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Abstract—Tandem affinity purification coupled with mass-
spectrometry (TAP/MS) analysis has been increasingly used to 
identify novel endogenous protein-protein interactions (PPIs) in a 
high-throughput manner. Computational analysis of TAP/MS data 
is critical, however, and remains challenging because of the noisy 
nature of the data.  We developed an advanced method for 
identifying PPIs from TAP/MS data.  Our approach APPIC, which 
stands for Advanced Protein-Protein Interactions Capturing, 
incorporates an improved statistical method and is more powerful 
than existing tools. 
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I.  INTRODUCTION 
Protein-protein interactions (PPIs) play critical roles in 

many cellular processes, such as signaling cascades and 
regulatory complex formation. In addition, information 
acquired from PPI data is definitive (i.e., protein A and B 
interact with each other) and could contain quantitative 
features (i.e., the strength of interactions could vary).  Thus 
PPI data sets have been core resources for biological 
network construction [1, 2], which is important for 
understanding the behaviors and functions of biological 
systems.  

Three biochemical experiments are widely used to 
identify PPIs: Co-immunoprecipitation (Co-IP), yeast two-
hybrid [3] and tandem affinity purification (TAP) coupled 
with mass-spectrometry (MS) [4-6]. Co-IP is a classic 
method to identify interactions between specific proteins. 
Although it is straightforward, it lacks the ability to explore 
interactions at a whole proteome scale. On the other hand, 
both yeast two-hybrid and TAP/MS are high-throughput 
technologies that can be used to explore putative interaction 
partners at large-scales. However, yeast two-hybrid is false-
positive prone, and it detects interactions in a heterologous 
context (with the exception for yeast PPIs). In recent years, 
TAP/MS has been frequently optimized to detect and study 
endogenous PPIs, and has been increasingly used to identify 
novel PPIs under physiologically relevant conditions in 
large-scale studies [7, 8].  The TAP/MS approach has been 
successfully used to characterize protein complexes from a 

variety of cells or multi-cellular organisms [9-11]. In 
addition, this technique can be combined with quantitative 
proteomics approaches to better understand the dynamics of 
protein-complex assembly [12, 13]. 

With the wide application of the TAP/MS technology, 
there are increasing numbers of large-scale pathway specific 
TAP/MS PPI datasets, which are highly valuable resources 
for understanding molecular details of specific signaling 
pathways. However, currently available analysis tools are 
not satisfactory because of high false-positive rate due to 
non-specific protein binding and missing true PPIs due to 
weaknesses in analysis methods.  To meet the challenges of 
accurately analyzing these accumulating data sets, new and 
better computational algorithms and analysis methods are 
required.  

II. RELATED WORKS 
One of the major challenges in TAP/MS PPI data 

analysis is to reduce the false-positive rate while increasing 
the sensitivity to identify true interactions. Early methods 
for analyzing TAP/MS PPI data only use the presence/ 
absence information [14].  Recent methods take into account 
more quantitative information such as label-free quantitative 
spectral counts (SCs), which are the number of peptides of a 
protein detected in MS.  Currently, there are three popular 
methods for analyzing TAP/MS PPI data: Normalized 
Spectral Abundance Factor (NSAF) [15], Comparative 
Proteomic Analysis Software Suite (CompPASS) [16], and 
Significance Analysis of Interactome (SAINT) [17]. 

NSAF estimates the relative abundance of a prey protein j 
in the purification of a bait protein i, i.e., the NSAF score, by 
considering the number of its peptides identified by MS, the 
length of the prey protein, and the total number of the 
peptides in the sample:  
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where SCi,j and L,j are the spectral count and the length of the 
prey protein j, respectively, and N is the number of preys in 
purification of the bait protein i. The NSAF score is specific 
to each prey-bait pair in one sample.  If there is more than 
one biological replicate, the average NSAF scores is assigned 
to the prey-bait pair. 

