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Abstract 
Cell-based high-content screening (HCS) is a powerful 

high-throughput technology for studying cellular processes 
through the analysis of complex cellular morphology. A 
typical large-scale HCS screen can generate many novel 
morphological phenotypes. It is challenging to identify 
novel phenotypes due to the huge volume of data and the 
lack of domain knowledge. This paper presents a new 
strategy that discovers novel phenotypes using underused 
image features, which are defined as those not fully utilized 
by the existing phenotypes. Our approach was successfully 
applied to a data set generated in a genetic HCS of 
Drosophila BG-2 cells to discover novel phenotypes and 
make interesting predictions. 

1. INTRODUCTION 

High-content screening (HCS) is a powerful high-
throughput technology for identifying and understanding 
the functions of genes and pathways responsible for key 
cellular processes [1-9]. It has also been widely used in 
compound screening and drug profiling [10-16]. The 
automatic analysis of HCS images is an important and 
challenging problem. Usually, a set of image features is 
extracted to represent the content of each image, and used 
in the downstream computation.  

Machine learning techniques have become essential in 
analyzing HCS images. The Murphy Lab is a forerunner in 
the use of supervised machine learning techniques that 
train classifiers to recognize sub-cellular patterns [17-21]. 
Wang et al. [22] compared supervised training of the naive 
Bayesian classifier, linear discriminant analysis, K-nearest 
neighbors, and support vector machine classifiers [23] in 
recognizing morphological phenotypes of cultured 
Drosophila Kc167 cells treated with RNA interference 
(RNAi). Loo et al. [24] and Bakal et al. [25] respectively 
trained support vector machines and neural networks as a 
set of classifiers to recognize images of several 
representative treatment conditions (TCs). The classifiers 
were then used to derive phenotypic profiles of the rest of 
the TCs. Clustering analysis of the TCs using their 
phenotypic profiles revealed functionally similar TCs that 
led to a better understanding of chemical treatments and 
gene functions. Slack et al. [26] trained a Gaussian mixture 
model (GMM) to approximate the phenotypic distribution 

within the overall population.  The GMM was then used to 
score the heterogeneous responses of HeLa cells to a set of 
drugs. 

The above approaches do not focus on discovering 
novel phenotypes that reflect unforeseen interesting effects 
of TCs. In a large-scale HCS study, the number of 
biologically meaningful novel phenotypes can be huge, 
however unknown, due to the large variety of TCs. For 
example, a chemical compound library can contains 
hundreds of thousands of compounds. Moreover, many 
organisms have thousands of genes that various genetic 
perturbations can be applied to. Usually, researchers have 
limited knowledge about the effects of the majority of TCs 
on cells. It is very possible that many novel phenotypes 
will be left without much exploration if the analysis relies 
too much on a small set of predefined phenotypes or 
representative TCs. Hence it is important to develop a 
method for identifying novel phenotypes.  

Yin et al. [27] fitted a GMM to the distribution of each 
existing phenotype, and used an improved gap statistics [28] 
to judge whether new images should be merged to a known 
phenotype or form a new phenotype. Their approach was 
successfully applied to image datasets of Drosophila 
embryos, Hela cells, and synthetic polygons. Nonetheless, 
this approach assigns equal weight to all image features. 
Different phenotypes can have quite different 
characteristics which are reflected in their differences in 
utilizing features (or feature weights). In this paper, we 
propose an approach that explores such characteristic 
differences to discover novel phenotypes. The basic idea is 
that a set of features not generally useful for defining 
known phenotypes can, however, encode the 
morphological characteristics of novel phenotypes. 

2. METHODS  

2.1. Novel Phenotype Discovery Framework 

Our phenotype discovery framework is outlined in 
Figure 1. Assuming we already have defined some 
phenotypes (or known phenotypes). Each phenotype is 
defined by a set of positive images (belonging to the 
phenotype) and a set of negative images (not belonging to 
the phenotype). We first identify the underused features 
(UUFs) by comparing their distributions in the positive and 
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negative image sets, as well as the control set. We then 
carry out extensive clustering analysis in a bootstrap 
fashion to create a relationship graph of all TCs. The 
analysis of the relationship graph yields a set of tight 
clusters that may represent novel phenotypes. We say that a 
group of images represents a novel phenotype if (a) they 
share some common morphological traits; (b) they form a 
compact and robust cluster; and (c) they are different from 
known phenotypes and the wild-type. Those clusters 
should be visually examined and filtered by biological 
experts. In the phenotype definition step, biologists start 
with the confirmed clusters and train classifiers to 
recognize novel phenotypes using content-based image 
retrieval with relevance feed-back (CBIR-RF) [29] 
techniques. Finally, the newly defined phenotypes will be 
utilized in the next round of novel phenotype discovery. 

