni
(b))2 db. (7)

The wavelet energy signatures ME
ni
N
n/0,2 ,d~1, i/1,2,3

re-
flect the distribution of energy along the frequency axis
over scale and orientation and have proven to be very
useful for gray-level texture characterization. Since most
relevant texture information has been removed by iter-
ative low-pass filtering, the energy of the low-resolution
image ¸

d
is generally not considered a texture feature.

The most straightforward extension of the wavelet
energy signatures to color images is to transform each
color plane separately and extract the energies of each
transformed plane; i.e. replace I by the R,G and B-plane
consecutively in Eqs. (3)—(6). We denote such an energy
by EXj

ni
where the X

j
indicates the color plane. This triples

the amount of features w.r.t. the gray-level case.
Let us define

CXjXk

ni
"P DXj

ni
(b)DXk

ni
(b) db (8)

and call the set MCXjXk

ni
Nj,k/1,2,3,j)k
n/0,2 , d~1,i/1,2,3

the wavelet
covariance signatures. They include the energies for j"k;
the others represent the covariance between different
color planes and consequently the coupling between the
color and texture properties of the image.

The covariance signatures, however, are by definition
proportional to the energies. To remove this redundant
information, the covariance signatures are normalized in
the following way:

CI XjXk

ni
"G

EXj
ni

j"k,

CXjXk
ni

EXj
ni

EXk
ni

jOk.
(9)

The features MCI XjXk
ni

Nj,k/1,2,3,j4k
n/0,2 , d~1,i/1,2,3

are the wavelet cor-
relation signatures.

3. Color space transforms

For compression purposes, transformations to differ-
ent color spaces are often employed to achieve image
bandwidth reduction without significantly degrading im-
age quality. However, since our goal is to efficiently
characterize texture, the choice of color space should
enable the extraction of useful features rather than visual
image representation. Linear as well as non-linear color

space transforms can be applied. Non-linear ones are
mainly employed to obtain a color space in which the
coordinates have an intuitive meaning (mostly a
luminance, a saturation and a hue component) [25].
They typically introduce some non-removable singular-
ities, which is very impractical for further processing. We
will limit ourselves to linear color space transforms, i.e.

X@"MX, (10)

where X"(X
1
(x)X

2
(x)X

3
(x))q contains the original com-

ponents of the signal (q means transpose), M is a 3]3
invertible transformation matrix and X@ contains the
transformed signal.

Three color space transforms (for which X"(RG B)q)
are studied in this paper:

(1) The UVW-space; CIE uniform chromaticity scale
(V"Y"luminance):

A
º

»

¼
B"A

0.405 0.116 0.133
0.299 0.587 0.114
0.145 0.827 0.627B A

R
G
BB . (11)

This is a ‘‘perceptually uniform’’ space constructed so
that equal changes in the space are experienced as
equal changes in color by human perception.

(2) The YIQ-space (NTSC transmission primaries):

A
½

I
QB"A

0.299 0.587 0.114
0.596 !0.274 !0.322
0.211 !0.253 0.312BA

R
G
BB . (12)

The Y signal is the image luminance and the I and
Q signals carry the chrominance information.

(3) The K—L space (Karhunen—Loève transform):

A
K

1
K

2
K

3
B"A

0.333 0.333 0.333
0.500 0.000 !0.500

!0.500 1.000 !0.500B A
R
G
BB . (13)

It may look surprising that a fixed transform is called
Karhunen—Loève. Indeed, the K—L transform is for-
med by the eigenvector of the correlation matrix of
a specific image and is thus image-dependent. How-
ever, as reported by Ohta [4], the eigenvector remain
approximately the same for a large set of natural
color images. This was confirmed experimentally on
our own image database. As expected, we found that
the largest part of the variance is concentrated
around the K

1
-axis (which, in fact, represents the

intensity). The remainder is almost completely found
along the K

2
-axis, leaving the last axis without signif-

icant variance. Eq. (13) transforms an image into an
orthogonal basis in which the axes are statistically
uncorrelated, and in that sense decorrelates the in-
formation present in RGB space.
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3.1. Effect of linear color space transform on the
wavelet signatures

We now investigate how the wavelet covariance signa-
tures transform under a linear color space transform. For
a"2n , let us rewrite Eq. (1) in 2-D for the case of
a separable wavelet:

