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ABSTRACT 

 

The large-margin principle has been widely applied to learn 

classifiers with good generalization power. While tremendous 

efforts have been devoted to maximizing margins (i.e., the 

quantity), little attention was paid to ensure the quality of margins. 

In this paper, we present a new framework that aims to achieve 

superior generalizability by balancing margin-quantity 

maximization and margin-quality maximization. In particular, we 

use one type of margin defined locally by nearest neighbors, and 

proposes a max-min entropy principle to maximize margin-quality. 

An iterative algorithm is derived to implement this idea. We 

demonstrate the power of our new approach by comparing it to a 

couple of widely used classifiers (e.g., Support Vector Machines, 

decision tree, naive Bayes classifier, k-nearest neighbors, etc.) and 

several other large local margin learners (e.g., RELIEF, Simba, G-

flip, LOGO, etc.) on a number of UCI machine learning datasets 

and gene expression datasets.   

Index Terms — margin quality, large-margin learning 

 

1. INTRODUCTION 

 

Margins play important roles in learning classifiers with high 

confidence. In this work, we are interested in hypothesis-margin, 

which was first implicitly used by the well-known RELIEF 

algorithm [1] and then was formally defined in [2, 3] in the context 

of learning feature weights for the purpose of classification. 

RELIEF calls two different samples as hits of each other if their 

class labels are the same; otherwise, they are misses of each other. 

Treating each training sample as a hypothesis, the hypothesis-

margin of a training sample can be calculated locally as one half of 

the difference between its distance to its nearest miss and its 

distance to its nearest hit. Usually, the larger a margin, the better. 

Recently several highly competitive learners have been developed 

within the large hypothesis-margin framework [2-5]. Interestingly, 

these works all utilized one of the simplest pattern classification 

methods – the k nearest neighbor (k-NN) technique [6]. The k-NN 

technique assigns a sample to the class most common among its k 

nearest neighbors. In such a way, it can decompose a globally 

complex nonlinear separation problem into a set of local and 

simple ones. In some applications, such as biological and 

biomedical domains, this can greatly help end-users gain novel 

insights into a new sample by examining other knowledge 

associated with its NNs, but is not captured by the features used in 

classification. In the rest of the paper, we will use margin to denote 

hypothesis-margin without explicit indication. 

A major drawback of RELIEF is that its iterative weight 

learning procedure does not recalculate the distances between 

samples after updating feature weights. Hence it can fail to use 

correct nearest hits/misses in calculating margins during learning. 

This problem was tackled by G-flip and Simba [3] by re-

identifying nearest hits/misses upon changing feature weights. 

However, RELIEF, G-flip, and Simba all rely on 1-NN, which can 

make their margin calculations prone to noise and variations in 

sampling. RELIEF-F [7, 8] tried to remedy this shortcoming by 

searching for multiple nearest neighbors when computing margins, 

however, it did not provide a theoretic foundation for deciding the 

right number of nearest neighbors. In addition, similar to RELIEF, 

G-flip, and Simba, RELIEF-F chose the nearest hits and misses in 

deterministic manners, which could significantly undermine their 

performances. To address this issue, I-RELIEF [4, 9] identified the 

nearest hits and misses in a probabilistic manner. LOGO [5] 

improved I-RELIEF by wrapping logistic regression over the 

expected margins to make the loss function more suitable for 

classification and applying ℓ1-norm regularization on the weight 

vector to achieve sparseness in selecting features. 

Nevertheless, similar to many conventional large-margin 

approaches, the above methods did not fully appreciate the 

importance of margin quality. A large margin alone will not lead to 

good generalization if it is of low quality (e.g., it will be reduced 

significantly upon losing/corrupting only one or a few critical 

samples). This problem motivated us to develop a new framework 

that maximizes margin-quality in addition to maximizing margin-

quantity. We incorporated the principle of max-min entropy into 

our cost function to ensure the quality of margins. As a simple 

start, we used the weighted Manhattan distance metric. An iterative 

algorithm was derived to implement this framework. Our new 

method outperformed several existing methods in the empirical 

comparisons using UCI machine learning datasets and DNA 

microarray datasets. 

 

2. THE FRAMEWORK 

 

In a classification problem, we are given a training dataset 

{𝑧𝑛 = (𝑥⃑𝑛, 𝑦𝑛)}𝑛=1⋯𝑁 where 𝑥⃑𝑛 ∈ ℜ𝐷 is the feature vector and 𝑦𝑛 

is the class label. To balance margin-quantity maximization and 

margin-quality maximization, we design a general cost function for 

learning a classifier with parameters 𝑤⃑⃑⃑ as the following: 

𝐶 = ∑ 𝐿𝑤⃑⃑⃑(𝑧𝑛)𝑁
𝑛=1 + 𝜎 ∑ 𝑄𝑤⃑⃑⃑(𝑧𝑛)𝑁

𝑛=1 + 𝜆𝑅(𝑤⃑⃑⃑) (1) 

where 𝐿𝑤⃑⃑⃑(𝑧𝑛)  is the loss based on the margin-quantity of the 

prediction made by the classifier on 𝑧𝑛 ; and 𝑄𝑤⃑⃑⃑(𝑧𝑛) is the loss 

based on the quality of 𝑧𝑛 's margin. We require that 𝐿𝑤⃑⃑⃑(𝑧𝑛) and 

𝑄𝑤⃑⃑⃑(𝑧𝑛)  monotonically decrease w.r.t. the margin-quantity and 

margin-quality of the prediction made on 𝑧𝑛, respectively. The 1st 

and 2nd terms of C follow the principle of maximizing margin-

quantity and maximizing margin-quality, respectively. The third 

term of C regularizes 𝑤⃑⃑⃑ to, for example, penalize complex models. 



