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Abstract—A real-time speech-driven synthetic talking face
provides an effective multimodal communication interface in
distributed collaboration environments. Nonverbal gestures
such as facial expressions are important to human commu-
nication and should be considered by speech-driven face an-
imation systems. In this paper, we present a framework
that systematically addresses facial deformation modelling,
automatic facial motion analysis, and real-time speech-
driven face animation with expression using neural net-
works. Based on this framework, we learn a quantitative
visual representation of the facial deformations, called the
Motion Units (MUs). An facial deformation can be ap-
proximated by a linear combination of the MUs weighted
by MU parameters (MUPs). We develop an MU-based fa-
cial motion tracking algorithm which is used to collect an
audio-visual training database. Then, we construct a real-
time audio-to-MUP mapping by training a set of neural
networks using the collected audio-visual training database.
The quantitative evaluation of the mapping shows the ef-
fectiveness of the proposed approach. Using the proposed
method, we develop the functionality of real-time speech-
driven face animation with expressions for the iFACE sys-
tem [1]. Experimental results show that the synthetic ex-
pressive talking face of the iFACE system is comparable with
a real face in terms of the effectiveness of their influences
on bimodal human emotion perception.

Keywords— Real-time speech-driven talking face with ex-
pressions, facial deformation modelling, facial motion anal-
ysis and synthesis, neural networks.

I. Introduction

Synthetic talking faces have been developed for applica-
tions such as email reader, web newscaster, virtual friend,
computer agent, and so on [2], [3], [4], [5], [6], [7]. Research
shows that a synthetic talking face can help people under-
stand the associated speech in noisy environments [8]. It
also helps people react more positively in interactive ser-
vices [9]. Real-time speech-driven synthetic talking face, as
a computer-aided human-human interface, provides an ef-
fective and efficient multimodal communication channel for
“face-to-face” communication in distributed collaboration
environments [10], [11], [12], [13], [14].

However, up to date, few real-time speech-driven face
animation systems have considered synthesizing facial ex-
pressions. Facial expression can strengthen or weaken the
sense of the corresponding speech. It helps attract the
attention of the listener. More importantly, it is the best
way to visually express emotion [15]. Therefore, a real-time
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speech driven facial animation system which synthesizes fa-
cial expressions will be more effective in terms of delivering
visual and emotional information.

It would be ideal if the computer can accurately rec-
ognize the emotions from speech and use the recognition
results to synthesize facial expressions. However, research
has shown that it is very difficult to recognize emotion from
speech. It is shown that emotion recognition by either hu-
man or computer from speech is much more difficult than
the recognition of words or sentences. In Scherer’s study,
the voice of 14 professional actors is used [16]. Scherer’s ex-
perimental results showed that human ability to recognize
emotions from purely vocal stimuli is around 60%. Del-
laert et al. [17] compared the performances of different
classification algorithms on a speech database, which con-
tain four emotion categories (happy, sad, anger, and fear)
and 50 short sentences per category spoken by 5 speakers.
The highest recognition rate achieved by those algorithms
is 79.5%. Petrushin [18] compared human and computer
recognition of emotions from speech and reported around
65% recognition rate for both cases. Recently, Petrushin
[19] reported that human subjects can recognize five emo-
tions (normal, happy, angry, sad, and afraid) with the av-
erage accuracy of 63.5%.

On the other hand, research has showed that recog-
nizing facial expressions using visual information alone is
much easier. Recent works on automatic facial expression
recognition by computer use optical flow, appearance-based
models, or local parametric motion models to extract the
information about facial features [20], [21], [22], [23], [24].
The extracted information is inputted into classification al-
gorithms for facial expressions recognition. A recognition
rate as high as 98% was achieved by Essa and Pentland on
five expressions (smile, surprise, anger, disgust and raise
brow) [24]. Therefore, visual information is more effective
than audio information in terms of conveying informatino
related to the emotional states. This is because that the
voice and facial expressions may not convey the same emo-
tional information in many situations. For example, the
subject may speak calmly while smiling. On the other
hand, the subject may speak emotionally without notice-
able facial expressions.

