

2015 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 17–20, 2015, BOSTON, USA

MAXIMIZING MARGIN QUALITY AND QUANTITY
Yuanzhe Bei, Pengyu Hong

Brandeis University, Computer Science Department

415 South St. Waltham, MA 02453, USA

{beiyz, hongpeng}@brandeis.edu

ABSTRACT

The large-margin principle has been widely applied to learn

classifiers with good generalization power. While tremendous

efforts have been devoted to maximizing margins (i.e., the

quantity), little attention was paid to ensure the quality of margins.

In this paper, we present a new framework that aims to achieve

superior generalizability by balancing margin-quantity

maximization and margin-quality maximization. In particular, we

use one type of margin defined locally by nearest neighbors, and

proposes a max-min entropy principle to maximize margin-quality.

An iterative algorithm is derived to implement this idea. We

demonstrate the power of our new approach by comparing it to a

couple of widely used classifiers (e.g., Support Vector Machines,

decision tree, naive Bayes classifier, k-nearest neighbors, etc.) and

several other large local margin learners (e.g., RELIEF, Simba, G-

flip, LOGO, etc.) on a number of UCI machine learning datasets

and gene expression datasets.

Index Terms — margin quality, large-margin learning

1. INTRODUCTION

Margins play important roles in learning classifiers with high

confidence. In this work, we are interested in hypothesis-margin,

which was first implicitly used by the well-known RELIEF

algorithm [1] and then was formally defined in [2, 3] in the context

of learning feature weights for the purpose of classification.

RELIEF calls two different samples as hits of each other if their

class labels are the same; otherwise, they are misses of each other.

Treating each training sample as a hypothesis, the hypothesis-

margin of a training sample can be calculated locally as one half of

the difference between its distance to its nearest miss and its

distance to its nearest hit. Usually, the larger a margin, the better.

Recently several highly competitive learners have been developed

within the large hypothesis-margin framework [2-5]. Interestingly,

these works all utilized one of the simplest pattern classification

methods – the k nearest neighbor (k-NN) technique [6]. The k-NN

technique assigns a sample to the class most common among its k

nearest neighbors. In such a way, it can decompose a globally

complex nonlinear separation problem into a set of local and

simple ones. In some applications, such as biological and

biomedical domains, this can greatly help end-users gain novel

insights into a new sample by examining other knowledge

associated with its NNs, but is not captured by the features used in

classification. In the rest of the paper, we will use margin to denote

hypothesis-margin without explicit indication.

A major drawback of RELIEF is that its iterative weight

learning procedure does not recalculate the distances between

samples after updating feature weights. Hence it can fail to use

correct nearest hits/misses in calculating margins during learning.

This problem was tackled by G-flip and Simba [3] by re-

identifying nearest hits/misses upon changing feature weights.

However, RELIEF, G-flip, and Simba all rely on 1-NN, which can

make their margin calculations prone to noise and variations in

sampling. RELIEF-F [7, 8] tried to remedy this shortcoming by

searching for multiple nearest neighbors when computing margins,

however, it did not provide a theoretic foundation for deciding the

right number of nearest neighbors. In addition, similar to RELIEF,

G-flip, and Simba, RELIEF-F chose the nearest hits and misses in

deterministic manners, which could significantly undermine their

performances. To address this issue, I-RELIEF [4, 9] identified the

nearest hits and misses in a probabilistic manner. LOGO [5]

improved I-RELIEF by wrapping logistic regression over the

expected margins to make the loss function more suitable for

classification and applying ℓ1-norm regularization on the weight

vector to achieve sparseness in selecting features.

Nevertheless, similar to many conventional large-margin

approaches, the above methods did not fully appreciate the

importance of margin quality. A large margin alone will not lead to

good generalization if it is of low quality (e.g., it will be reduced

significantly upon losing/corrupting only one or a few critical

samples). This problem motivated us to develop a new framework

that maximizes margin-quality in addition to maximizing margin-

quantity. We incorporated the principle of max-min entropy into

our cost function to ensure the quality of margins. As a simple

start, we used the weighted Manhattan distance metric. An iterative

algorithm was derived to implement this framework. Our new

method outperformed several existing methods in the empirical

comparisons using UCI machine learning datasets and DNA

microarray datasets.

2. THE FRAMEWORK

In a classification problem, we are given a training dataset

{𝑧𝑛 = (𝑥⃑𝑛, 𝑦𝑛)}𝑛=1⋯𝑁 where 𝑥⃑𝑛 ∈ ℜ𝐷 is the feature vector and 𝑦𝑛

is the class label. To balance margin-quantity maximization and

margin-quality maximization, we design a general cost function for

learning a classifier with parameters 𝑤⃑⃑⃑ as the following:

𝐶 = ∑ 𝐿𝑤⃑⃑⃑(𝑧𝑛)𝑁
𝑛=1 + 𝜎 ∑ 𝑄𝑤⃑⃑⃑(𝑧𝑛)𝑁

𝑛=1 + 𝜆𝑅(𝑤⃑⃑⃑) (1)

where 𝐿𝑤⃑⃑⃑(𝑧𝑛) is the loss based on the margin-quantity of the

prediction made by the classifier on 𝑧𝑛 ; and 𝑄𝑤⃑⃑⃑(𝑧𝑛) is the loss

based on the quality of 𝑧𝑛 's margin. We require that 𝐿𝑤⃑⃑⃑(𝑧𝑛) and

𝑄𝑤⃑⃑⃑(𝑧𝑛) monotonically decrease w.r.t. the margin-quantity and

margin-quality of the prediction made on 𝑧𝑛, respectively. The 1st

and 2nd terms of C follow the principle of maximizing margin-

quantity and maximizing margin-quality, respectively. The third

term of C regularizes 𝑤⃑⃑⃑ to, for example, penalize complex models.

Common regularizations include ℓ1 -norm, ℓ2 -norm, and some

linear combinations of them. Other constraints on 𝑤⃑⃑⃑ (e.g., non-

negative, etc.) can be also imposed. Two positive constants 𝜆 and 𝜎

are the trade-off parameters that can either be set by users or be

tuned by cross validation. There are many potential ways to

implement the general framework defined in eq. (1). Below we

demonstrate a specific instantiation of this framework.