CompPASS calculates two indexes for each bait-prey 
pair: Z score (Z_SC) and D score (D_SC).  For a bait protein 
i, the Z_SC of its prey protein j is:  
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where meanj and stdj are the mean and standard deviations 
of the spectral counts of the prey protein j across all baits.  
D_SC considers both the reproducibility of the peptide 
detected across biological replicates and the frequency of 
each observed prey protein in the purifications with 
different baits. For a bait protein i, the D_SC of its prey 
protein j is: 
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where fi,j = 1 if a prey protein j is identified in the 
purification of a bait protein i, otherwise fi,j = 0, N is the 
number of replicates in which the interaction is detected, and 
K is the total number of samples. The summation of fi,j 
indicates the total number of occurrences of an interaction in 
all samples. The ratio between K and the summation of fi,j is 
the frequency of a prey protein j being observed across all 
samples. An interactor with higher detection frequency 
(frequently observed to interact with many or all baits) will 
be penalized because it is very likely that it belongs to the 
sticky protein group that “interact with” many proteins non-
specifically.  However, when all baits work in the same 
signaling pathway, some important prey proteins can also 
interact with most  baits and appear to be “sticky”. Thus, it is 
arguable that this feature is necessary. Based on our 
observations, this feature would be beneficial if there are a 
large number of baits in the TAP/MS experiments. 
Otherwise, it may not be a good choice to penalize high 
detection frequency.   

CompPASS also computes a weighted D_SC as: 
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where Wj = stdj / meanj, if stdj / meanj  > 0, otherwise Wj  = 1. 
(meanj and stdj are the mean and standard deviation of the 
SCs of the prey protein j in the purification samples of all 
baits, respectively). CompPASS believes when protein j has 
higher detection frequency, stdj is more likely to be higher 
than meanj if protein j is a true interactor of a bait protein.  
The weight factor Wj is a multiplicative factor designed to 
deal with preys frequently detected in the protein samples of 

all baits, however, with low SCs.  If multiple biological 
replicates are available, CompPASS calculates the Z_SC, 
D_SC, and WD_SC scores of a prey protein in each sample, 
and then uses their averages to decide if a prey-bait pair is a 
true PPI. 

SAINT uses a Bayesian approach to estimate P(true|SCi,j), 
which is the probability of true interaction between proteins i 
and j given SCi,j.  The probability distribution P(SCi,j|true) 
and P(SCi,j |false) are assumed to be Poisson. The parameters 
of P(SCi,j |true) are estimated from joint modeling of the 
entire bait-prey association matrix in the bait purification 
samples.  The parameters of P(SCi,j|false) are estimated from 
the spectral counts of prey j observed in the negative 
controls.  The prior probability P(true) is the proportion of 
true interactions in the data. SAINT then calculates the 
scoring of a bait-prey pair using Bayes rule:  
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where P(false) = 1 - P(true). If a bait-prey pair has more 
than one biological replicates, a SAINT score will be 
calculated for it in each replicate.  Those SAINT scores will 
then be averaged to represent the bait-prey pair. 

The above approaches can effectively analyze the data 
sets for which they have been developed. However, each 
one of them has its own intrinsic weaknesses. For example, 
neither NSAF nor CompPASS utilizes information from 
negative controls, which are extremely valuable for 
reducing false positives.  SAINT over-penalizes interactions 
that can be true, but “appear” to be non-reproducible.  It 
averages the posterior probability of an interaction across all 
the biological replicates.  Failing to detect an interaction in 
one of the replicates can drag down the average significantly 
and cause the algorithm to classify the interaction as false.  
Therefore, SAINT can miss some statistically-significant 
PPIs that are not 100% reproducible – a common 
phenomenon in reality due to experimental variations.   
With the fast accumulation of large scale TAP/MS PPI 
datasets,  there is a high demand for developing a better 
algorithm which is capable of eliminating a maximum 
number of false positives and can accurately capture as 
many true interactions in TAP/MS PPI datasets as possible. 