There are works on synthesizing facial expressions di-
rectly from speech [25], [26]. However, being aware of the
above difficulties, we assume that the emotional state of the
user is known and concentrate on developing the methodol-
ogy and techniques for synthesizing expressive talking faces
given the speech signals and emotional states. The user is
required to decide the facial expression of his/her avatar.
For example, the user can tell the computer which expres-
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sion should be added to the synthetic talking face by hitting
the corresponding button in the interface of the face ani-
mation system or the corresponding key in the key board.
This will give the user more freedom to remotely control
his/her avatar-based appearance.

The rest of the paper is organized as following. In Sec-
tion II, we review the related work. We then introduce an
integrated framework for face model, facial motion analy-
sis and synthesis in Section III. The integrated framework
systematically addresses three related issues: (1) Learning
a quantitative visual representation for facial deformation
modelling and face animation; (2) Automatic facial motion
analysis; and (3) Speech to facial coarticulation modelling.
Section IV discusses learning a quantitative visual repre-
sentation, called the Motion Units (MUs), from a set of
labelled facial deformation data. In Section V, we propose
an MU-based facial motion analysis algorithm which is used
to analyze the facial movements of speakers. In Section VI,
we discuss how to train a real-time audio-to-visual mapping
with expression using neural networks. The experimental
results are provided in Section VII. Finally, the paper is
concluded with summary and discussions in Section VIII.

II. Previous Work

The core of speech-driven face animation is the audio-
to-visual mapping which maps the audio information to
the visual information representing the facial movements.
The visual information is decided by the way that a face
is modelled. To achieve natural face animation, the audio-
to-visual mapping should be learned from a large audio-
visual training database of real facial movements and the
corresponding speech streams. A robust automatic facial
motion analysis algorithm is required to effectively and ef-
ficiently collect a large set of audio-visual training data
from real human subjects. In this section, we review pre-
vious works on face modelling, facial motion analysis, and
real-time speech-driven face animation.

A. Face Modelling

One main goal of face modelling is to develop a facial
deformation control model that deforms the facial surface
spatially. Human faces are commonly modelled as free-
form geometric mesh models [27], [28], [29], [30], [31], para-
metric geometric mesh models [32], [33], [34], or physics-
based models [35], [36], [37]. Different face models have
different facial deformation control model and result in
different visual features used in the audio-visual training
database.

A free-form face model has an explicit control model,
which consists of a set of control points. The user can
manually adjust the control points to manipulate the fa-
cial surface. Once the coordinates of the control points are
decided, the remaining vertices of the face model are de-
formed by interpolation using B-spline functions [27], radial
basis functions [28], [29], the combination of affine func-
tions and radial basis functions [30], or rational functions
[31]. It is straight forward to manipulate the facial surface
using free-form face models. However, little research has

been done in a systematic way to address how to choose the
control points, how to choose the interpolation functions,
how to adjust control points, and what are the correlations
among those control points.

Parametric face models use a set of parameters to de-
cide the shapes of the face surface. The coordinates of the
vertices on the face models are calculated by a set of prede-
fined functions whose variables are those parameters. The
difficulty of this kind of approach is how to design those
functions. Usually, they are designed manually and subjec-
tively. Therefore, those functions may not well represent
the characteristics of natural facial deformations.

Physics-based models simulate facial skin, tissue, and
muscles by multi-layer dense meshes. Facial surface de-
formation is triggered by the contractions of the synthetic
facial muscles. The muscle forces are propagated through
the skin layer and finally deform the facial surface. The
simulation procedure solves a set of dynamics equations.
This kind of approach can achieve very realistic animation
results. However, the physical models are sophisticated and
computationally complicated. In addition, how to decide
the values of a large set of parameters in a physics-based
face model is an art.