2.1. Margin-quantity based loss

Following the definitions in [1], 𝑧𝑎 is a hit of 𝑧𝑛 if 𝑦𝑎 = 𝑦𝑛 ,

otherwise 𝑧𝑎 is a miss of 𝑧𝑛 . Let ℋ𝑛 = {𝑧ℎ}𝑦ℎ=𝑦𝑛;ℎ≠𝑛 and ℳ𝑛 =

{𝑧𝑚}𝑦𝑚≠𝑦𝑛;𝑚≠𝑛 denote the hit and miss sets of 𝑧𝑛, respectively. For

notational simplicity, we use ℎ ∈ ℋ𝑛 to indicate 𝑧ℎ ∈ ℋ𝑛 and use

𝑚 ∈ ℳ𝑛 to indicate 𝑧𝑚 ∈ ℳ𝑛.

Margin: Let 𝑧𝑚 ∈ 𝑀𝑛 and 𝑧ℎ ∈ 𝐻𝑛 are the nearest miss and hit

of 𝑧𝑛, respectively. We adopt the margin definition in [3] as

𝜌𝑛,ℎ,𝑚 = 𝜌(𝑧𝑛, 𝑧ℎ , 𝑧𝑚) = 𝑓(𝑥⃑𝑛, 𝑥⃑𝑚) − 𝑓(𝑥⃑𝑛 , 𝑥⃑ℎ) (2)

where 𝑓(𝑢⃑⃑, 𝑣⃑) measures the distance between 𝑢⃑⃑ and 𝑣⃑ . In this

work, we use the weighted Manhattan distance 𝑓(𝑢⃑⃑, 𝑣⃑) =
𝑤⃑⃑⃑𝑇|𝑢⃑⃑ − 𝑣⃑|, where 𝑤⃑⃑⃑ ≥ 0 is the feature weight vector to be learned

from the training dataset.

Hit/Miss probability variables: If the parameters of 𝑓(𝑢⃑⃑, 𝑣⃑) are

unknown, we are not able to calculate margins defined by eq. (2)

because the nearest misses and hits cannot be identified due to the

undetermined distances between samples. To deal with this

problem, we adopt the method proposed in [4, 5, 9] and use a

hidden random variable 𝛼𝑛,ℎ to indicate the probability of 𝑧ℎ

being the closest hit of 𝑧𝑛 , and another hidden random variable

𝛽𝑛,𝑚 to indicate the probability of 𝑧𝑚 being the closest miss of 𝑧𝑛.

The hit and miss probability variables of 𝑧𝑛 should satisfy the

constraints ∑ 𝛼𝑛,ℎℎ∈ℋ𝑛
= 1 and ∑ 𝛽𝑛,𝑚𝑚∈ℳ𝑛

= 1. We will show

the details for calculating {𝛼𝑛,ℎ} and {𝛽𝑛,𝑚} in Section 3.1.

Margin-quantity based loss: Assuming the training samples

are independent, the probability of 𝑧𝑛 having a margin 𝜌𝑛,ℎ,𝑚 is

𝛼𝑛,ℎ𝛽𝑛,𝑚 . The expected margin of 𝑧𝑛 is equal to 𝜌̅𝑛 =
∑ ∑ 𝛼𝑛,ℎ𝛽𝑛,𝑚𝜌𝑛,ℎ,𝑚𝑚∈ℳ𝑛ℎ∈ℋ𝑛

, which is used to indicate the

margin-quantity of 𝑧𝑛 in this work. We then define the margin-

quantity based loss 𝐿𝑤⃑⃑⃑(𝑧𝑛) = −𝜌̅𝑛.

2.2. Margin-quality and the max-min entropy principle

The margin of a sample, say 𝑧𝑛, will be robust if 𝑧𝑛 has many hits

in its neighborhood because losing one or a few nearest hits will

not affect its margin significantly. In such a scenario, the hit

probability distribution of 𝑧𝑛 will spread out among many of its hit

probability variables, which will lead to a high hit-entropy

𝐸ℎ𝑖𝑡(𝑧𝑛) = − ∑ 𝛼𝑛,ℎ log 𝛼𝑛,ℎℎ∈ℋ𝑛
. On the contrary, if 𝑧𝑛 has very

few hits in its neighborhood, its hit probability distribution will

concentrate at just a few hit probability variables and lead to a low

𝐸ℎ𝑖𝑡(𝑧𝑛). In addition, the margin-quality of 𝑧𝑛 will not be high,

i.e., very likely to decrease upon losing a single nearest hit.

When 𝑧𝑛 has very few misses in its neighborhood, its margin

quality will also be high because losing one or more nearest misses

will most likely increase its margin. In such a scenario, its miss-

entropy 𝐸𝑚𝑖𝑠𝑠(𝑧𝑛) = − ∑ 𝛽𝑛,𝑚 log 𝛽𝑛,𝑚𝑚∈ℳ𝑛
 will be low because

its miss probability will concentrate at just a few of its miss

probability variables. On the contrary, if zn has many misses in its

neighborhood, its miss probability will spread out among many of

its miss probability variables, and hence its miss-entropy will be

high. In such a scenario, losing one or a few misses will less likely

to increase the margin of zn. Therefore, we can use the hit and miss

entropy of a sample to gouge the quality of its margin, and define

the margin-quality based loss as 𝑄𝑤⃑⃑⃑(𝑧𝑛) = 𝐸𝑚𝑖𝑠𝑠(𝑧𝑛) − 𝐸ℎ𝑖𝑡(𝑧𝑛).

To minimize 𝑄𝑤⃑⃑⃑(𝑧𝑛), we need to maximize 𝐸ℎ𝑖𝑡(𝑧𝑛) and minimize

𝐸𝑚𝑖𝑠𝑠(𝑧𝑛) , which we call the max-min entropy principle for

maximizing margin-quality. A margin with high quality will be

less prone to noise, outliers, and sampling variations.