III. ADVANCED PROTEIN-PROTEIN INTERACTIONS 
CAPTURING 

We have developed an advanced Protein-Protein 
Interactions capturing (APPIC) method for analyzing 
TAP/MS PPI datasets. APPIC is able to capture more true 
interactions and eliminate more false positives 
simultaneously. We have successfully applied it to the 
analysis of pathway-specific TAP/MS PPI datasets generated 
using Drosophila cells. 

The scoring function of APPIC is an improvement over 
those of NSAF and CompPASS.  First, we introduce a term 
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R to indicate the reproducibility of detecting a prey protein 
across all biological replicates.  Differently from the 
reproducibility term N used in CompPASS (see equations 3 
& 4), which is simply the number of replicates in which the 
prey protein is detected, we calculate R as N divided by the 
total number of biological replicates T. Our definition of the 
R term is relative to the total number of replicates, and 
hence can interpret experimental reproducibility more 
accurately.  For example, if we have an interaction present 
in two out of three biological replicates, the value of N in 
CompPASS equals 2.  It is not clear how high/low this 
number is.  By contrast, our R value is 2/3, and the highest it 
can get is 1.  A bait-prey pair is more likely to be a true PPI 
if it is detected in many replicates even though it SCs are 
relatively low.  On the other hand, it is less likely to be a 
true PPI if it has relatively few sporadic high SCs.  Taking 
consideration of the reproducibility factor, we apply R to the 
power of the weighted frequency term: 
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Second, we would like to utilize negative controls in a 
more meaningful way. Among previous works, only SAINT 
[17] utilizes the negative control data to maximally reduce 
the false positive rate. There are many abundant cellular 
proteins that can bind to the purification beads non-
specifically and become contaminants in the TAP/MS 
samples.  SAINT uses a complicated method to estimate the 
spectral count distribution for false interactions directly from 
negative controls. In contrast, we utilize the negative control 
data sets to compute a false discovery rate (FDR) for each 
observed prey protein, which not only can be used to help 
filter out the majority of false positives, but also can rescue 
some interactors that are abundant in bait purification 
samples while having very low SCs in negative controls 
(most likely noise in negative controls).  Using the method 
proposed in [18],  we can compute the FDR of a prey protein 
j as: 
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where e is the base of the natural logarithm, and pi,j is the p-
value generated by applying the rank-sum test to compare 
two populations: the SCs of protein j in the purification 
samples of bait i vs the SCs of protein j in the negative 
controls.  Finally, we have the following function to score 
any given bait-prey pair (i, j) given its MS data: 
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where NSAFi,j is the averaged NSAF score if there are 
multiple replicates available. 

      The APPIC of a bait-prey depends on the total number of 
TAP/MS samples, the number of replicates, and the SC of 
the prey in each individual replicate. It can be used to rank 
the bait-prey pairs in each data set. The higher the score, the 
more significant the interaction is. Users can use known 
interactions to set up their threshold for obtaining a PPI 
network.  

IV. EXPERIMENTS 

A. Data sets 
We applied APPIC to analyze two pathway-specific 

TAP/MS PPI data sets in Drosophila melanogaster: the 
Insulin pathway (20 baits with 3 biological replicates) with 
three time points (0, 10, 30 minutes) of Insulin treatment 
and the Hippo pathway (12 baits with 3 biological 
replicates).  

Insulin signaling pathway plays an important role in the 
control of embryonic development and growth, reproduction 
and appetite regulation in animals [19, 20]. It is clinically 
associated with Diabetes Mellitus disease in humans [21, 
22]. Thus, defects in Insulin signaling can lead to a range of 
systemic disorders, such as hypertension, high levels of 
cholesterol, heart and kidney diseases, and female infertility 
problems. It is an important research area to understand the 
downstream signaling pathway deregulation. Since the 
Insulin signaling system is highly conserved across all 
metazoans, including Drosophila and mammals, we selected 
Drosophila as our model system. Twenty major known 
components (Akt, chico, dm, foxo, gig, lkb1, InR, melt, 
Pi3K21B, Pi3K92E, Pk61C, pten, Rheb, S6K, S6KII, sima, 
B4, rictor, Thor and TSC1 ) in Insulin signaling pathway 
have been selected as baits in TAP/MS experiments. Three 
biological replicates are performed for all the purifications.  