 

2.2. Selecting Underused Features  

An UUF is defined as one that contributes little 
towards the recognition of known phenotypes. We can 
quantitatively evaluate how important a feature is in 
defining known phenotypes as shown below. For each 
known phenotype, we compare the distribution of a feature 
in its positive image set wtih that in its negative image set. 
This is done using the symmetrized form of the Kullback-
Leibler divergence [30, 31], i.e., the J-divergence [32]. Let 
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The KL divergence is widely used to measure the 
difference between two distributions. However, it is 
asymmetric so that it is not appropriate in our application. 
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To test whether the distribution gf(x) of the feature f in the 
control condition (i.e., with the baseline treatment) is 
different from )(xpc

f
, we compute the J-divergence 
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to quantitatively indicate if the feature f is well-utilized by 
the known phenotypes. A high f value indicates that the 
feature f is useful in defining the existing phenotypes and 
distinguishing those phenotypes from the control. 
Otherwise, it is underused or a UUF.  

 To estimate )(xpc
f , )(xqc

f and gf(x), we apply a 

Gaussian kernel around each data sample as proposed in 
[33]: 
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where )( xf represents )(xpc
f , )(xqc

f  or gf(x), n is the 

number of samples, and h is the bandwidth that can be 
estimated using the variance  of the feature f in those n 
samples as 5/106.1  nh   [33]. 

2.3. Building a Relationship Graph 

We then apply the clustering analysis using the UUFs 
to group TCs together. It is very likely that the TCs which 
are grouped together (or similar to each other) may share 
some novel phenotypic traits defined by UUFs. Since we 
do not have any prior knowledge about these novel 
phenotypes beyond the fact that they should be different 
from existing phenotypes, it is appropriate to start by using 
unsupervised learning techniques to discover TC clusters 
that may represent novel phenotypes. Clustering TCs 
instead of individual images will help discover novel 
phenotypes that are unevenly distributed across different 
TCs. Such phenotypes will be more interesting than those 
evenly distributed across many TCs, which may simply 
represent some common or trivial biological phenomenon 
instead of the effects unique to a few TCs.  

To make sure our findings have enough coverage, we 
use 66 hierarchical clustering techniques [34]: the 
combination of 6 linkage analyses (average, complete, 
median, single, ward and weighted) and 11 distance 
measurements (Euclidean, Standardized Euclidean, 
Mahalanobis, Cityblock, Minkowski metric, cosine, 
Pearson Correlation, Spearman, Hamming, Jaccard and 
Chebychev Distance). In addition, we use the bootstrapping 
strategy to make sure the results are robust with respect to 
noise. The details of how to create a high quality 
relationship graph are explained below. 

Select underused 
features 

Known 
Phenotype

Bootstrap and 
clustering analysis 

Tight clusters 
representing 

novel phenotypes

Train classifiers for 
novel phenotypes

Figure 1. The framework for novel phenotype discovery.
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 Let a HCS data set contain m TCs. Each TC has Nt 
images. Applying bootstrapping to each TC, we randomly 
sample Nt images with replacement from it, which is then 
represented by the mean of its bootstrapped samples. Each 
hierarchical analysis technique is applied to the 
bootstrapped representations of all TCs. The GAP statistics 
[28] is applied to the clustering result to find the optimal 
number of TC clusters by comparing the change in the 
within-cluster dispersion with the expected result under a 
reference null distribution. The above bootstrapping and 
clustering analysis is repeated 1000 times. An m-by-m 
relationship matrix M is created to store the results. In each 
bootstrapping and clustering analysis, we increase M(a,b) 
by one if TCa and TCb are clustered together. By choosing a 
threshold, we can change the above relationship matrix into 
a relationship graph. Each node in the graph represents a 
TC. There is an edge in the graph connecting TCa and TCb 
if M(a,b) > threshold. The threshold can be chosen to be 
proportional to the average of the elements in M. 
Relationships discovered at a higher threshold are more 
robust.  