2.3. Instantiate the framework

Here, we derive one instantiation of the framework. Plugging

𝐿𝑤⃑⃑⃑(𝑧𝑛) and 𝑄𝑤⃑⃑⃑(𝑧𝑛) defined in Sections 2.1 & 2.2 into the general

cost function defined by eq. (1) and applying ℓ2-regularization and

two constraints on 𝑤⃑⃑⃑ , we can easily obtain the following cost

function after merging related terms:

𝐶 = 𝑤⃑⃑⃑𝑇 ∑ (∑ 𝛼𝑛,ℎ|𝑥𝑛 − 𝑥ℎ|

ℎ=ℋ𝑛

− ∑ 𝛽𝑛,𝑚|𝑥𝑛 − 𝑥𝑚|

𝑚=ℳ𝑛

)

𝑁

𝑛=1

+ 𝜎 ∑ [𝐸𝑚𝑖𝑠𝑠(𝑧𝑛) − 𝐸ℎ𝑖𝑡(𝑧𝑛)]

𝑁

𝑛=1

+ 𝜆‖𝑤⃑⃑⃑‖2

subject to: 𝑤⃑⃑⃑ ≥ 0 and ‖𝑤⃑⃑⃑‖1 = 1 (3)

The none-negative constraint 𝑤⃑⃑⃑ ≥ 0 is required because we use the

Manhattan distance. We limit ‖𝑤⃑⃑⃑‖1 = 1 because scaling 𝑤⃑⃑⃑ will

scale all distances between samples by the same factor. The second

term in the right hand side of eq. (3) evaluated margin-quality and

is one of our major innovations that differentiates our work from

previous large hypothesis-margin methods [2, 3, 5, 9]. Its benefit

is explained in Section 2.2 and will be demonstrated in Section 5.1.

3. THE I-M4E ALGORITHM

The cost function defined in eq. (3) is none-convex and complex.

To learn an appropriate 𝑤⃑⃑⃑ , we derived an iterative algorithm

named I-M4E, which stands for Iterative Margin-Maximization

under Max-Min Entropy. I-M4E starts an initial 𝑤⃑⃑⃑ , and then

iterates between two steps trying to minimize the cost C: (a) fix 𝑤⃑⃑⃑,

update {𝛼𝑛,ℎ} and {𝛽𝑛,𝑚}; and (b) fix {𝛼𝑛,ℎ} and {𝛽𝑛,𝑚}, update 𝑤⃑⃑⃑.

3.1. Fix 𝒘⃑⃑⃑⃑, update {𝜶𝒏,𝒉} and {𝜷𝒏,𝒎}

Fixing 𝑤⃑⃑⃑ and setting ∂𝐶 ∂𝛼𝑛,ℎ⁄ = 0, we can derive the following

closed form solution for updating 𝛼𝑛,ℎ:

𝜕𝐶

𝜕𝛼𝑛,ℎ
= 𝑤⃑⃑⃑𝑇|𝑥⃑𝑛 − 𝑥⃑ℎ| + 𝜎 log 𝛼𝑛,ℎ + 𝜎 = 0

⇒ 𝛼𝑛,ℎ ∝ exp (
−𝑤⃑⃑⃑𝑇|𝑥⃑𝑛−𝑥⃑ℎ|

𝜎
) (4)

Normalizing 𝛼𝑛,ℎ to ensure ∑ 𝛼𝑛,ℎℎ∈𝐻𝑛
= 1, we have

𝛼𝑛,ℎ = exp (
−𝑓(𝑥⃑𝑛,𝑥⃑ℎ)

𝜎
) ∑ exp (

−𝑓(𝑥⃑𝑛,𝑥⃑𝑘)

𝜎
)𝑘∈ℋ𝑛

⁄ (5)

Similarly we can derive the following equation for updating 𝛽𝑛,𝑚

while fixing 𝑤⃑⃑⃑

𝛽𝑛,𝑚 = exp (
−𝑓(𝑥⃑𝑛,𝑥⃑𝑚)

𝜎
) ∑ exp (

−𝑓(𝑥⃑𝑛,𝑥⃑𝑠)

𝜎
)𝑠∈ℳ𝑛

⁄ (6)

Interestingly, equations (5) and (6) show that the trade-off constant

𝜎 of the margin-quality based loss in the cost function C defines

the spread of the exponential kernel (or the effective vicinity range

of a sample) in estimating the probabilities {𝛼𝑛,ℎ} and {𝛽𝑛,𝑚}. The

Hessian matrix of C with respect to any given hit and miss

probability pair (αn,h, βn,m) is:

(

𝜕2𝐶

𝜕𝛼𝑛,ℎ
2

𝜕2𝐶

𝜕𝛽𝑛,𝑚𝜕𝛼𝑛,ℎ

𝜕2𝐶

𝜕𝛼𝑛,ℎ𝜕𝛽𝑛,𝑚

𝜕2𝐶

𝜕𝛽𝑛,𝑚
2

) = (

𝜎

𝛼𝑛,ℎ
−𝜌𝑛,ℎ,𝑚

−𝜌𝑛,ℎ,𝑚 −
𝜎

𝛽𝑛,𝑚

) (7)

Since both 𝛼𝑛,ℎ and 𝛽𝑛,𝑚 are positive, the determinant of the above

matrix is negative:

−
𝜎2

𝛼𝑛,ℎ𝛽𝑛,𝑚
− 𝜌𝑛,ℎ,𝑚

2 < 0 (8)

Thus, when 𝑤⃑⃑⃑ is fixed, the I-M4E algorithm finds a saddle point in

the (𝛼𝑛,ℎ, 𝛽𝑛,𝑚) space.

3.2. Fix {𝜶𝒏,𝒉} and {𝜷𝒏,𝒎}, update 𝒘⃑⃑⃑⃑

When {𝛼𝑛,ℎ} and {𝛽𝑛,𝑚} are fixed, the cost C is quadratic of 𝑤⃑⃑⃑.

Moreover, the second derivative of C with respect to 𝑤⃑⃑⃑ is 2𝜆 > 0.