In addition, we conducted experiments and analyses 
with the Hippo pathway in Drosophila melanogaster. Hippo 
signaling is a conserved pathway that controls organ size by 
regulating cell proliferation and survival [23, 24]. 
Interestingly, a number of components in the Hippo 
pathway also play important roles in the suppression or 
formation of cancer [24]. For example, the upstream 
signaling components in the Hippo signaling, such as fat, 
dachsous, Merlin, hippo, Salvador and warts can suppress 
cancer growth by inhibiting Yorkie [25], which is an 
important factor required for tumor growth. Nevertheless, 
the regulation of this pathway in cancer is poorly 
understood. Therefore, new signaling components and 
regulators in the Hippo pathway identified from Drosophila 
will provide new insights into cancer biology. Twelve major 
known components (yorkie, scalloped, expanded, Salvador, 
warts, hippo, fat, Merlin, dachsous, fj, mats and dachs) in 
the Hippo signaling pathway have been selected as baits in 
TAP/MS experiments. Three biological replicates are 
performed for all the purifications.  
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B. Results 
Using APPIC, we identified 509 proteins with 1419 

interactions in the Insulin pathway and 191 proteins with 
286 interactions in the Hippo pathway, respectively. The 
PPI network built by APPIC includes all but two canonical 
PPIs between baits in both pathways (the two exceptions are 
the dm-Max interaction in Insulin pathway and ft-ds in the 
Hippo pathway, which may occur in different conditions). 
We further filtered out heat shock proteins and ribosomal 
proteins to identify 1080 interactions in the Insulin pathway 
(Fig. 1) and 255 interactions in Hippo pathway (Fig. 2). 
Interestingly, the PPI network of the Insulin pathway 
uncovered novel cross-interactions between the Hippo, 
Insulin, JAK/STAT, EGF and stress signaling pathways. 
Two examples of the cross-interactions between the Insulin 
and EGF pathways are shown in Fig. 3. 

To evaluate the quality of APPIC results, we first 
examined whether APPIC was capable of identifying more 
known interactions than other approaches, such as NSAF, 
CompPASS Z_SC, CompPASS D_SC, and SAINT.  We 
collected known interactions from BioGRID PPI database 
(http://www.thebiogrid.org/). We only selected physical 
interactions since genetic interactions could be indirect and 
may contain more false positives. In total, we retained 
27156 previous reported PPIs for Drosophila.  We then 
counted the overlaps between the top interactions predicted 
by each algorithm and the known interactions. The results 
are shown in Fig. 4 and Fig. 5. The interactions identified by 

APPIC consistently demonstrated the highest overlap with 
the known interactions.   

V. CONCLUSIONS AND DISCUSSIONS 
We have showed that APPIC is able to identify more PPIs 

with higher accuracy than other methods, such as NSAF, 
CompPASS, and SAINT.  Especially, APPIC can uncover 
unique and important interactions missed by other 
approaches, meanwhile efficiently reducing false-positive 
interactions.  For example, APPIC will filter out an 
interaction with only one SC in each of the three replicates 
because one SC is very likely due to experiment error or 
noise.  However, SANIT will call this interaction as a 
significant one because it appears in all three replicates.  An 
interaction that has high SCs in all replicates but has 
significantly low SCs in negative controls will be assigned a 
significant score by APPIC.  Taking the bait-prey pair sima–
hang as the example, the SCs of hang in sima’s three 
purified replicates are very high: 12, 10, and 6, respectively.  
However, hang has one SC in 1 of 9 control replicates.  This 
interaction is mysteriously filtered out by SAINT, but is 

 
Figure 1. A map of predicted protein-protein interactions (PPIs) in 
the Insulin pathway computed by APPIC. Bait proteins are 
highlighted in green. 