 

 

Common regularizations include ℓ1 -norm, ℓ2 -norm, and some 

linear combinations of them. Other constraints on 𝑤⃑⃑⃑  (e.g., non-

negative, etc.) can be also imposed. Two positive constants 𝜆 and 𝜎 

are the trade-off parameters that can either be set by users or be 

tuned by cross validation. There are many potential ways to 

implement the general framework defined in eq. (1). Below we 

demonstrate a specific instantiation of this framework. 

2.1. Margin-quantity based loss 

Following the definitions in [1], 𝑧𝑎  is a hit of 𝑧𝑛  if 𝑦𝑎 = 𝑦𝑛 , 

otherwise 𝑧𝑎  is a miss of 𝑧𝑛 . Let ℋ𝑛 = {𝑧ℎ}𝑦ℎ=𝑦𝑛;ℎ≠𝑛  and ℳ𝑛 =

{𝑧𝑚}𝑦𝑚≠𝑦𝑛;𝑚≠𝑛 denote the hit and miss sets of 𝑧𝑛, respectively. For 

notational simplicity, we use ℎ ∈ ℋ𝑛 to indicate 𝑧ℎ ∈ ℋ𝑛 and use 

𝑚 ∈ ℳ𝑛 to indicate 𝑧𝑚 ∈ ℳ𝑛. 

Margin: Let 𝑧𝑚 ∈ 𝑀𝑛 and 𝑧ℎ ∈ 𝐻𝑛 are the nearest miss and hit 

of 𝑧𝑛, respectively. We adopt the margin definition in [3] as 

𝜌𝑛,ℎ,𝑚 = 𝜌(𝑧𝑛, 𝑧ℎ , 𝑧𝑚) = 𝑓(𝑥⃑𝑛, 𝑥⃑𝑚) − 𝑓(𝑥⃑𝑛 , 𝑥⃑ℎ) (2) 

where 𝑓(𝑢⃑⃑, 𝑣⃑)  measures the distance between 𝑢⃑⃑  and 𝑣⃑ . In this 

work, we use the weighted Manhattan distance 𝑓(𝑢⃑⃑, 𝑣⃑) =
𝑤⃑⃑⃑𝑇|𝑢⃑⃑ − 𝑣⃑|, where 𝑤⃑⃑⃑ ≥ 0 is the feature weight vector to be learned 

from the training dataset. 

Hit/Miss probability variables: If the parameters of 𝑓(𝑢⃑⃑, 𝑣⃑) are 

unknown, we are not able to calculate margins defined by eq. (2) 

because the nearest misses and hits cannot be identified due to the 

undetermined distances between samples. To deal with this 

problem, we adopt the method proposed in [4, 5, 9] and use a 

hidden random variable 𝛼𝑛,ℎ  to indicate the probability of  𝑧ℎ 

being the closest hit of 𝑧𝑛 , and another hidden random variable 

𝛽𝑛,𝑚 to indicate the probability of 𝑧𝑚 being the closest miss of 𝑧𝑛. 

The hit and miss probability variables of 𝑧𝑛  should satisfy the 

constraints ∑ 𝛼𝑛,ℎℎ∈ℋ𝑛
= 1 and  ∑ 𝛽𝑛,𝑚𝑚∈ℳ𝑛

= 1. We will show 

the details for calculating {𝛼𝑛,ℎ} and {𝛽𝑛,𝑚} in Section 3.1. 

Margin-quantity based loss: Assuming the training samples 

are independent, the probability of 𝑧𝑛  having a margin 𝜌𝑛,ℎ,𝑚  is 

𝛼𝑛,ℎ𝛽𝑛,𝑚 . The expected margin of 𝑧𝑛 is equal to 𝜌̅𝑛 =
∑ ∑ 𝛼𝑛,ℎ𝛽𝑛,𝑚𝜌𝑛,ℎ,𝑚𝑚∈ℳ𝑛ℎ∈ℋ𝑛

, which is used to indicate the 

margin-quantity of  𝑧𝑛 in this work.  We then define the margin-

quantity based loss 𝐿𝑤⃑⃑⃑(𝑧𝑛) = −𝜌̅𝑛.  

2.2. Margin-quality and the max-min entropy principle 

The margin of a sample, say 𝑧𝑛, will be robust if 𝑧𝑛 has many hits 

in its neighborhood because losing one or a few nearest hits will 

not affect its margin significantly.  In such a scenario, the hit 

probability distribution of  𝑧𝑛 will spread out among many of its hit 

probability variables, which will lead to a high hit-entropy 

𝐸ℎ𝑖𝑡(𝑧𝑛) = − ∑ 𝛼𝑛,ℎ log 𝛼𝑛,ℎℎ∈ℋ𝑛
.  On the contrary, if 𝑧𝑛 has very 

few hits in its neighborhood, its hit probability distribution will 

concentrate at just a few hit probability variables and lead to a low  

𝐸ℎ𝑖𝑡(𝑧𝑛).  In addition, the margin-quality of 𝑧𝑛  will not be high, 

i.e., very likely to decrease upon losing a single nearest hit.   