Hence, C is convex with respect to 𝑤⃑⃑⃑, and a 𝑤⃑⃑⃑ satisfying 𝑤⃑⃑⃑ ≥ 0 &
‖𝑤⃑⃑⃑‖1 = 1 can be found to globally minimize C while fixing

{𝛼𝑛,ℎ} and {𝛽𝑛,𝑚}. However, such a local minimizer may not

necessary achieve a good final result because {𝛼𝑛,ℎ} and {𝛽𝑛,𝑚}

depend on 𝑤⃑⃑⃑ . In addition, it requires more computational

resources. Therefore, we derived the following efficient way for

updating 𝑤⃑⃑⃑ to achieve a reasonably good result. Our experiments

showed that this method worked very well empirically. Let

∂𝐶 ∂𝑤⃑⃑⃑⁄ = 0, we can obtain a constraint free solution to update 𝑤⃑⃑⃑:

𝑣⃑ =
1

2𝜆
[∑ (∑ 𝛽𝑛,𝑚|𝑥⃑𝑛 − 𝑥⃑𝑚|

𝑚∈ℳ𝑛

− ∑ 𝛼𝑛,ℎ|𝑥⃑𝑛 − 𝑥⃑ℎ|

ℎ∈ℋ𝑛

)

𝑁

𝑛=1

]

Then, factoring in the constraint 𝑤⃑⃑⃑ ≥ 0, we easily obtain a solution

for 𝑤⃑⃑⃑ as 𝑣⃑+ = [max(𝑣1, 0) ⋯ max(𝑣𝐷, 0)]𝑇 . Since C is convex

with respect to 𝑤⃑⃑⃑, 𝑣⃑+ is a straightforward none-negative solution

that globally minimizes C. Adding the constraint ‖𝑤⃑⃑⃑‖1 = 1, we

derived the following sub-optimal but efficient way to update 𝑤⃑⃑⃑:

𝑤⃑⃑⃑ = 𝑣⃑+ ‖𝑣⃑+‖1⁄ (9)

We of course can use the result given by eq. (9) as the initial point,

and perform simple binary search along the line defined by
‖𝑤⃑⃑⃑‖1 = 1 to find a 𝑤⃑⃑⃑ that minimizes C.

3.3. The iterative algorithm

The above iterative procedure is summarized in Algorithm 1.

Based on the analysis in Section 3.1 and 3.2, this algorithm should

converge to a saddle point or a local minimal.

4. CLASSIFY NEW SAMPLES

We design a new rule as the following to classify a new sample

𝑧′ = (𝑥⃑′, 𝑦′) using the learned 𝑤⃑⃑⃑:

𝑦′ = argmin𝑐 𝛹𝑐 = argmin𝑐 ∑ 𝑃𝑛
𝑐𝑓(𝑥⃑𝑛 , 𝑥⃑′)𝑦𝑛=𝑐 (10)

where c indicates the class and 𝑃𝑛
𝑐 =

exp(
−𝑓(𝑥⃑⃑⃑𝑛,𝑥⃑⃑⃑′)

𝜎
)

∑ exp(
−𝑓(𝑥⃑⃑⃑𝑘,𝑥⃑⃑⃑′)

𝜎
)𝑦𝑘=𝑐

.

Here 𝛹𝑐 measures the expected distance of 𝑧′ to the c-th class.

Eq. (10) assigns 𝑧′ to the class whose expected distance to 𝑧′ is the

minimum among all classes. There is a close connection between

𝛹𝑐 and the margin-quantity based loss 𝐿𝑤⃑⃑⃑ of assigning 𝑧′ to the c-

th class (i.e., 𝑦′ = 𝑐):

𝐿𝑤⃑⃑⃑(𝑦′ = 𝑐) = 𝛹𝑐 − ∑ 𝛹𝑐′𝑐′≠𝑐 (11)

Obviously, 𝐿𝑤⃑⃑⃑(𝑦′ = 𝑐) will be the minimum among all possible

class assignments to 𝑧′ if the corresponding 𝛹𝑐 is the minimum.

5. EXPERIMENTS

5.1. An illustration

To illustrate the benefits of considering margin-quality, we

designed the following two simple examples of binary

classification with feature selection in 3-dimensional space. In

both examples, we focus on a target sample zt and compare two

feature weight vector options: (1) 𝑤⃑⃑⃑(1,2) = [0.5,0.5,0]𝑇 that selects

the 1st & 2nd dimensions vs. (2) 𝑤⃑⃑⃑(2,3) = [0,0.5,0.5]𝑇 that selects

the 2nd & 3rd dimensions.

The first example (Figure 1 and Table 1) highlights zt and one

of its hits 𝑧𝑟 . In the sub-space selected by 𝑤⃑⃑⃑(1,2) , 𝑧𝑡 has many

nearest hits evenly distributed around it, which leads to a higher

hit-entropy = 1.778. Losing 𝑧𝑟 does not greatly reduce the expected

margin 𝜌̅𝑡 of 𝑧𝑡 , and the margin-quantity based loss 𝐿𝑤⃑⃑⃑(𝑧𝑡) is

increased slightly from -0.959 to -0.894. In the sub-space selected

by 𝑤⃑⃑⃑(2,3) , although 𝑧𝑡 has a larger 𝜌̅𝑡 , the nearest hits of 𝑧𝑡 are

unevenly distributed around it since 𝑧𝑟 much closer to 𝑧𝑡 than

others. This leads to a smaller hit-entropy = 1.585. Losing 𝑧𝑟

causes a significant reduction to 𝜌̅𝑡 and dramatically increases

𝐿𝑤⃑⃑⃑(𝑧𝑡) from -1.132 to -0.763. Such a big change, which can be

forewarned by examining 𝐸ℎ𝑖𝑡(𝑧𝑡), indicates that the margin of 𝑧𝑡

in the subspace selected by 𝑤⃑⃑⃑(2,3) is not robust. If 𝐿𝑤⃑⃑⃑(𝑧𝑡) is the

only factor, 𝑤⃑⃑⃑(2,3) will be preferred over 𝑤⃑⃑⃑(1,2) because 𝑤⃑⃑⃑(2,3) leads

to a smaller loss (-1.132 vs. -0.959). If both 𝐿𝑤⃑⃑⃑(𝑧𝑡) and 𝑄𝑤⃑⃑⃑(𝑧𝑡) are

considered, 𝑤⃑⃑⃑(1,2) will be a better option because it makes the

margin of 𝑧𝑡 more robust and leads to a smaller total-loss [𝐿𝑤⃑⃑⃑(𝑧𝑡)

+ 𝑄𝑤⃑⃑⃑(𝑧𝑡)] with/without 𝑧𝑟.