     
 

Figure 3. Cross talk between different signal pathways. Two bridge 
interactions between Insulin and EGF pathways are listed in above. The 
curve line between Pi3K21B and Pi3K92E indicates the mutually scored 
interactions between those two baits.  

 
Figure 2. A map of predicted PPIs in the Hippo pathway computed by 
APPIC. Bait proteins are highlighted in green. 
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captured by APPIC.  It is known that sima translocates to 
the nucleus upon Insulin stimulation to activate downstream 
target genes [26].  Similarly, hang was shown to be a 
predominantly nuclear protein [27].  Thus it is possible that 
in Insulin signaling pathway, hang can either positively or 
negatively regulate sima activity through direct interactions.  
It should also be noted that hang is broadly expressed in the  
Drosophila nervous system, and is a critical component in 
the stress pathway for alcohol tolerance development [27]. It 
was recently reported that hang negatively regulates bouton 
addition at Drosophila neuromuscular junctions [28].  Since 
the Insulin pathway has been implicated in the control of 
many neuronal activities, such as aging, cognitive 
maintenance and food intake control [29, 30], it will be 
interesting and important to study these activities with flies 
deficient for hang gene expression, and characterize the 
detailed roles of hang in the Insulin signaling pathway.   

To more broadly evaluate the performance of APPIC, we 

examine its ability of identifying known interactions in 
general.  TABLE I compares the canonical interactions in 
the Insulin pathway detected at three different time points 
(0, 10 and 30 minutes) by APPIC and/or SAINT.  Here, 
equivalent thresholds are set as APPIC score ≥ 0.005 and 
SAINT score ≥ 0.9843 to select the same number of 
significant interactions in each analysis method.  Two 
interactions lkb1 – Mo25 at 10 minutes and dm – Max at 0 
minutes were not identified by both methods due to poor SC 
recovery.  These two interactions may occur in different 
experimental conditions.  The interactions rictor – Sin1 at 
30 minutes, TSC – gig at 0 and 30 minutes, and InR – chico 
at 0 minute were captured by APPIC but not SAINT.  These 
examples show that APPIC has a better ability to achieve a 
good balance between penalizing the non-reproducibility in 
tagged samples and penalizing sporadic appearances in 
control due to experimental noise. 

APPIC can also “rescue” some interactions that seem to 
be non-reproducible mainly due to noise.  For instance, a 
known interaction InR – chico has SC = 3/21/0 in three 
replicates (TABLE I).  That is, it is not observed in one of 
the three replicates.  This interaction is filtered out by 
SAINT because it heavily penalizes the non-reproducibility, 
but in APPIC, this interaction is considered as significant 
since it has zero SC in 6 control replicates and relatively 
high SCs in two replicates, which can compensate 
occasional SC losses in experiments.  S6KII – Shc is another 
example identified by APPIC, but not by SAINT.  This pair 
has the observed SCs = 15/3/0 in three replicates before 
Insulin treatment.  Shc is a known adaptor protein 
interacting with some receptor tyrosine kinases including 
Insulin receptor [31].   The interaction between these two 
proteins after Insulin treatment was not observed (data not 
shown).   It is likely that Shc interacts with S6kII to 
constitutively inhibit the activity of S6kII.  The activation of 
the Insulin pathway somehow disrupts the interaction 
between them, thus relieving the inhibition.  It is therefore 
interesting to investigate the molecular mechanism of the 
Insulin-induced dissociation between Shc and S6kII, and 
determine whether it is phosphorylation-dependent and/or 
involving induced protein degradation.  