(¼
2n,i

f )(b)"P f (x)ui*
2n,b

(x) dx, (14)

where Mui
2n,b

N
i/1,2,3

are the wavelets to obtain the de-
tailed images D

ni
. Let us fix n and i for the remainder of

this paragraph. For a color image
X"(X

1
(x)X

2
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3
(x))q, Eq. (14) reads in vector nota-

tion:
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Further, define C
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as a matrix with the wavelet
covariance signatures as elements:
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After a color space transformation X@"MX the
covariance signatures become
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Or, explicitly
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For the energies this means (taking the RGB-space for
X):
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These formulas offer an interesting insight into the effect
of linear color space transform on the wavelet signatures.
Eq. (18) shows that a linear color space transform implies
a linear transform of the covariance signatures. How-
ever, from Eq. (19) it follows that this is not true for
the energy signatures. The first three terms reveal that the
‘‘new’’ energy features are linearly obtained from the
‘‘old’’ ones; the next three terms, however, depend on
the covariances between the R, G and B planes for the
same subimage. There is no clear connection between the
energies in the original and transformed color space; to
compute the latter the wavelet covariance signatures are
required.

Eq. (19) also shows that performing a simple linear
transform from RGB space to another color space results
in a clearly different feature set. Hence, the quality of the
features (i.e. their ability to characterise and discriminate
between color textures) shall be heavily dependent on
the choice of color space. This shall be demonstrated in
the experimental section.

When one experiments using several color transforms,
a practical advantage of relation (18) comes into play. It
is sufficient to perform the wavelet transform once (for
the R, G and B planes) and to compute the covariance
signatures. The new wavelet signatures are then obtained
using Eq. (18) without the need for performing several
wavelet transforms.

For the correlation signatures, the simple relation (18)
does not hold. To transform correlation signatures into
other color spaces, it is therefore convenient to transform
the covariance signatures first and to normalize them
afterwards.

4. Classification methods

Once an appropriate set of texture features is com-
puted, the next step is to adopt a suitable classification
algorithm to assess the features’ discriminative power.
This section describes briefly the methods used to design
and evaluate a knn-classifier. These subjects are treated
more in detail in standard pattern recognition literature
[26,27].

For each different feature set, a k-nearest neighbor
classifier (knn-classifier) was designed. This is a supervised
classifier, i.e. it requires a set of labeled feature vectors
derived from the available data samples as a design set.
Classification of feature vector x is performed by search-
ing the k closest design vectors according to some metric
d(x, y). The vector x is assigned to that class to which the
majority of these k nearest neighbors belong. More com-
plex classification schemes such as neural networks could
be considered, but these typically depend on initialisation
and learning time, while knn classifiers do not. Since the
emphasis in this work is on the feature extraction stage,
knn provides an efficient and robust classification scheme
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for evaluation of classifier performance and comparison
of feature sets.

If the distance measure d is chosen to be Euclidean,
then some features (the ones with largest variances) tend
to dominate this measure. This could be resolved by
employing other distance measures (e.g. the Mahalanobis
distance), but we have chosen to normalize the features
so that they all have equal variances.

To evaluate the performance of the knn-classifier, one
desires to know how well it classifies ‘‘unseen’’ data, i.e.
data not used to design the classifier. One approach is to
divide all data in a design set used for designing the
classifier and a test set used for performance evaluation.
This is the hold-out method that is known to have
a rather big positive bias on the error estimation and
does not use the available data very economically since
a portion of it is not used for designing the classifier. As
an alternative, we have employed the leave-one-out
method, which sequentially picks each available data
sample and classifies it (by the knn rule) using the remain-
ing samples. This ensures that all data (but one sample) is
used for designing and that an independent test set is
kept.

Suppose that there are c possible classes with N
i

(labeled) feature vectors from the ith class. Each available
sample is thus employed once as a test sample. Classifier
performance is measured using the error counting
approach. The class error rate eL

i
is defined as

eL
i
"

nr. of falsely classified test samples from class i

N
i

(20)

and the mean error rate eL as

eL"
1

c

c
+
i/1

eL
i
"

total nr. of falsely classified test samples

N
, (21)

where N"+c
i/1

N
i
is the total number of samples. This

number estimates the percentage of test samples classi-
fied correctly and is used as a measure for the perfor-
mance of the classifier (whenever we mention ‘‘classifica-
tion performance’’ we refer to the mean error rate).

However, since eL is estimated using a random sample
of feature vectors it is actually a random number which is
a statistical estimate of the true mean error e. It is there-
fore meaningful to give a confidence interval. Defining
a variance p, a 95% confidence interval of the mean error
is given by [27]:

eL!p(e(eL#p with p"1.96S
eL (1!eL )

N
. (22)

The classification performance of a classifier will be ex-
pressed by eL$p.