The second example (Figure 2 and Table 2) highlights 𝑧𝑡 and

one of its misses 𝑧𝑞 . In the sub-space selected by 𝑤⃑⃑⃑(1,2), 𝑧𝑡 has

many nearest misses so that 𝑧𝑡 has a higher miss-entropy

𝐸𝑚𝑖𝑠𝑠(𝑧𝑡)=1.933. Losing 𝑧𝑞 does not greatly affect 𝜌̅𝑡 , and only

reduces 𝐿𝑤⃑⃑⃑(𝑧𝑡) slightly from -0.514 to -0.515. On the contrary, in

the sub-space selected by 𝑤⃑⃑⃑(2,3), the expected margin 𝜌̅𝑡 is mainly

decided by 𝑧𝑞 because 𝑧𝑞 is much closer to 𝑧𝑡 than the rest nearest

misses, which makes zq more like an outlier. Such an uneven

distribution of the nearest misses around 𝑧𝑡 leads to a relatively

smaller miss-entropy 𝐸𝑚𝑖𝑠𝑠(𝑧𝑡)=1.863. Losing 𝑧𝑞 will significantly

increase 𝜌̅𝑡, and hence dramatically reduce 𝐿𝑤⃑⃑⃑(𝑧𝑡) from -0.464 to -

0.667. Such a big change, which can be predicted by examining

𝐸𝑚𝑖𝑠𝑠(𝑧𝑡), indicates that the margin of 𝑧𝑡 in the sub-space defined

by 𝑤⃑⃑⃑(2,3) is of higher quality because it will be significantly better

upon losing any single outlier-like miss. In other words, 𝑄𝑤⃑⃑⃑(𝑧𝑡)

Algorithm 1: I-M4E

Input: a training dataset {𝑧𝑛 = (𝑥⃑𝑛, 𝑦𝑛)}𝑛=1⋯𝑁

Let t = 0, randomly initialize w⃑⃑⃑⃑(0) > 0 satisfying the sum of

feature weights equal to 1.

Repeat

t = t + 1

Calculate {𝛼𝑛,ℎ
(𝑡)} and {𝛽𝑛,𝑚

(𝑡)
} using equations (5) and (6),

respectively.

Calculate 𝑤(𝑡) using equation (9).

Until the change of C is small enough or the number of iteration

t reaches a pre-set limit.

Return: 𝑤(𝑡)

helps choose a margin more robust to outliers in the opposite

class(es). If 𝐿𝑤⃑⃑⃑(𝑧𝑡) is the only factor, 𝑤⃑⃑⃑(1,2) will be better than

𝑤⃑⃑⃑(2,3). If we also consider 𝑄𝑤⃑⃑⃑(𝑧𝑡), 𝑤⃑⃑⃑(2,3) will be a better choice

because it leads to a smaller total-loss with/without 𝑧𝑞 .

5.2. Results of real datasets

We carried out cross validation experiments to compare I-M4E

with several popular classifiers implemented in WEKA [10], such

as decision tree (ADT) [11], naive Bayes classifier (NBC) [12],

Bayesian network (BN) [13, 14], Support Vector Machines trained

by sequential minimal optimization (SMO) [15, 16], RBF network

[17] and 1-nearest neighbor (IB1) and 3-nearest neighbor (IB3)

[18]. We also compared our method to several other margin-based

nearest neighbor algorithms, such as Simba (SIM) [3], G-flip

(GFP) [3], RELIEF (RLF) [1], RELIEF-F (RFF) [7, 8], and LOGO

[5]. Simba, G-flip and RELIEF were implemented in a MATLAB

package tool generously made available by Navot [19]. RELIEF-F

is available in the Statistics Toolbox of MATLAB. The MATLAB

codes of LOGO were generously provided by one of its inventors.

The settings of these methods were chosen according to those

suggested in their original papers: RELIEF uses 1-NN classifier

and the Euclidean distance; Simba and G-flip use 1-NN classifier

and the weighted Euclidean distance; LOGO uses 3-NN classifier

and the weighted Manhattan distance, and the value of its kernel

width is decided from a set of values by internal cross validation;

and RELIEF-F uses the Manhattan distance and a k-NN classifier

(the value of k = 1, 3, or 5 was decided using internal cross

validation). The I-M4E algorithm has two constants 𝜆 and 𝜎 in

its cost function. We fixed 𝜆 as the number of samples and tuned

𝜎 by internal cross validation in the following way: start from

𝜎0 = 1.0 , and gradually reduce 𝜎 by half each time (i.e., 𝜎𝑖 =
𝜎0 2𝑖⁄) until the value of 𝜎𝑖 is smaller than 0.0001. The best 𝜎𝑘

was chosen as the one performed the best in the internal cross

validation, and then was used in the corresponding test. The same

strategy was used to choose the best kernel width 𝜎 for LOGO.

We also tried eq. (10) to classify new samples using 𝑤⃑⃑⃑ learned by

LOGO. However, the results were in general much worse than

those of using the 3-NN classifier suggested in [5].

In each round of 10-fold cross validation, the accuracy of each

method was measured as the percentage of correctly predicted test

samples. The 10-fold cross validation process was run 10 times for

each datasets so that each algorithm generated 10 × 10 = 100

cross validation results. To decide if a classifier performed

significantly better than the other one on a specific dataset, we

adopted the method proposed in [5] and used Student's paired two-

tailed t-test [20] to compare the accuracies of two different

classifiers in all cross validation runs. We say a classifier performs

noticeably better than (i.e., win) another one if the paired t-test p <

0.01 and the average accuracy of the first classifier is at least 0.5%

higher than that of the second one. Otherwise, we decide that two

classifiers are comparable or tie.