When 𝑧𝑛 has very few misses in its neighborhood, its margin 

quality will also be high because losing one or more nearest misses 

will most likely increase its margin.  In such a scenario, its miss-

entropy 𝐸𝑚𝑖𝑠𝑠(𝑧𝑛) = − ∑ 𝛽𝑛,𝑚 log 𝛽𝑛,𝑚𝑚∈ℳ𝑛
 will be low because 

its miss probability will concentrate at just a few of its miss 

probability variables.  On the contrary, if zn has many misses in its 

neighborhood, its miss probability will spread out among many of 

its miss probability variables, and hence its miss-entropy will be 

high.  In such a scenario, losing one or a few misses will less likely 

to increase the margin of zn. Therefore, we can use the hit and miss 

entropy of a sample to gouge the quality of its margin, and define 

the margin-quality based loss as 𝑄𝑤⃑⃑⃑(𝑧𝑛) = 𝐸𝑚𝑖𝑠𝑠(𝑧𝑛) − 𝐸ℎ𝑖𝑡(𝑧𝑛). 

To minimize 𝑄𝑤⃑⃑⃑(𝑧𝑛), we need to maximize 𝐸ℎ𝑖𝑡(𝑧𝑛) and minimize 

𝐸𝑚𝑖𝑠𝑠(𝑧𝑛) , which we call the max-min entropy principle for 

maximizing margin-quality.  A margin with high quality will be 

less prone to noise, outliers, and sampling variations.  

2.3. Instantiate the framework 

Here, we derive one instantiation of the framework.  Plugging 

𝐿𝑤⃑⃑⃑(𝑧𝑛) and  𝑄𝑤⃑⃑⃑(𝑧𝑛) defined in Sections 2.1 & 2.2 into the general 

cost function defined by eq. (1) and applying ℓ2-regularization and 

two constraints on 𝑤⃑⃑⃑ , we can easily obtain the following cost 

function after merging related terms: 

𝐶 = 𝑤⃑⃑⃑𝑇 ∑ ( ∑ 𝛼𝑛,ℎ|𝑥𝑛 − 𝑥ℎ|

ℎ=ℋ𝑛

− ∑ 𝛽𝑛,𝑚|𝑥𝑛 − 𝑥𝑚|

𝑚=ℳ𝑛

)

𝑁

𝑛=1

+ 𝜎 ∑  [𝐸𝑚𝑖𝑠𝑠(𝑧𝑛) − 𝐸ℎ𝑖𝑡(𝑧𝑛)]

𝑁

𝑛=1

+ 𝜆‖𝑤⃑⃑⃑‖2 

subject to: 𝑤⃑⃑⃑ ≥ 0 and ‖𝑤⃑⃑⃑‖1 = 1  (3) 

The none-negative constraint 𝑤⃑⃑⃑ ≥ 0 is required because we use the 

Manhattan distance.  We limit ‖𝑤⃑⃑⃑‖1 = 1 because scaling  𝑤⃑⃑⃑ will 

scale all distances between samples by the same factor. The second 

term in the right hand side of eq. (3) evaluated margin-quality and 

is one of our major innovations that differentiates our work from 

previous large hypothesis-margin methods [2, 3, 5, 9].  Its benefit 

is explained in Section 2.2 and will be demonstrated in Section 5.1. 

 

3. THE I-M4E ALGORITHM 

 

The cost function defined in eq. (3) is none-convex and complex. 

To learn an appropriate 𝑤⃑⃑⃑ , we derived an iterative algorithm 

named I-M4E, which stands for Iterative Margin-Maximization 

under Max-Min Entropy. I-M4E starts an initial 𝑤⃑⃑⃑ , and then 

iterates between two steps trying to minimize the cost C: (a) fix 𝑤⃑⃑⃑, 

update {𝛼𝑛,ℎ} and {𝛽𝑛,𝑚}; and (b) fix {𝛼𝑛,ℎ}  and {𝛽𝑛,𝑚}, update 𝑤⃑⃑⃑. 

3.1. Fix 𝒘⃑⃑⃑⃑, update {𝜶𝒏,𝒉} and {𝜷𝒏,𝒎} 

Fixing 𝑤⃑⃑⃑ and setting  ∂𝐶 ∂𝛼𝑛,ℎ⁄ = 0, we can derive the following 

closed form solution for updating  𝛼𝑛,ℎ: 

𝜕𝐶

𝜕𝛼𝑛,ℎ
= 𝑤⃑⃑⃑𝑇|𝑥⃑𝑛 − 𝑥⃑ℎ| + 𝜎 log 𝛼𝑛,ℎ + 𝜎 = 0 

⇒ 𝛼𝑛,ℎ ∝ exp (
−𝑤⃑⃑⃑𝑇|𝑥⃑𝑛−𝑥⃑ℎ|

𝜎
) (4) 

Normalizing 𝛼𝑛,ℎ to ensure ∑ 𝛼𝑛,ℎℎ∈𝐻𝑛
= 1, we have 

𝛼𝑛,ℎ = exp (
−𝑓(𝑥⃑𝑛,𝑥⃑ℎ)

𝜎
) ∑ exp (

−𝑓(𝑥⃑𝑛,𝑥⃑𝑘)

𝜎
)𝑘∈ℋ𝑛

⁄  (5) 

Similarly we can derive the following equation for updating  𝛽𝑛,𝑚 

while fixing 𝑤⃑⃑⃑ 

𝛽𝑛,𝑚 = exp (
−𝑓(𝑥⃑𝑛,𝑥⃑𝑚)

𝜎
) ∑ exp (

−𝑓(𝑥⃑𝑛,𝑥⃑𝑠)