In summary, we developed an advanced statistical model 
APPIC for analyzing TAP/MS experimental data to detect 
PPIs.  It is based on label-free quantification by spectral 
counts and incorporates the frequency and reproducibility of 
observed interactors across all biological replicates.  The 
false positive rate of interactors interpreted from statistical 
p-values is integrated in the calculation to filter out non-
specific interactors.  This approach has been successfully 
applied to the analysis of two pathway-specific TAP/MS 
data sets in Drosophila: the Insulin and Hippo pathways.  
The result shows that APPIC is capable of identifying more 
known interactions than previous approaches and yields 
high confidence PPI results. The statistical analysis of 
APPIC requires three or more biological replicates and 

 
Figure 4. The performance of five algorithms for Insulin pathway 
analysis. APPIC (in green) demonstrated the ability of reporting more 
known interactions than other approaches. 

Figure 5. The performance of five algorithms for Hippo pathway analysis.
APPIC (in green) demonstrated the ability of reporting more known
interactions than other approaches. 
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negative control data sets.  While these steps demand higher 
experimental cost, they are necessary for producing high 
confidence results.  We demonstrated that APPIC can serve 
as an exceptional alternative to existing approaches. 

TABLE I.  CANONICAL INTERACTIONS IN INSULIN PATHWAY SCORED BY 
APPIC (A) AND SAINT(S). EQUIVALENT THRESHOLD USED FOR 
SIGNIFICAN INTERACTIONS: APPIC ≥ 0.005 AND SAINT ≥ 0.9843. THREE 
TIMES POINT ARE SHOWN HERE (0, 10, AND 30 MINUTES). Y = SIGNIFICANT 
INTERACTIONS, N = NONSIGNIFICANT INTERACTIONS. 

bait prey A S Time SCs 
chico 14-3-3epsilon Y Y 0 25, 21, 21 
chico 14-3-3epsilon Y Y 10 53, 50, 50 
chico 14-3-3zeta Y Y 0 8, 13, 15, 
chico 14-3-3zeta Y Y 10 34, 20, 32 
dm Max N N 0 0, 0, 1 
gig TSC1 Y Y 0 5, 8, 3 
gig TSC1 Y Y 10 3, 4, 5 
gig TSC1 Y N 30 8, 3, 0 

TSC1 gig Y N 0 4, 0, 4 
TSC1 gig Y Y 10 7, 5, 4 
TSC1 gig Y N 30 12, 12, 0 
InR chico Y N 0 3, 21, 0 
InR chico Y Y 10 19, 17, 16,  7 
InR chico Y Y 30 12, 6 

chico InR Y Y 0 17, 21, 21 
chico InR Y Y 10 8, 8, 9 
lkb1 Mo25 Y Y 0 16, 3, 1 
lkb1 Mo25 N N 10 0, 1, 3 

Pi3K21B chico Y Y 0 11, 8, 3 
Pi3K21B chico Y Y 10 18, 25, 18 
Pi3K21B chico Y Y 30 25, 31, 3 

chico Pi3K21B Y Y 10 2, 3, 9 
Pi3K92E Pi3K21B Y Y 0 41, 13, 33 
Pi3K92E Pi3K21B Y Y 10 38, 32, 31 
Pi3K92E Pi3K21B Y Y 30 52, 2, 5 
Pi3K21B Pi3K92E Y Y 0 34, 39, 2 
Pi3K21B Pi3K92E Y Y 10 56, 57, 52 
Pi3K21B Pi3K92E Y Y 30 51, 58, 69 

rictor Sin1 Y N 30 0, 3, 3 
S6kII RpS6 Y Y 0 4, 6, 7 
S6kII RpS6 Y Y 10 8, 5, 6 
S6kII RpS6 Y Y 30 8, 8, 11 
Thor eIF-4E Y Y 0 60, 64, 40 
Thor eIF-4E Y Y 10 39, 52, 45 
Thor eIF-4E Y Y 30 60, 34, 46 
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