B. Facial Motion Analysis

It is well known that tracking facial motions based on
the low-level facial image features (e.g., edges or facial fea-
ture points) alone is not robust. Model-based facial mo-
tion tracking algorithms achieve more robust results by us-
ing some high-level knowledge models [38], [39], [24], [40].
Those high-level models correspond to the facial deforma-
tion control models and encode information about possi-
ble facial deformations. The tracking algorithms first ex-
tract the control information by combining the low-level
image information, which is obtained by low-level image
processing (e.g., edge detection, skin/lip color segmenta-
tion, template matching, optical flow calculation, etc.), and
the high-level knowledge models. The control information
is used to deform the face model. The deformation results
are the tracking results of the current time stamp and are
used by the tracking algorithms in the next step.

The final tracking results will be greatly degraded if a
biased high-level knowledge model is used in this loop. To
be faithful to the real facial deformations, the high-level
knowledge models should be learned from labelled real fa-
cial deformations.

C. Real-Time Speech-Driven Face Animation

Some approaches train the audio-to-visual mapping us-
ing hidden Markov models (HMMs) [41], [42], [25], which
have relative long time delay. Some approaches attempt to
generate lip shapes in real-time using only one audio frame.
Those approaches use vector quantization [43], affine trans-
formation [44], Gaussian mixture model [45], or artificial
neural networks [46], [47] in the audio-to-visual mapping.

Vector quantization [43] is a classification-based audio-
to-visual conversion approach. The audio features are clas-
sified into one of a number of classes. Each class is then
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mapped to a corresponding visual output. Though it is
computationally efficient, the vector quantization approach
often leads to discontinuous mapping results. The affine
transformation approach [44] maps the audio feature to
the visual feature by simple linear matrix operations. The
Gaussian mixture approach [45] models the joint probabil-
ity distribution of the audio-visual vectors as a Gaussian
mixture. Each Gaussian mixture component generates a
linear estimation for a visual feature given an audio fea-
ture. The estimations of all the mixture components are
then weighted to produce the final visual estimation. The
Gaussian mixture approach produces smoother results than
the vector quantization approach does. Morishima and Ha-
rashima [46] trained a three layer neural network to map
the LPC Cepstrum coefficients of each speech segment to
the mouth-shape parameters for five vowels. Kshirsagar
and Magnenat-Thalmann [47] also trained a three-layer
neural network to classify each speech segment into vowels.
The average energy of the speech segment is then used to
modulate the lip shape of the recognized vowel.

However, those approaches in [43], [44], [45], [46], [47]
do not consider the audio contextual information, which
is very important for modelling mouth coarticulation due
to speech producing. Many other approaches also train
neural networks for audio-to-visual mapping while taking
into account the audio contextual information. Massaro
et al. [48] trained multilayer perceptrons (MLP) to map
the LPC cepstral parameters of speech signals to face an-
imation parameters. They modelled the mouth coarticu-
lation by considering the audio context of eleven consec-
utive audio frames (five backward, current, and five for-
ward frames). Another way to model the audio context is
to use time delay neural networks (TDNNs) model, which
uses ordinary time delays to perform temporal processing.
Lavagetto [49] and Curinga et al. [50] train TDNNs to
map the LPC cepstral coefficients of speech signals to lip
animation parameters. Nevertheless, the neural networks
used in [48], [49], [50] have a large number of hidden units
in order to handle large vocabulary, which results in high
computational complexity during the training phrase.

The above speech-driven face animation approaches
mainly focus on how to train the audio-to-visual mappings.
They do not consider the problem of facial deformations.
A sound audio-to-visual mapping may not lead to sound
speech-driven face animation results if an inappropriate vi-
sual representation is used for modelling facial deforma-
tions. Moreover, most of them can not synthesize facial
expressions.

III. The Integrated Framework

It has been shown above that speech-driven face ani-
mation is closely related to facial deformation modelling
and facial motion analysis. Here, we present an integrated
framework that systematically addresses face modelling, fa-
cial motion analysis, and audio-to-visual mapping (see Fig-
ure 1). The framework provides a systematic guideline for
building a speech-driven synthetic talking face.