𝜎
)𝑠∈ℳ𝑛

⁄  (6) 

Interestingly, equations (5) and (6) show that the trade-off constant 

𝜎 of the margin-quality based loss in the cost function C defines 

the spread of the exponential kernel (or the effective vicinity range 

of a sample) in estimating the probabilities {𝛼𝑛,ℎ} and {𝛽𝑛,𝑚}. The 

Hessian matrix of C with respect to any given hit and miss 

probability pair (αn,h, βn,m) is: 



 

 

(

𝜕2𝐶

𝜕𝛼𝑛,ℎ
2

𝜕2𝐶

𝜕𝛽𝑛,𝑚𝜕𝛼𝑛,ℎ

𝜕2𝐶

𝜕𝛼𝑛,ℎ𝜕𝛽𝑛,𝑚

𝜕2𝐶

𝜕𝛽𝑛,𝑚
2

) = (

𝜎

𝛼𝑛,ℎ
−𝜌𝑛,ℎ,𝑚

−𝜌𝑛,ℎ,𝑚 −
𝜎

𝛽𝑛,𝑚

) (7) 

Since both 𝛼𝑛,ℎ and 𝛽𝑛,𝑚 are positive, the determinant of the above 

matrix is negative: 

−
𝜎2

𝛼𝑛,ℎ𝛽𝑛,𝑚
− 𝜌𝑛,ℎ,𝑚

2 < 0 (8) 

Thus, when 𝑤⃑⃑⃑ is fixed, the I-M4E algorithm finds a saddle point in 

the (𝛼𝑛,ℎ, 𝛽𝑛,𝑚) space. 

3.2. Fix {𝜶𝒏,𝒉} and {𝜷𝒏,𝒎}, update 𝒘⃑⃑⃑⃑ 

When  {𝛼𝑛,ℎ}   and  {𝛽𝑛,𝑚} are fixed, the cost C is quadratic of  𝑤⃑⃑⃑. 

Moreover, the second derivative of C with respect to 𝑤⃑⃑⃑ is 2𝜆 > 0.  

Hence, C is convex with respect to 𝑤⃑⃑⃑, and a 𝑤⃑⃑⃑ satisfying 𝑤⃑⃑⃑ ≥ 0 & 
‖𝑤⃑⃑⃑‖1 = 1  can be found to globally minimize C while fixing 

{𝛼𝑛,ℎ}   and  {𝛽𝑛,𝑚}.  However, such a local minimizer may not 

necessary achieve a good final result because {𝛼𝑛,ℎ} and {𝛽𝑛,𝑚} 

depend on 𝑤⃑⃑⃑ . In addition, it requires more computational 

resources.  Therefore, we derived the following efficient way for 

updating 𝑤⃑⃑⃑ to achieve a reasonably good result. Our experiments 

showed that this method worked very well empirically. Let 

∂𝐶 ∂𝑤⃑⃑⃑⁄ = 0, we can obtain a constraint free solution to update 𝑤⃑⃑⃑: 

𝑣⃑ =
1

2𝜆
[∑ ( ∑ 𝛽𝑛,𝑚|𝑥⃑𝑛 − 𝑥⃑𝑚|

𝑚∈ℳ𝑛

− ∑ 𝛼𝑛,ℎ|𝑥⃑𝑛 − 𝑥⃑ℎ|

ℎ∈ℋ𝑛

)

𝑁

𝑛=1

] 

Then, factoring in the constraint 𝑤⃑⃑⃑ ≥ 0, we easily obtain a solution 

for 𝑤⃑⃑⃑  as 𝑣⃑+ = [max(𝑣1, 0) ⋯ max(𝑣𝐷, 0)]𝑇 .  Since C is convex 

with respect to 𝑤⃑⃑⃑, 𝑣⃑+ is a straightforward none-negative solution 

that globally minimizes C. Adding the constraint ‖𝑤⃑⃑⃑‖1 = 1, we 

derived the following sub-optimal but efficient way to update 𝑤⃑⃑⃑: 

𝑤⃑⃑⃑ = 𝑣⃑+ ‖𝑣⃑+‖1⁄  (9) 

We of course can use the result given by eq. (9) as the initial point, 

and perform simple binary search along the line defined by 
‖𝑤⃑⃑⃑‖1 = 1 to find a 𝑤⃑⃑⃑ that minimizes C. 

3.3. The iterative algorithm 

The above iterative procedure is summarized in Algorithm 1.  

Based on the analysis in Section 3.1 and 3.2, this algorithm should 

converge to a saddle point or a local minimal.  

 

4. CLASSIFY NEW SAMPLES 

 

We design a new rule as the following to classify a new sample 

𝑧′ = (𝑥⃑′, 𝑦′) using the learned 𝑤⃑⃑⃑: 

𝑦′ = argmin𝑐 𝛹𝑐 = argmin𝑐 ∑ 𝑃𝑛
𝑐𝑓(𝑥⃑𝑛 , 𝑥⃑′)𝑦𝑛=𝑐  (10) 

where c indicates the class and 𝑃𝑛
𝑐 =

exp(
−𝑓(𝑥⃑⃑⃑𝑛,𝑥⃑⃑⃑′)

𝜎
)

∑ exp(
−𝑓(𝑥⃑⃑⃑𝑘,𝑥⃑⃑⃑′)

𝜎
)𝑦𝑘=𝑐

. 

Here 𝛹𝑐  measures the expected distance of 𝑧′ to the c-th class.  