2.4. Discovering Tight Clusters 

We hypothesize that TCs sharing similar phenotypic 
traits should be clustered together under most 
circumstances. Therefore, we need to discover all possible 
cliques in the above relationship graph. Clique-finding is a 
NP-hard problem. Suboptimal solutions can be found by a 
simple algorithm [35] in at most O(N4) time. We define the 
following compact index to evaluate how likely it is that a 
clique represents a novel phenotype:  
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where Ein is the number of edges between the nodes of the 
clique and Etotal is the number of edges connected to the 
nodes of the clique. The higher the index of a clique, the 
more likely it is to represent a novel phenotype. For 
example, there are two cliques in Figure 2. The 1-2-3 
clique has connections to three nodes (4, 5, and 9) outside 
of the clique while those outside nodes are sparsely 
connected to the clique. That is, each outside node is 
similar to only a small portion of nodes inside the clique. 
The compact index of this clique is hence as low as 3/6 = 
0.5. The 6-7-8 clique only has only one connection to an 
outside node. Its compact index is equal to ¾. The second 
clique is more likely to represent a novel phenotype. 

To further validate each tight cluster, we compute the 
J-divergences between the distribution of each UUF in the 
cluster and those in the control and in the positive samples 
of known phenotypes. A tight cluster will be abandoned if 
none of the above J-divergences is significantly large. 

 

2.5. Refining Novel Phenotypes 

Tight clusters are discovered in an unsupervised way. 
Therefore, they may not be perfectly accurate in defining 
these newly discovered novel phenotypes. They should be 
examined and refined by human experts. This can be done 
by using our content-based image-retrieval (CBIR) with 
relevance feedback (RF) software [29]. CBIR-RF 
techniques allow users to interactively and iteratively 
construct a classifier for a particular phenotype. Users 
usually start with a small image set of a phenotype as the 
query and ask the system to retrieve more images similar to 
the query. Users will then selectively mark some images as 
relevant or irrelevant. This feedback will be utilized by the 
system to construct a classifier for the desired phenotype. 
The above process can be iterated multiple times until the 
phenotype classifier cannot be improved further. Such a 
strategy allows biologists to actively apply their domain 
knowledge to efficiently refine any newly discovered novel 
phenotypes. It will also generate the positive (or relevant) 
image set and the negative (or irrelevant) image set of a 
phenotype, which can then be used to identify more novel 
phenotypes. 

3. RESULTS 

3.1. Dataset 

We applied our method to an HCS image set that was 
generated to study the local signaling networks regulating 
the morphology of Drosophila BG-2 cells [36]. The study 
applied 249 TCs to Drosophila BG-2 cells and imaged 
about 12,600 individual treated cells. In each TC, a certain 
gene was either over-expressed or knocked down. For each 
cell, 145 image features were extracted to represent basic 
aspects of cell geometry, detailed aspects of cellular 
protrusions, the distribution and texture of GFP intensity 
within the cellular boundaries, and so on. We started with 
the positive samples and negative images of five 
phenotypes defined in [36]: large appearing wild-type, 
small cells with fuzzy edges, long and bipolar large cells, 
small round cells, and slim protrusions. Exemplar images 
of these phenotypes are shown in Figure 3. 

Figure 2. This graph shows two 3-node cliques: 1-2-3 and 
6-7-8.  
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3.2. Novel Phenotypes Discovered 

We sorted all 145 features in terms of their overall J-
divergence values which indicate their contributions in 
defining those phenotypes shown in Figure 3. We chose six 
most underused features that are listed in Table 1 (Please 
refer to [36] for detailed descriptions of these features). 

Table 1. The selected UUFs 

Feature ID Feature Name 

7 MeanIntensity 

8 StdIntensity 

9 90thPercentileIntensity 

37 GFPIntensityLocationMutualInformation_8_15_24

99 HiSmoothEllipticity 

132 HiSmoothBndLargestAreaForProcessGE0.5 

We discovered several interesting phenotypes. For 
example, a tight cluster contained three TCs: Mp20 
knockdown, RacGAP50C knockdown, and pbl knockdown. 
Visual examination revealed that a majority of cells under 
these three TCs have at least two nuclei (Figure 4A). This 
phenotype is not the focus of the original study, which 
makes this discovery even more interesting. The compact 
index of this clique is high as 0.75, indicating that it is 
compact and robust. The J-divergence values of the UUFs 
show that all the UUFs except for feature 99 help to 
separate this novel phenotype from the known phenotypes 
and the control (Figure 4B). These features are related to 
the mean and variation of all pixel intensities, the 90-
percentile intensity (i.e., the brightest area), and the largest 
area of any process that has a maximum positive curvature 
>= 0.5 [36]. Visual inspection showed that the percentages 
of multi-nuclei cells under Mp20, RacGAP50C, pbl are 
94.74%, 86.21% and 72%, respectively. We are thus highly 
confident in that this clique represents the multi-nuclei 
phenotype. 