First, a quantitative representation of facial deforma-

Fig. 1. An integrated framework for face modelling, facial motion
analysis and synthesis.

tions, called the Motion Units (MUs), is learned from a set
of labelled real facial deformations. It is assumed that any
facial deformation can be approximated by a linear combi-
nation of MUs weighted by the MU parameters (MUPs).
MUs can be used not only for face animation but also as the
high-level knowledge model in facial motion tracking. MUs
and the MUPs form a facial deformation control model. A
MU-based face model can be animated by adjusting the
MUPs. Second, a robust MU-based facial motion tracking
algorithm is presented to analyze facial image sequences.
The tracking results are represented as MUP sequences.
Finally, a set of facial motion tracking results and the cor-
responding speech streams are collected as the audio-visual
training data. The audio-visual database is used to train a
real-time audio-to-MUP mapping using neural networks.

IV. Motion Units

MU is inspired by the Action Units of the Facial Action
Coding System (FACS), proposed by Ekman and Friesian
[51]. FACS is designed by observing stop-motion video and
considered to be the most popular visual representation for
facial expression recognition. An Action Unit corresponds
to an independent motion of the face. However, Action
Units do not provide quantitative temporal and spatial in-
formation required by face animation. To utilize FACS,
researchers need to manually design Action Units for their
models [24], [52].

A. Learning MUs

MUs are learned from a set of labelled facial deforma-
tion data and serve as the basic information unit, which
links the components of the framework together. MUs de-
fine the facial deformation manifold. Each MU represent
an axis in the manifold. For computational simplicity, we
assume that a facial deformation can be approximated by
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a linear combination of the MUs and apply principal com-
ponent analysis (PCA) [53] to learning the MUs. PCA
is a popular tool for modelling facial shape, deformation,
and appearance [54], [39], [55], [56]. PCA captures the
second-order statistics of the data by assumeing the data
has a Gaussian distribution. We categorize the MUs into
the Utterance MUs and the Expression MUs. Each ex-
pression has a corresponding set of Expression MUs. The
Utterance MUs capture the characteristics of the facial de-
formations caused by speech production. The Expression
MUs capture the residual information which is mainly due
to facial expressions and beyond the modelling capacity of
the Utterance MUs.

We collect the facial deformation data of a speaking sub-
ject with and without expressions. We mark some points in
the face of the subject (see Figure 2 (a)). The facial defor-
mations are represented by the deformation of the markers.
Twenty-two points are marked on the forehead of the sub-
ject. Twenty-four makers are put in the cheeks. Thirty
markers are placed around the lips. The number of the
markers decides the representation capacity of the MUs.
More markers enable the MUs to encode more informa-
tion. Currently, we only deal with 2D facial deformations.
The same method can be applied to 3D facial deformations
when 3D facial deformations are available. A mesh model
is created according to those markers (see Figure 2 (b) ).
The mesh model that corresponding to the neutral face is
used as the mesh model in the MU-based facial motion
tracking algorithm, which will be described in Section V.
The subject is asked to wear a pair of glasses, where three
additional markers are placed.

(a) The markers. (b) The mesh model.

Fig. 2. The markers and the mesh model.

We tempt to include as great a variety of facial defor-
mations as possible in the training data and capture the
facial deformations of the subject while he is pronouncing
all English phonemes with and without expressions. The
video is digitized at 30 frame per second, which results in
more than 1000 samples for each expression. The markers
are automatically tracked by zero-mean normalized cross
correlation template matching technique [57]. A graphic
interactive interface is developed for the user to correct the
positions of trackers when the template matching fails due
to large face or facial motions. To compensate the global
face motion, the tracking results are aligned by affine trans-
formations so that the markers on the glasses are coincident
for all the data samples. After aligning the data, we cal-
culate the deformations of the markers with respect to the

positions of the markers in the neutral face.
The deformations of the markers at each time frame are

concatenated to form a vector. We use D0 = {
−→
d 0i}N0

i=1

to denote the facial deformation vector set without expres-
sions and use Dk = {

−→
d ki}Nk

i=1 (1 ≤ k ≤ K) to denote
the facial deformation vector set with the kth expression.
First, D0 is used to learn the Utterance MUs M0. We ob-
tain −→m00 = E[

−→
d 0i] and Λ0 = E[(

−→
d 0i−−→m00)(

−→
d 0i−−→m00)T ].