Eq. (10) assigns 𝑧′ to the class whose expected distance to 𝑧′ is the 

minimum among all classes.  There is a close connection between 

𝛹𝑐  and the margin-quantity based loss 𝐿𝑤⃑⃑⃑ of assigning 𝑧′ to the c-

th class (i.e., 𝑦′ = 𝑐):  

𝐿𝑤⃑⃑⃑(𝑦′ = 𝑐) = 𝛹𝑐 − ∑ 𝛹𝑐′𝑐′≠𝑐  (11) 

Obviously, 𝐿𝑤⃑⃑⃑(𝑦′ = 𝑐) will be the minimum among all possible 

class assignments to 𝑧′ if the corresponding 𝛹𝑐  is the minimum.   

 

5. EXPERIMENTS 

 

5.1. An illustration 

To illustrate the benefits of considering margin-quality, we 

designed the following two simple examples of binary 

classification with feature selection in 3-dimensional space.  In 

both examples, we focus on a target sample zt and compare two 

feature weight vector options: (1) 𝑤⃑⃑⃑(1,2) = [0.5,0.5,0]𝑇 that selects 

the 1st & 2nd dimensions vs. (2) 𝑤⃑⃑⃑(2,3) = [0,0.5,0.5]𝑇  that selects 

the 2nd & 3rd dimensions. 

The first example (Figure 1 and Table 1) highlights zt and one 

of its hits 𝑧𝑟 . In the sub-space selected by 𝑤⃑⃑⃑(1,2) , 𝑧𝑡  has many 

nearest hits evenly distributed around it, which leads to a higher 

hit-entropy = 1.778. Losing 𝑧𝑟 does not greatly reduce the expected 

margin 𝜌̅𝑡  of 𝑧𝑡 , and the margin-quantity based loss 𝐿𝑤⃑⃑⃑(𝑧𝑡)  is 

increased slightly from -0.959 to -0.894.  In the sub-space selected 

by 𝑤⃑⃑⃑(2,3) , although 𝑧𝑡  has a larger 𝜌̅𝑡 , the nearest hits of 𝑧𝑡  are 

unevenly distributed around it since 𝑧𝑟  much closer to 𝑧𝑡  than 

others. This leads to a smaller hit-entropy = 1.585. Losing 𝑧𝑟 

causes a significant reduction to 𝜌̅𝑡  and dramatically increases 

𝐿𝑤⃑⃑⃑(𝑧𝑡) from -1.132 to -0.763.  Such a big change, which can be 

forewarned by examining 𝐸ℎ𝑖𝑡(𝑧𝑡), indicates that the margin of 𝑧𝑡 

in the subspace selected by 𝑤⃑⃑⃑(2,3) is not robust.  If 𝐿𝑤⃑⃑⃑(𝑧𝑡) is the 

only factor, 𝑤⃑⃑⃑(2,3) will be preferred over 𝑤⃑⃑⃑(1,2) because 𝑤⃑⃑⃑(2,3) leads 

to a smaller loss (-1.132 vs. -0.959). If both 𝐿𝑤⃑⃑⃑(𝑧𝑡) and 𝑄𝑤⃑⃑⃑(𝑧𝑡) are 

considered, 𝑤⃑⃑⃑(1,2)  will be a better option because it makes the 

margin of 𝑧𝑡 more robust and leads to a smaller total-loss [𝐿𝑤⃑⃑⃑(𝑧𝑡) 

+ 𝑄𝑤⃑⃑⃑(𝑧𝑡)] with/without 𝑧𝑟. 

The second example (Figure 2 and Table 2) highlights 𝑧𝑡 and 

one of its misses 𝑧𝑞 .  In the sub-space selected by 𝑤⃑⃑⃑(1,2), 𝑧𝑡  has 

many nearest misses so that 𝑧𝑡  has a higher miss-entropy 

𝐸𝑚𝑖𝑠𝑠(𝑧𝑡)=1.933.  Losing 𝑧𝑞  does not greatly affect 𝜌̅𝑡 , and only 

reduces 𝐿𝑤⃑⃑⃑(𝑧𝑡) slightly from -0.514 to -0.515.  On the contrary, in 

the sub-space selected by 𝑤⃑⃑⃑(2,3), the expected margin 𝜌̅𝑡 is mainly 

decided by 𝑧𝑞  because 𝑧𝑞  is much closer to 𝑧𝑡 than the rest nearest 

misses, which makes zq more like an outlier. Such an uneven 

distribution of the nearest misses around 𝑧𝑡  leads to a relatively 

smaller miss-entropy 𝐸𝑚𝑖𝑠𝑠(𝑧𝑡)=1.863. Losing 𝑧𝑞  will significantly 

increase 𝜌̅𝑡, and hence dramatically reduce 𝐿𝑤⃑⃑⃑(𝑧𝑡) from -0.464 to -

0.667.  Such a big change, which can be predicted by examining 

𝐸𝑚𝑖𝑠𝑠(𝑧𝑡), indicates that the margin of 𝑧𝑡 in the sub-space defined 

by 𝑤⃑⃑⃑(2,3) is of higher quality because it will be significantly better 

upon losing any single outlier-like miss. In other words, 𝑄𝑤⃑⃑⃑(𝑧𝑡) 

Algorithm 1: I-M4E 

Input: a training dataset {𝑧𝑛 = (𝑥⃑𝑛, 𝑦𝑛)}𝑛=1⋯𝑁 

Let t = 0, randomly initialize w⃑⃑⃑⃑(0) > 0  satisfying the sum of 

feature weights equal to 1. 