5.2.1. Results of clinical gene expression datasets

We carried out the comparisons using five publicly available

clinical gene expression datasets: Breast (44 samples with disease-

free ≥ 5 yrs vs. 34 samples < 5 yrs) [22], Colon (40 tumor tissue

samples vs. 22 normal tissue samples) [23], GLI (26 grade III

samples vs. 59 grade IV samples) [24], Myeloma (36 samples with

lesions not detected by MRI vs. 137 samples detected by MRI)

[25], and Prostate (59 normal tissue samples vs. 77 tumor tissue

samples) [26]. The number of features in each of these gene

expression datasets is much larger than its number of samples. It is

widely known that feature selection will help obtain better

classification results in high dimensional spaces. Similar to

RELIEF, Simba, G-flip, RELIEF-F, and LOGO which were

originally derived for the purpose of feature selection, I-M4E can

rank features by their weights. Decision tree learning can

automatically identify good features in building tree classifiers. To

select features for SMO, we used SVM Recursive Feature

Elimination (SVM-RFE) [27] which is a popular SVM-based

feature ranking algorithm. Several kernels were tested for SMO,

such as Poly kernel with exponent 1 (SVM1), 2 (SVM2), and 3

(SVM3), RBF (SVMR) and PUK (SVMP).

The following feature elimination scheme was used for all of

them. Starting from using all features N, we removed 50% of the

features with the lowest ranks at a time until the number of features

is smaller than 50. The best number of features for each algorithm

Figure 2: The benefit of incorporating miss entropy into selecting

features in a 3D binary classification (▲ vs. ■) problem. The left

and the right plots show the subspaces selected by 𝑤⃑⃑⃑(1,2) and

𝑤⃑⃑⃑(2,3), respectively.

Before losing zq After losing zq

𝐿𝑤⃑⃑⃑ 𝐸𝑚𝑖𝑠𝑠 𝑄𝑤⃑⃑⃑ 𝑇𝑤⃑⃑⃑ 𝐿𝑤⃑⃑⃑ 𝑄𝑤⃑⃑⃑ 𝑇𝑤⃑⃑⃑

𝑤⃑⃑⃑(1,2) -0.514 1.933 0.164 -0.350 -0.515 0.008 -0.507

𝑤⃑⃑⃑(2,3) -0.464 1.863 0.095 -0.369 -0.667 -0.016 -0.683

Table 2: Compares 𝐿𝑤⃑⃑⃑, 𝑄𝑤⃑⃑⃑, and 𝑇𝑤⃑⃑⃑ = 𝐿𝑤⃑⃑⃑ + 𝑄𝑤⃑⃑⃑ of 𝑧𝑡 before and

after losing 𝑧𝑞 in Figure 2. The hit entropy (not shown) remains

the same before and after losing zq.

Figure 1: The benefit of incorporating hit entropy into features

selection. There are two classes (▲ vs. ■) in 3D space. The left

and the right plots show the subspaces selected by 𝑤⃑⃑⃑(1,2) and

𝑤⃑⃑⃑(2,3), respectively.

Before losing 𝑧𝑟 After losing 𝑧𝑟

𝐿𝑤⃑⃑⃑ 𝐸ℎ𝑖𝑡 𝑄𝑤⃑⃑⃑ 𝑇𝑤⃑⃑⃑ 𝐿𝑤⃑⃑⃑ 𝑄𝑤⃑⃑⃑ 𝑇𝑤⃑⃑⃑

𝑤⃑⃑⃑(1,2) -0.959 1.778 0.099 -0.860 -0.894 0.276 -0.618

𝑤⃑⃑⃑(2,3) -1.132 1.585 0.292 -0.840 -0.763 0.397 -0.366

Table 1: Compares 𝐿𝑤⃑⃑⃑ , 𝑄𝑤⃑⃑⃑ , and 𝑇𝑤⃑⃑⃑ = 𝐿𝑤⃑⃑⃑ + 𝑄𝑤⃑⃑⃑ of 𝑧𝑡 before and

after losing 𝑧𝑟 in Figure 1. The miss entropy (not shown) remains

the same before and after losing 𝑧𝑟.

was decided using internal 10-fold cross validation. Then each

classifier was retrained using all training samples and the features

selected in the internal cross validation before it was applied to the

test samples. The comparison results (Table 3) show that our

method significantly outperformed Simba, RELIEF and SVM

(PUK kernel) on all five datasets, and also significantly

outperformed LOGO, G-flip, SVM (RBF kernel) on four out of

five datasets. SVM (Poly kernel with exponent 1, 2 and 3) beats I-

M4E on the GLI and Prostate datasets by (0.78%, 0.89% and 1%)

and (3.38%, 4.03% and 4.17%), respectively. However, I-M4E has

a much larger lead over them on Myeloma (by 19.77%, 19.54%

and 19.6%) datasets and a larger lead on Colon (by 3.5%, 5.17%

and 8.33%), and a reasonable lead on the Breast dataset (by 1.75%,

3.83% and 3.21%).

Other classifiers (such as BN, NBC, IB1, IB3, and RBF

network) do not have their own intrinsic feature ranking/selection

functions. In each 10-fold cross validation run, we first applied the

Chi-square attribute selector in WEKA to select the best 2000

features using internal 10-fold cross validation, and then trained I-

M4E and these classifiers for comparison on the test subset. The

results clearly indicate that I-M4E significantly outperformed these

classifiers (see Table 4).

5.2.2. Results of UCI datasets

Eleven UCI datasets [21]: Vertebral column (VC), Ecoli (EC),

Glass identification (GI), Haberman’s survival (HS), Hayes-roth

(HR), Statlog/heart (SH), Ionosphere (IONO), Lymphography

(LYM), Parkinsons (PARK), Wine Quality (WQ), and Wisconsin

Prognostic Breast Cancer (WPBC) were used in this experiment.

Some of these UCI datasets have multiple classes. We only used

the largest two classes in each one of them. All features were

standardized to center at 0 with unit variance. We tested several

kernels (such as PolyKernel with exponent 1, 2, and 3, RBF, and

PUK with default settings in WEKA) for SMO and used the best

performance in comparison. The results are summarized in Table 5

and show that I-M4E in general outperforms other methods though

it is not always the best.

6. CONCLUSIONS AND DISCUSSIONS

In this paper, we present a new learning framework and a simple

algorithm I-M4E to implement it. The convergence analysis of I-

M4E is straightforward. The empirical results showed that I-M4E is

promising. The instantiation and implementation of the framework

can be improved in several fronts. Currently, we use a simple

linear margin-based loss function (i.e., the negation of a margin)

which may limit its performance in classification tasks.