Well known in pattern recognition literature is the
curse of dimensionality phenomenon, which dictates that
classification performance not necessarily increases with
an increasing number of features (given a fixed amount of
data samples). Therefore, given a feature extraction
scheme and a finite number of design samples, there
exists an optimal number of features for a particular task.
This becomes inherently important when dealing with
colored images, since the number of extracted features is
much larger compared to the gray-level case. Therefore,
it is crucial to adopt a feature selection (or extraction)
scheme to find a (sub-) optimal set of features. In this
work the floating forward feature selection scheme
(FFFS) [28] is adopted, which has recently been found to
outperform other selection schemes [29]. This algorithm
is initialised by taking the best feature (‘‘best’’ is defined
here as giving the lowest mean error). The selection then
continues by iteratively adding (or deleting) a feature in
each step to obtain a subset of all available features
which gives the lowest mean error.

5. Experiments and discussion

Thirty real-world (512]512) RGB color images from
different natural scenes [30], presented in Fig. 1, were
selected. A database of 1920 color image regions of 30
texture classes was constructed by subdividing each im-
age into 64 non-overlapping 64]64 subimages. Each
image region was decomposed into a wavelet basis of
depth 4 using a biorthogonal spline wavelet of order
2 [31]. The following feature sets were conducted:

(1) Intensity (gray-level) images were generated by com-
puting the luminance, thereby discarding color in-
formation. A wavelet transform of depth 4 was
performed and energy signatures were computed
for each of the 12 detailed images. (total: 12 features)

(2) Each R, G and B component was wavelet trans-
formed (depth 4) and energy signatures were com-
puted from each detailed image. (total: 36 features)

(3) Each R, G and B component was wavelet trans-
formed (depth 4) and correlation signatures were
computed from each detailed image. (total: 72 fea-
tures)

(4) 72 correlation signatures were computed using (18)
for the three color spaces mentioned in Section 3:

(a) UVW space,
(b) YIQ space,
(c) K-L space.

Each feature set was used to design a knn-classifier and to
estimate its performance using the methodology outlined
in Section 4.
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Fig. 1. Selection of images from the VisTex-database: from top to bottom and left to right: Bark0, Bark4, Bark6, Bark8, Bark9, Brick1,
Brick4, Brick5, Fabric0, Fabric4, Fabric7, Fabric9, Fabric11, Fabric13, Fabric16, Fabric17, Fabric18, Food0, Food2, Food5, Food8,
Grass1, Sand0, Stone4, Tile1, Tile3, Tile7, Water6, Wood1, Wood2.

Recall that the feature selection algorithm finds the
(sub-) optimal feature subset for each dimensionality.
This is depicted in Fig. 2 which displays the mean-error
rate for each classifier in the function of the dimensional-
ity of the used feature set. This representation allows
a quick comparison between classifiers. Fig. 2a shows
that features from color images significantly improve
classification performance with respect to the gray-level
features. It also shows that correlation signatures per-
form better than (color) energy signatures. Fig. 2b com-
pares the performance of the correlation signatures in
different color spaces, which shows that features in the
K—L space perform best.

One observes from Fig. 2 that the mean errors for all
classifiers saturate about a dimensionality of 10, at which
point the class-error rates for each texture class were
investigated. For Fabric0-7-17-18, Food5, Sand0, Tile7
and Wood2, the class errors were 0% for all classifiers
and for Fabric9-16 and Water6, they were 0—3%. In
Table 1, the remaining classes, for which class error rates
differed more than 3% between classifiers are reported.
Our further discussion is based on these error rates.

On the intensity images a mean error of 16% is
achieved. The error rates show that intensity alone con-
tains sufficient information to characterize some textures
(e.g. Fabric0-7, Sand0, ...), but fails to do so on others (e.g.
Bark8-9, Food0-2, Wood1). This can be expected since
for instance Food0 and Food2 are recordings of two
different species of beans (lima and coffee) which have
very similar appearance.

Experiment 2 shows that adding color information
does indeed significantly increase classification perfor-
mance (a decrease of 7% in mean-error rate). The classi-
fier confuses on the same texture classes as in experiment
1, but in a lesser degree. Especially, the discrimination
between Food0-2 and Bark9 has improved substantially.