Repeat 

t = t + 1 

Calculate {𝛼𝑛,ℎ
(𝑡)} and {𝛽𝑛,𝑚

(𝑡)
} using equations (5) and (6), 

respectively. 

Calculate 𝑤(𝑡) using equation (9). 

Until the change of C is small enough or the number of iteration 

t reaches a pre-set limit. 

Return: 𝑤(𝑡) 
 

 



 

 

helps choose a margin more robust to outliers in the opposite 

class(es).  If 𝐿𝑤⃑⃑⃑(𝑧𝑡) is the only factor, 𝑤⃑⃑⃑(1,2)  will be better than 

𝑤⃑⃑⃑(2,3). If we also consider 𝑄𝑤⃑⃑⃑(𝑧𝑡), 𝑤⃑⃑⃑(2,3) will be a better choice 

because it leads to a smaller total-loss with/without 𝑧𝑞 . 

5.2. Results of real datasets 

We carried out cross validation experiments to compare I-M4E 

with several popular classifiers implemented in WEKA [10], such 

as decision tree (ADT) [11], naive Bayes classifier (NBC) [12], 

Bayesian network (BN) [13, 14], Support Vector Machines trained 

by sequential minimal optimization (SMO) [15, 16], RBF network 

[17] and 1-nearest neighbor (IB1) and 3-nearest neighbor (IB3) 

[18].  We also compared our method to several other margin-based 

nearest neighbor algorithms, such as Simba (SIM) [3], G-flip 

(GFP) [3], RELIEF (RLF) [1], RELIEF-F (RFF) [7, 8], and LOGO 

[5].  Simba, G-flip and RELIEF were implemented in a MATLAB 

package tool generously made available by Navot [19].  RELIEF-F 

is available in the Statistics Toolbox of MATLAB. The MATLAB 

codes of LOGO were generously provided by one of its inventors.  

The settings of these methods were chosen according to those 

suggested in their original papers: RELIEF uses 1-NN classifier 

and the Euclidean distance; Simba and G-flip use 1-NN classifier 

and the weighted Euclidean distance; LOGO uses 3-NN classifier 

and the weighted Manhattan distance, and the value of its kernel 

width is decided from a set of values by internal cross validation; 

and RELIEF-F uses the Manhattan distance and a k-NN classifier 

(the value of k = 1, 3, or 5 was decided using internal cross 

validation).  The I-M4E algorithm has two constants  𝜆  and  𝜎  in 

its cost function.  We fixed  𝜆  as the number of samples and tuned  

𝜎   by internal cross validation in the following way: start from  

𝜎0 = 1.0 , and gradually reduce 𝜎  by half each time (i.e., 𝜎𝑖 =
𝜎0 2𝑖⁄ ) until the value of  𝜎𝑖  is smaller than 0.0001.  The best  𝜎𝑘  

was chosen as the one performed the best in the internal cross 

validation, and then was used in the corresponding test.  The same 

strategy was used to choose the best kernel width  𝜎  for LOGO.  

We also tried eq. (10) to classify new samples using 𝑤⃑⃑⃑ learned by 

LOGO.  However, the results were in general much worse than 

those of using the 3-NN classifier suggested in [5]. 

In each round of 10-fold cross validation, the accuracy of each 

method was measured as the percentage of correctly predicted test 

samples. The 10-fold cross validation process was run 10 times for 

each datasets so that each algorithm generated 10 × 10 = 100 

cross validation results.  To decide if a classifier performed 

significantly better than the other one on a specific dataset, we 

adopted the method proposed in [5] and used Student's paired two-

tailed t-test [20] to compare the accuracies of two different 

classifiers in all cross validation runs. We say a classifier performs 

noticeably better than (i.e., win) another one if the paired t-test p < 

0.01 and the average accuracy of the first classifier is at least 0.5% 

higher than that of the second one. Otherwise, we decide that two 

classifiers are comparable or tie. 

5.2.1. Results of clinical gene expression datasets 

We carried out the comparisons using five publicly available 

clinical gene expression datasets: Breast (44 samples with disease-

free ≥ 5 yrs vs. 34 samples < 5 yrs) [22], Colon (40 tumor tissue 

samples vs. 22 normal tissue samples) [23], GLI (26 grade III 

samples vs. 59 grade IV samples) [24], Myeloma (36 samples with 

lesions not detected by MRI vs. 137 samples detected by MRI) 

[25], and Prostate (59 normal tissue samples vs. 77 tumor tissue 

samples) [26].  The number of features in each of these gene 

expression datasets is much larger than its number of samples. It is 

widely known that feature selection will help obtain better 

classification results in high dimensional spaces.  Similar to 

RELIEF, Simba, G-flip, RELIEF-F, and LOGO which were 

originally derived for the purpose of feature selection, I-M4E can 

rank features by their weights. Decision tree learning can 

automatically identify good features in building tree classifiers. To 

select features for SMO, we used SVM Recursive Feature 

Elimination (SVM-RFE) [27] which is a popular SVM-based 

feature ranking algorithm. Several kernels were tested for SMO, 

such as Poly kernel with exponent 1 (SVM1), 2 (SVM2), and 3 

(SVM3), RBF (SVMR) and PUK (SVMP).  

The following feature elimination scheme was used for all of 

them.  Starting from using all features N, we removed 50% of the 

features with the lowest ranks at a time until the number of features 

is smaller than 50.  The best number of features for each algorithm 

         
Figure 2: The benefit of incorporating miss entropy into selecting 

features in a 3D binary classification (▲ vs. ■) problem. The left 

and the right plots show the subspaces selected by 𝑤⃑⃑⃑(1,2)  and 

𝑤⃑⃑⃑(2,3), respectively.  