Nevertheless, our formulation is general enough to easily adopt

other margin-based loss functions (e.g., logistic loss, hinge loss,

sigmoidal loss, etc.) to make the cost function much more

appropriate for the purpose of classification. The same iterative

algorithm can be used with some modifications. The search of the

weight vector may have to resort to gradient-based methods

because a closed form solution may not exist for a non-linear loss

function. We now impose ℓ2-regularization on the feature weight

vector. ℓ2-regularization has been shown by several works to be

inferior to ℓ1-regularization [28] in finding sparse solutions [5,

29], which is desirable in some applications. Our future work will

investigate using ℓ1-regularization to implement this framework.

So far, we have demonstrated the framework on binary

classification problems. Since the definitions of the hit/miss sets,

margin, and cost can be readily applied to multiple class scenarios,

we do not foresee any theoretic barrier to apply this work to

multiple class problems.

Our work is related to distance metric learning [30-35] in the

sense that I-M4E learns a weighted Manhattan distance metric.

Learning other distance metrics (e.g., Mahalanobis distance and

weighted Euclidean distance) can be formulated within our

framework. The equations for calculating the parameters of these

distance metrics should be derived correspondingly. Our approach

was inspired by previous large hypothesis-margin methods [2, 3, 5,

9], especially I-RELIEF [9] and LOGO [5]. One of our major

innovations is that our objective function evaluates margin-quality,

which was not considered by previous large hypothesis-margin

methods. In the instantiation of the framework presented here, we

deployed the maximum hit-entropy and minimal miss-entropy

principle to make margin calculation less prone to noise and

sampling variations, and showed that this principle could have

great impact on the results (Figures 1 & 2). This was one of the

major factors that contributed to our better performances in

experiments. Both I-RELIEF and LOGO also use equations (5) &

(6) to calculate the hit and miss probabilities, respectively.

However, their choices of these two equations were made

intuitively and preceded the designs of their objective functions.

Since the hit and miss probabilities are not independent from the

Dataset LOGO RFF SIM RLF ADT GFP SVM1 SVM2 SVM3 SVMP SVMR I-M4E

Breast 87.21 94.92 92.37 91.46 86.88 92.71 92.33 90.25 90.87 86.88 92.08 94.08

Colon 81.83 83.21 80.17 80.50 76.04 79.67 82.00 80.33 77.00 69.58 81.37 85.50
GLI 84.89 87.72 85.61 84.78 83.69 87.97 90.53 90.64 90.75 76.06 89.44 89.75

Myeloma 93.92 97.79 94.94 96.25 76.52 97.68 79.00 79.23 79.17 79.17 79.17 98.77

Prostate 89.83 88.16 85.84 86.59 86.97 87.39 91.51 92.16 92.30 83.01 69.86 88.13

W/T/L 1/0/4 1/1/3 0/0/5 0/0/5 0/0/5 0/0/5 2/0/3 2/0/3 2/0/3 0/0/5 0/1/4 -/-/-

Table 3: Summarizes the results on five high-dimensional gene expression datasets. The first column lists the datasets, and the first row

lists the methods in comparison. The last row indicates the number of times each algorithm W/T/L (win/tie/loss) when compared to I-M4E

using Student's paired two-tailed t-test. The remaining rows list the average accuracies of these algorithms on the corresponding datasets.

Dataset BN NBC IB1 IB3 RBF I-M4E

Breast 85.38 77.88 86.96 86.13 85.21 92.04

Colon 78.25 62.63 71.54 77.88 72.63 82.71

GLI 84.86 82.42 89.75 89.08 84.61 90.81
Myeloma 74.09 60.30 90.03 92.97 70.65 97.38

Prostate 65.53 56.20 84.11 87.86 55.71 92.26

W/T/L 0/0/5 0/0/5 0/0/5 0/0/5 0/0/5 -/-/-

Table 4: Compares I-M4E with BN, NBC, IB1, IB3, and RBF

using five high-dimensional gene expression datasets. The first

column lists the datasets, and the first row lists the algorithms in

comparison. The Chi-square attribute selector in Weka is used to

select the best 2000 features during training. The last row indicates

the number of times each algorithm W/T/L(i.e., win/tie/loss) when

compared to I-M4E using the Student's paired two-tailed t-test. The

remaining rows list the average accuracies of those algorithms. I-

M4E is a clear winner in this comparison.

feature weights, it is not clear how updating the hit and miss

probabilities in such ways affects the optimization of their

objective functions in terms of finding the feature weights. I-M4E

derives equations (5) & (6) by directly optimizing our novel

objective function eq. (1) iteratively. The theoretical foundation

and consequence of updating the hit and miss probabilities by these

two equations in I-M4E are apparent and sound.

7. REFERENCES

[1] Kira, K. and L.A. Rendell, A practical approach to feature

selection, International Workshop on Machine Learning. 1992:

Aberdeen, Scotland, United Kingdom. p. 249-256.

[2] Crammer, K., et al., Margin Analysis of the LVQ Algorithm., in

NIPS. 2002, MIT Press. p. 462-469.

[3] Gilad-Bachrach, R., A. Navot, and N. Tishby, Margin based

feature selection - theory and algorithms. ICML 2004, p. 43-50.

[4] Sun, Y. and J. Li, Iterative RELIEF for feature weighting.

ICML 2006, p. 913-920.

[5] Sun, Y., S. Todorovic, and S. Goodison, Local-Learning-Based

Feature Selection for High-Dimensional Data Analysis. IEEE

Trans. Pattern Anal. Mach. Intell., 2010. 32(9): p. 1610-1626.

[6] Cover, T. and P. Hart, Nearest neighbor pattern classification.

IEEE Transactions on Information Theory, 1967. 13(1): p. 21-27.

[7] Kononenko, I., Estimating attributes: Analysis and extensions

of RELIEF, in Proceedings of ECML'94. 1994. p. 171-182.

[8] Robnik-Šikonja, M. and I. Kononenko, Theoretical and

Empirical Analysis of ReliefF and RReliefF. Mach. Learn., 2003.

53(1-2): p. 23-69.

[9] Sun, Y., Iterative RELIEF for Feature Weighting: Algorithms,

Theories, and Applications. IEEE Trans. Pattern Anal. Mach.

Intell., 2007. 29(6): p. 1035-1051.

[10] Frank, E., et al. Weka: http://www.cs.waikato.ac.nz/ml/weka/ .