 

Literature search results strongly support this 
discovery. In Drosophila, pbl and RacGAP50C are related 

to cytokinesis, which is the final step in cell division and 
which is mediated by a complex and dynamic interplay 
between the microtubules of the mitotic spindle, the 
actomyosin cytoskeleton, and membrane fusion events [37]. 
Drosophila RacGAP50C and its homologues are essential 
for the formation of the central spindle and completion of 
cytokinesis [38-40]. Therefore, knocking down pbl and 
RacGAP50C could lead to unfinished cytokinesis and 
generate the multiple nuclei phenotype.  

Starting with the images in this cluster, we used our CBIR-
RF technique [29] to train a classifier for recognizing this 
multi-nuclei phenotype. This newly trained classifier was 
used to evaluate all other TCs and identify two other TCs: 
CG30158 knockdown and Paxillin knockdown. Paxillin is 
a focal adhesion-associated protein and is essential for 
completion of mammalian cytokinesis [41]. Hence, it is 
closely relevant to the multi-nuclei phenotype. Both 
CG30158 and Mp20 (including their orthologs in other 
species) have not been reported to be involved in 
cytokinesis. Our discovery suggests a new function of these 
two genes and predicts that they might contribute to the 
cytokinesis process. 

In another discovery, we identified a tight cluster 
containing mbc knockdown, MTL knockdown, and Actn 
knockdown. Its compact index is 0.6. The majority of cells 
under these TCs are relatively small with rough 
lamellipodia protrusions (Figure 5A). The J-divergence 
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Figure 4. (A). Representative images of the phenotype 
represented by the first tight cluster (see text for details). 
(B). The J-divergence values of the selected UUFs (f7, 
f8, f9, f37, f99, and f132) with respect to the five 
existing phenotypes (p1-5) and the control.  

A 

B 
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E 

D 

Figure 3. Representative images of five known 
phenotypes. (A) Large appear wild-type. (B) Small cells 
with fuzzy edges. (C) Long, bipolar large cells. (D) Small 
round cells. (E) Cells with slim protrusions. 
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values of the UUFs also show that this cluster is very 
different from the known phenotypes and the control 
(Figure 5B). MTL was reported to be involved in the actin 
filament bundle formation process and the lamellipodium 
assembly processes [42]. Actn was reported to be involved 
in the actin cytoskeleton reorganization process [43]. 
Hence, we extrapolate that mbc could be involved in the 
lamellipodium assembly process through controlling actin 
formation.  

 

4.  CONCLUSION AND DISCUSSION 

Feature selection in high dimensional spaces has been 
an important and challenging problem in pattern 
recognition and machine learning research. Conventional 
approaches have so far focused on selecting features to 
boost performance on recognizing known patterns. This 
paper presents a new methodology that selects UUFs to 
mine novel phenotypes. The key idea is to utilize an 
obvious, and thus potentially easily ignored, observation 
that different phenotypes should have different 
characteristics which can be reflected by the differences in 
feature distributions. Our method directly explores such 
characteristic differences by selecting a set of features that 
is not useful for distinguishing existing phenotypes. This 
kind of dimensionality reduction approach effectively 
enhances weak signals that are keys to novel phenotypes 
and that can otherwise be easily overwhelmed by other 
image features. We show that the combination of the UUF 
concept with extensive unsupervised clustering analysis 
yields a powerful data mining tool. This is demonstrated by 
a successful application to analyze an HCS image dataset 
generated to study Drosophila BG-2 cells. 

Our method offers the following advantages. First, the 
use of the UUFs effectively reduces the dimensionality of 

the feature space, and thus reduces the computational 
complexity. Second, it reduces the chance of finding a 
phenotype overlapping too much with the existing 
phenotypes because the distributions of the UUFs in the 
novel phenotypes are significantly different from those in 
the existing phenotypes. Third, unlike projective 
dimensionality-reduction approaches (e.g., Principal 
Component Analysis [44]) which transform the original 
feature space, it retrains the interpretability of features by 
using the subspace of the original feature space. 

We also tried to replace the UUFs with one of the 
following three feature sets: all 145 features, the eigen 
features generated by Principal Component Analysis, and 
six randomly selected features. Then, we applied the same 
mining process: however, we failed to discover any novel 
phenotypes. This not only justifies the usage of the UUFs 
but also demonstrates the effectiveness of using these 
UUFs. Finally, our framework can be applied to mine 
novel patterns in other applications using data in high 
dimensional spaces. 
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