 
Before losing zq After losing zq 

𝐿𝑤⃑⃑⃑ 𝐸𝑚𝑖𝑠𝑠 𝑄𝑤⃑⃑⃑ 𝑇𝑤⃑⃑⃑ 𝐿𝑤⃑⃑⃑ 𝑄𝑤⃑⃑⃑ 𝑇𝑤⃑⃑⃑ 

𝑤⃑⃑⃑(1,2) -0.514 1.933 0.164 -0.350 -0.515 0.008 -0.507 

𝑤⃑⃑⃑(2,3) -0.464 1.863 0.095 -0.369 -0.667 -0.016 -0.683 

Table 2: Compares 𝐿𝑤⃑⃑⃑, 𝑄𝑤⃑⃑⃑, and 𝑇𝑤⃑⃑⃑ = 𝐿𝑤⃑⃑⃑ + 𝑄𝑤⃑⃑⃑ of 𝑧𝑡 before and 

after losing 𝑧𝑞  in Figure 2. The hit entropy (not shown) remains 

the same before and after losing zq. 

 

            
Figure 1: The benefit of incorporating hit entropy into features 

selection. There are two classes (▲ vs. ■) in 3D space. The left 

and the right plots show the subspaces selected by 𝑤⃑⃑⃑(1,2)  and 

𝑤⃑⃑⃑(2,3), respectively.  

 
Before losing 𝑧𝑟 After losing 𝑧𝑟 

𝐿𝑤⃑⃑⃑ 𝐸ℎ𝑖𝑡 𝑄𝑤⃑⃑⃑ 𝑇𝑤⃑⃑⃑ 𝐿𝑤⃑⃑⃑ 𝑄𝑤⃑⃑⃑ 𝑇𝑤⃑⃑⃑ 

𝑤⃑⃑⃑(1,2) -0.959 1.778 0.099 -0.860 -0.894 0.276 -0.618 

𝑤⃑⃑⃑(2,3) -1.132 1.585 0.292 -0.840 -0.763 0.397 -0.366 

Table 1: Compares 𝐿𝑤⃑⃑⃑ , 𝑄𝑤⃑⃑⃑ , and 𝑇𝑤⃑⃑⃑ = 𝐿𝑤⃑⃑⃑ + 𝑄𝑤⃑⃑⃑ of 𝑧𝑡  before and 

after losing 𝑧𝑟 in Figure 1. The miss entropy (not shown) remains 

the same before and after losing 𝑧𝑟. 

 



 

 

was decided using internal 10-fold cross validation. Then each 

classifier was retrained using all training samples and the features 

selected in the internal cross validation before it was applied to the 

test samples. The comparison results (Table 3) show that our 

method significantly outperformed Simba, RELIEF and SVM 

(PUK kernel) on all five datasets, and also significantly 

outperformed LOGO, G-flip, SVM (RBF kernel) on four out of 

five datasets. SVM (Poly kernel with exponent 1, 2 and 3) beats I-

M4E on the GLI and Prostate datasets by (0.78%, 0.89% and 1%) 

and (3.38%, 4.03% and 4.17%), respectively.  However, I-M4E has 

a much larger lead over them on Myeloma (by 19.77%, 19.54% 

and 19.6%) datasets and a larger lead on Colon (by 3.5%, 5.17% 

and 8.33%), and a reasonable lead on the Breast dataset (by 1.75%, 

3.83% and 3.21%). 

Other classifiers (such as BN, NBC, IB1, IB3, and RBF 

network) do not have their own intrinsic feature ranking/selection 

functions.  In each 10-fold cross validation run, we first applied the 

Chi-square attribute selector in WEKA to select the best 2000 

features using internal 10-fold cross validation, and then trained I-

M4E and these classifiers for comparison on the test subset. The 

results clearly indicate that I-M4E significantly outperformed these 

classifiers (see Table 4). 

5.2.2. Results of UCI datasets 

Eleven UCI datasets [21]: Vertebral column (VC), Ecoli (EC), 

Glass identification (GI), Haberman’s survival (HS), Hayes-roth 

(HR), Statlog/heart (SH), Ionosphere (IONO), Lymphography 

(LYM), Parkinsons (PARK), Wine Quality (WQ), and Wisconsin 

Prognostic Breast Cancer (WPBC) were used in this experiment.  

Some of these UCI datasets have multiple classes.  We only used 

the largest two classes in each one of them.  All features were 

standardized to center at 0 with unit variance. We tested several 

kernels (such as PolyKernel with exponent 1, 2, and 3, RBF, and 

PUK with default settings in WEKA) for SMO and used the best 

performance in comparison. The results are summarized in Table 5 

and show that I-M4E in general outperforms other methods though 

it is not always the best. 

 

6. CONCLUSIONS AND DISCUSSIONS 

 

In this paper, we present a new learning framework and a simple 

algorithm I-M4E to implement it. The convergence analysis of I-

M4E is straightforward. The empirical results showed that I-M4E is 

promising. The instantiation and implementation of the framework 

can be improved in several fronts. Currently, we use a simple 

linear margin-based loss function (i.e., the negation of a margin) 

which may limit its performance in classification tasks. 