The eigenvectors and eigenvalues of Λ0 are calculated. The
first A0 (in our case, A0 = 7) significant eigenvectors
{−→m0a}A0

a=1 which correspond to the largest A0 eigenvalues,
are selected. They account for 97.56% of the facial defor-
mation variation in D0. The Utterance MUs are denoted
as M0 = {−→m0a}A0

a=0.
We then calculate the Expression MUs for each expres-

sion as following. For each Dk = {
−→
d ki}Nk

i=1, we calculate
Rk = {−→r ki}Nk

i=1 so that

−→r ki =
−→
d ki −

A0∑
j=1

−→
d T

ki
−→m0j

−→m0j (1)

−→r ki is the residual information that beyond the modelling
capability of M0. We then apply PCA to Rk and ob-
tain the kth Expression MU set Mk = {−→m0a}Ak

a=0, where
−→mk0 = E[−→r ki] and {−→mkb}Ak

b=1 are the first Ak signifi-
cant eigenvectors of the covariance matrix of Rk. We find
Ak = 2 (1 ≤ k ≤ K) is able to capture at least 98.13%
residual information of the collected data.

B. MU and Face Animation

MUs have some nice properties. First, MUs are learned
from real data and encode the characteristics of real facial
deformations. Second, the way that MUs are calculated
considers the correlation between the deformations of the
facial points represented by the markers. Third, the num-
ber of the MUs is much smaller that of the vertices on the
face model. Only a few parameters need to be adjusted
in order to animate the face model. It only requires very
low bandwidth to transmit the those parameters over the
networks. A facial deformation

−→
d can be calculated by

linearly combining MUs

−→
d =

K∑
k=0

αk(
Ak∑
i=1

cki
−→mki +−→mk0) (2)

where
• α0 = 1 is a constant.
• αk = 1 (K ≥ k ≥ 1) if and only if the expression state is
k. Otherwise αk = 0.1

• {c0i}A0
i=1 is the Utterance MUP (UMUP) set.

• {cki}Ak
i=1 (1 ≤ k ≤ K) is the Expression MUP (EMUP)

set of Mk.
It can be easily shown that MU-based face animation

technique is compatible with the linear keyframe-based
face animation technique, which is widely used. This is

1We assume that the face can only be in one expression state at
any time.
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very important from the industrial point of view. The lin-
ear keyframe-based face animation technique animates the
face model by interpolating among a set of keyframes, say
{−→κ i}P

i=1, where P is the number of the keyframes. Since
the face models used in different face animation system may
be different, we can establish the correspondence at the se-
mantic level defined by the keyframes. We can find a set
of training samples {−→κ ′

i}P
i=1 in the training set of MUs so

that −→κ ′
i semantically corresponds to −→κ i for 1 ≤ i ≤ P . We

can then use {−→κ ′
i}P

i=1 to derive the following expressions.
A facial shape −→s can be represented as a weighted combi-

nation of the keyframes as −→s =
∑P

i=1 bi
−→κ ′

i, where {bi}P
i=1

is the keyframe parameter set. −→s can also be represented
by MUs as

−→s =
K∑

k=0

αk(
Ak∑
i=1

cki
−→mki +−→mk0) +−→s 0 (3)

where −→s 0 the shape of neutral face.
The conversion between the MUPs and the keyframe pa-

rameters can be achieved by

−→c 0j = −→mT
0j [K

−→
b −−→s 0 −−→m00]

−→c kj = αk
−→mT

kj [K
−→
b −−→s 0 −

A0∑
i=1

c0i
−→m0i −−→m00 −−→mk0]

−→
b = (KTK)−1KT (

K∑
k=0

αk(
Ak∑
i=1

cki
−→mki +−→mk0) +−→s 0)

(4)

where
−→
b = [b1 . . . bP ]T and K = [−→κ ′

1 · · · −→κ ′
P ].

The conversion from MUPs to the keyframe parameters
provides a method for normalizing the facial deformations
of different subjects. In other words, the facial deforma-
tions of different subjects are normalized at the semantic
level. Potentially, this method could benefit research on
computer lip-reading and expression recognition.