[11] Freund, Y. and L. Mason, The Alternating Decision Tree

Learning Algorithm. 1999: San Francisco, CA, USA. p. 124-133.

[12] John, G.H. and P. Langley, Estimating continuous

distributions in Bayesian classifiers, UAI 1995, p. 338-345.

[13] Heckerman, D., D. Geiger, and D.M. Chickering, Learning

Bayesian Networks: The Combination of Knowledge and Statistical

Data. Machine Learning, 1995. 20(3): p. 197-243.

[14] Friedman, N., D. Geiger, and M. Goldszmidt, Bayesian

Network Classifiers. Mach. Learn., 1997. 29(2-3): p. 131-163.

[15] Platt, J.C., Advances in kernel methods. 1999, MIT Press:

Cambridge, MA, USA. p. 185-208.

[16] Keerthi, S.S., et al., Improvements to Platt's SMO Algorithm

for SVM Classifier Design. Neural Comp., 2001.13(3): p.637-649.

[17] Haykin, S., Neural Networks: A Comprehensive Foundation.

1998, Upper Saddle River, NJ, USA: Prentice Hall PTR.

[18] Aha, D.W., D. Kibler, and M.K. Albert, Instance-Based

Learning Algorithms. Mach. Learn., 1991. 6(1): p. 37-66.

[19] Navot, A. http://cid-843f36fc50a5ece8.skydrive.live.com/

browse.aspx/.Public/Feature%20Selection.

[20] Gosset, W.S., The Probable Error of a Mean. Biometrika,

1908. 6(1): p. 1-25.

[21] Frank, A. and A. Asuncion. UCI Machine Learning

Repository. 2010.

[22] van 't Veer, L.J., et al., Gene expression profiling predicts

clinical outcome of breast cancer. Nature, 2002. 415(6871): p.

530-536.

[23] Alon, U., et al., Broad patterns of gene expression revealed by

clustering analysis of tumor and normal colon tissues probed by

oligonucleotide arrays. PNAS, 1999. 96(12): p. 6745-6750.

[24] Freije, W.A., et al., Gene expression profiling of gliomas

strongly predicts survival. Cancer Res, 2004. 64(18): p. 6503-10.

[25] Tian, E., et al., The role of the Wnt-signaling antagonist

DKK1 in the development of osteolytic lesions in multiple

myeloma. N Engl J Med, 2003. 349(26): p. 2483-94.

[26] Singh, D., et al., Gene expression correlates of clinical

prostate cancer behavior. Cancer Cell, 2002. 1(2): p. 203-209.

[27] Guyon, I., et al., Gene Selection for Cancer Classification

using Support Vector Machines. Mach. Learn., 2002. 46(1-3): p.

389-422.

[28] Donoho, D.L. and M. Elad, Optimally sparse representation

in general (nonorthogonal) dictionaries via l-minimization. PNAS,

2003. 100(5): p. 2197-2202.

[29] Ng, A.Y., Feature selection, L1 vs. L2 regularization, and

rotational invariance. ICML 2004, p. 78-85.

[30] Hastie, T. and R. Tibshirani, Discriminant Adaptive Nearest

Neighbor Classification. IEEE Trans. PAMI 1996. 18(6): p. 607-

616.

[31] Xing, E.P., et al., Distance Metric Learning, with Application

to Clustering with Side-information, in NIPS. 2002,

[32] Goldberger, J., et al., Neighborhood components analysis, in

NIPS. 2004. p. 513-520.

[33] Davis, J.V., et al., Information-theoretic metric learning.

2007, ACM Press: Corvalis, Oregon, USA. p. 209-216.

[34] Weinberger, K.Q. and L.K. Saul, Distance Metric Learning

for Large Margin Nearest Neighbor Classification. J. Mach. Learn.

Res., 2009. 10: p. 207-244.

[35] Ying, Y., K. Huang, and C. Campbell, Sparse Metric

Learning via Smooth Optimization, in NIPS. 2009: Vancouver,

British Columbia, Canada. p. 2214-2222.

Dataset ADT BN IB1 IB3 NBC RBF SMO SIM GFP RLF RFF LOGO I-M4E

VC 82.43 76.60 80.85 77.78 77.79 80.31 78.99 81.08 82.02 84.50 79.64 83.65 82.93

EC 98.82 98.67 97.22 98.45 97.70 98.32 97.82 97.57 97.39 97.21 97.82 98.91 98.40
GI 92.52 92.18 94.57 94.86 90.59 92.94 92.63 94.46 93.87 93.95 93.41 93.98 94.39

HS 72.91 71.72 65.65 70.13 74.59 73.93 73.11 64.67 65.81 63.99 69.03 68.74 72.32

HR 75.35 38.52 75.14 64.42 67.39 59.69 60.52 79.31 52.51 60.84 76.24 77.10 79.59
SH 79.94 82.76 75.52 78.91 83.97 82.99 81.24 75.33 71.93 74.72 81.46 79.22 83.28

IONO 90.23 89.52 86.75 85.70 82.52 91.45 90.74 89.33 88.34 88.62 90.80 91.82 92.09

LYM 82.70 81.49 75.65 81.19 84.09 83.37 84.54 77.60 65.69 79.81 85.75 85.26 84.94
PARK 88.11 79.59 95.88 93.44 69.92 80.99 89.16 95.69 94.32 93.74 92.79 94.27 94.18

WQ 70.22 66.29 76.30 70.26 66.28 66.58 69.85 76.99 76.55 77.10 77.77 53.99 78.44

WPBC 75.39 75.79 71.18 74.43 67.18 76.15 77.84 69.63 64.43 67.30 76.02 74.96 76.25

W/T/L 1/1/9 0/2/9 1/1/9 0/2/9 2/0/9 1/3/7 2/1/8 1/2/8 0/1/10 1/2/8 1/1/9 2/4/5 -/-/-

Table 5: Summarizes the results on eleven UCI datasets. The first column lists the datasets, and the first row lists the methods. The last row

indicates the number of times each algorithm W/T/L (win/tie/loss) when compared to I-M4E using Student's paired two-tailed t-test. The

remaining rows list the average accuracies of these methods on the corresponding datasets.

http://www.cs.waikato.ac.nz/ml/weka/