Nevertheless, our formulation is general enough to easily adopt 

other margin-based loss functions (e.g., logistic loss, hinge loss, 

sigmoidal loss, etc.) to make the cost function much more 

appropriate for the purpose of classification. The same iterative 

algorithm can be used with some modifications. The search of the 

weight vector may have to resort to gradient-based methods 

because a closed form solution may not exist for a non-linear loss 

function. We now impose ℓ2-regularization on the feature weight 

vector. ℓ2-regularization has been shown by several works to be 

inferior to ℓ1-regularization [28] in finding sparse solutions [5, 

29], which is desirable in some applications. Our future work will 

investigate using ℓ1-regularization to implement this framework. 

So far, we have demonstrated the framework on binary 

classification problems.  Since the definitions of the hit/miss sets, 

margin, and cost can be readily applied to multiple class scenarios, 

we do not foresee any theoretic barrier to apply this work to 

multiple class problems.  

Our work is related to distance metric learning [30-35] in the 

sense that I-M4E learns a weighted Manhattan distance metric. 

Learning other distance metrics (e.g., Mahalanobis distance and 

weighted Euclidean distance) can be formulated within our 

framework.  The equations for calculating the parameters of these 

distance metrics should be derived correspondingly.  Our approach 

was inspired by previous large hypothesis-margin methods [2, 3, 5, 

9], especially I-RELIEF [9] and LOGO [5].  One of our major 

innovations is that our objective function evaluates margin-quality, 

which was not considered by previous large hypothesis-margin 

methods. In the instantiation of the framework presented here, we 

deployed the maximum hit-entropy and minimal miss-entropy 

principle to make margin calculation less prone to noise and 

sampling variations, and showed that this principle could have 

great impact on the results (Figures 1 & 2).  This was one of the 

major factors that contributed to our better performances in 

experiments.  Both I-RELIEF and LOGO also use equations (5) & 

(6) to calculate the hit and miss probabilities, respectively.  

However, their choices of these two equations were made 

intuitively and preceded the designs of their objective functions.  

Since the hit and miss probabilities are not independent from the 

Dataset LOGO RFF SIM RLF ADT GFP SVM1 SVM2 SVM3 SVMP SVMR I-M4E 

Breast 87.21 94.92 92.37 91.46 86.88 92.71 92.33 90.25 90.87 86.88 92.08 94.08 

Colon 81.83 83.21 80.17 80.50 76.04 79.67 82.00 80.33 77.00 69.58 81.37 85.50 
GLI 84.89 87.72 85.61 84.78 83.69 87.97 90.53 90.64 90.75 76.06 89.44 89.75 

Myeloma 93.92 97.79 94.94 96.25 76.52 97.68 79.00 79.23 79.17 79.17 79.17 98.77 

Prostate 89.83 88.16 85.84 86.59 86.97 87.39 91.51 92.16 92.30 83.01 69.86 88.13 

W/T/L 1/0/4 1/1/3 0/0/5 0/0/5 0/0/5 0/0/5 2/0/3 2/0/3 2/0/3 0/0/5 0/1/4 -/-/- 

Table 3: Summarizes the results on five high-dimensional gene expression datasets. The first column lists the datasets, and the first row 

lists the methods in comparison. The last row indicates the number of times each algorithm W/T/L (win/tie/loss) when compared to I-M4E 

using Student's paired two-tailed t-test. The remaining rows list the average accuracies of these algorithms on the corresponding datasets. 

Dataset BN NBC IB1 IB3 RBF I-M4E 

Breast 85.38 77.88 86.96 86.13 85.21 92.04 

Colon 78.25 62.63 71.54 77.88 72.63 82.71 

GLI 84.86 82.42 89.75 89.08 84.61 90.81 
Myeloma 74.09 60.30 90.03 92.97 70.65 97.38 

Prostate 65.53 56.20 84.11 87.86 55.71 92.26 

W/T/L 0/0/5 0/0/5 0/0/5 0/0/5 0/0/5 -/-/- 

Table 4: Compares I-M4E with BN, NBC, IB1, IB3, and RBF 

using five high-dimensional gene expression datasets. The first 

column lists the datasets, and the first row lists the algorithms in 

comparison. The Chi-square attribute selector in Weka is used to 

select the best 2000 features during training. The last row indicates 

the number of times each algorithm W/T/L(i.e., win/tie/loss) when 

compared to I-M4E using the Student's paired two-tailed t-test. The 

remaining rows list the average accuracies of those algorithms. I-

M4E is a clear winner in this comparison. 



 

 

feature weights, it is not clear how updating the hit and miss 

probabilities in such ways affects the optimization of their 

objective functions in terms of finding the feature weights.  I-M4E 

derives equations (5) & (6) by directly optimizing our novel 

objective function eq. (1) iteratively. The theoretical foundation 

and consequence of updating the hit and miss probabilities by these 

two equations in I-M4E are apparent and sound. 
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WPBC 75.39 75.79 71.18 74.43 67.18 76.15 77.84 69.63 64.43 67.30 76.02 74.96 76.25 

W/T/L 1/1/9 0/2/9 1/1/9 0/2/9 2/0/9 1/3/7 2/1/8 1/2/8 0/1/10 1/2/8 1/1/9 2/4/5 -/-/- 

Table 5: Summarizes the results on eleven UCI datasets. The first column lists the datasets, and the first row lists the methods. The last row 

indicates the number of times each algorithm W/T/L (win/tie/loss) when compared to I-M4E using Student's paired two-tailed t-test. The 

remaining rows list the average accuracies of these methods on the corresponding datasets. 

http://www.cs.waikato.ac.nz/ml/weka/