Comparing columns 2 and 3 from Table 1 shows that
the correlation signatures offer a clear advantage over the
energies. The error rate drops for most classes (excluding
Stone4 and Tile3) resulting in a decrease of about 5% in
mean-error rate. Especially, the confusion between
Food0-2 has decreased substantially.

Analyzing the results of experiment 4 (Table 1, cols.
4a—4c), it is apparent that the error for the UVW space
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Fig. 2. Mean-error rate (in perc.) versus feature set dimensionality graphs for different classifiers. (a) for different signatures: intensity (1),
energy RGB (2), correlation RGB(3). (b) correlation signatures in different color spaces: RGB (3), UVW (4a), YIQ (4b), K—L (4c). The
variances p on the mean errors vary in each point but are bounded by 0.4%)p)1.6%.

Table 1
Class-error rates (in perc.) of the remaining texture set (the ones with different error rates per classifier) using the selected best 10 features.
(1) gray-level energies, (2) energy in RGB space, (3) correlation in RGB space, (4a) Correlation in UVW space, (4b) correlation in YIQ
space, (4c) correlation in K—L space

Energy Correlation

INTEN1 RGB2,3 UVW4! YIQ4," K—L4,#

Bark0 21.9 20.3 17.2 15.6 0.0 0.0
Bark4 15.6 4.7 0.0 3.1 3.1 3.1
Bark6 20.3 7.8 1.6 6.2 0.0 0.0
Bark8 20.3 12.5 0.0 9.4 9.4 4.7
Bark9 40.6 7.8 6.2 12.5 7.8 6.2
Brick1 1.6 4.7 0.0 1.6 0.0 0.0
Brick4 14.1 9.4 1.6 1.6 6.2 3.1
Brick5 10.9 4.7 1.6 3.1 1.6 3.1
Fabric4 4.7 4.7 1.6 0.0 1.6 0.0
Fabric11 3.1 1.6 1.6 4.7 0.0 1.6
Fabric13 6.2 1.6 0.0 0.0 0.0 0.0
Food0 29.7 7.8 0.0 0.0 1.6 0.0
Food2 42.2 26.6 0.0 3.1 1.6 0.0
Food8 9.4 3.1 0.0 1.6 0.0 0.0
Grass1 4.7 6.2 6.2 4.7 4.7 6.2
Stone4 3.1 1.6 3.1 3.1 1.6 3.1
Tile1 6.2 6.2 1.6 4.7 1.6 6.2
Tile3 26.6 26.6 35.9 26.6 17.2 9.4
Wood1 25.0 15.6 1.6 1.6 1.6 1.6
Mean error 16.1$2.1 9.1$1.6 4.2$1.1 5.4$1.3 3.1$1.0 2.5$0.9
$variance

(6%) is drastically higher than for the K—L and YIQ
spaces (3%) and also higher than for the RGB space. We
believe that this is due to the fact that the UVW trans-
form maps the RGB-components to a non-orthogonal

coordinate system. The YIQ transform is nearly ortho-
gonal and the K—L space is exactly orthogonal.

The best results are obtained with the K—L transform
where a mean error of less than 3% is achieved.
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Note that the first component of the K—L transform is
the intensity, which indeed proved to be an important
feature (cf. experiment (1)). The other two axes then
represent the image information which is statistically
uncorrelated with intensity. These features can be inter-
preted as the extra information which is not present in
texture or color separately, and which can be denoted as
color texture information.

The conducted experiments demonstrate that color
texture can adequately be described by the wavelet cor-
relation signatures. These features are not only suited for
image classification, but can easily be employed for other
color texture analysis tasks. For instance, for segmenta-
tion the wavelet signatures are computed over a (small)
local window centered on each pixel of the image, result-
ing in one feature vector per pixel. Each pixel is then
assigned to a particular image region, e.g. by (unsuper-
vised) clustering techniques in the space of feature vectors.

6. Conclusion

We have discussed the extraction of features which
combine image color and texture information to ad-
equately describe the concept of color texture.

We introduced the wavelet correlation signatures,
which are extracted from a multiscale representation of
the color image. We discussed the importance of the
color space in which feature extraction is performed. We
also proved that for a linear color space transform, the
correlation signatures can be obtained by means of a lin-
ear transform, a property which does not hold for the
energy signatures.

Experimental results using a set of real-world colored
textures, demonstrated the usefulness of wavelet signa-
tures in color texture image analysis. In classification
experiments, it was shown that color texture features
increase performance with respect to the gray-level case.
Best classification performances were obtained in the
Karhunen—Loève space.
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