V. MU-based Facial Motion Analysis

MUs can be used as the high-level knowledge model to
guide facial motion tracking. We assume that the expres-
sion state k of the subject is known. This is reasonable
because we are more interested in using the tracking algo-
rithm to collect the training data for speech-driven face an-
imation research. We also assume an affine motion model,
which is a good approximation when the size of the object
is relative much smaller than the distance between the ob-
ject and the camera and the face only undergoes relative
small global 3D motion. The tracking procedure consists of
two steps. First, at the low-level image processing step, we
calculated the facial shape in the next image by tracking
each facial point separately using the approach proposed
in [58]. The results are usually very noisy and denoted as
−→
ζ (t). We then constrain that the facial deformation should
be in the manifold defined by MUs.

Mathematically, the tracking problem can be formulated
as a minimization problem

(a) The 130th frame. (b) The 274th frame.

(c) The 411th frame. (d) The 496th frame.

Fig. 3. Typical tracking results.

(C∗,
−→
β ∗) = arg min

C,
−→
β

||
−→
ζ (t) − T−→

β

( K∑
k=0

αk(
Ak∑
i=1

cki
−→mki

+−→mk0) +−→s 0

)
||2

(5)

where C = {cki} and T−→
β

(•) is the transformation function

whose parameter
−→
β describes the global affine motion (2D

rotation, scaling and translation) of the face. The read-
ers are asked to refer to Appendix A for the details about
solving eq. (5).

The MU-based facial motion tracking algorithm requires
that the face be in the neutral state and face the camera
in the first image frame so that the mesh model can be
fit to the neutral face. The mesh model has two vertices
corresponding to two mouth corners. Two mouth corners
are manually selected in the facial image. The mesh model
is fit to the face by translation, scaling and rotation. The
task of tracking is to track those facial points represented
by the vertices of the mesh. Figure 3 shows some typical
tracking results in an image sequence. Currently, the track-
ing algorithm can only track 2D facial motion. However, if
a 3D facial deformation training data is available, we can
learn 3D MUs. Substituting 3D MUs into Eq. 5, we can
track 3D face and facial motion.

VI. Real-Time Audio-to-MUP Mapping Using
Neural Networks

Audio-visual training data are required to train the real-
time audio-to-MUP mapping. We collect the audio-visual
training data in the following way. A subject is asked
to read a text corpus with and without expressions. We
video tape the speaking subject and digitize the video at
30 frame per second. The sampling rate of the audio is
44.1 kHz. The MU-based facial motion tracking algorithm
in Section V is used to analyze the facial image sequence
of the video. The tracking results that are represented as
MUP sequences and used as the visual feature vectors of
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the AV database. We calculate ten Mel-frequency cepstrum
coefficients (MFCC) [59] of each audio frame as the audio
feature vector. We collect an audio-visual database with-
out expression Ψ0 = {〈−→a 0i,

−→v 0i〉}H0
i=1, where −→a 0i is the

audio feature vector and −→v 0i is the visual feature vector.
For each expression k, we collect an audio-visual database
as Ψ0 = {〈−→a ki,

−→v ki〉}Hk
i=1, where −→a ki is the audio feature

vector and −→v ki is the visual feature vector.
We use a method that is similar to boosting to train a

set of neural networks for real-time audio-to-MUP map-
ping. First, Ψ0 is used to train a set of MLPs, say {Ξ0i},
as the real-time audio-to-UMUP mapping. For each Ψk,
the trained {Ξ0i} is first used to estimate the UMUP com-
ponent of −→v ki given the corresponding audio features −→a ki.
An MLP, say Υk, is then trained for each Ψk to map the
estimated UMUPs to −→v ki, which includes the final UMUPs
and the EMUPs.

A. Audio-to-UMUP Mapping

An MLP is a universal nonlinear function approxima-
tor and has been successfully used to train audio-to-visual
mapping [13], [48]. The best results were reported by Mas-
saro el al. [48]. They trained only one MLP for audio-
to-visual mapping while considering the audio context of
eleven consecutive audio frames. Hence, the MLP used in
[48] has large number of hidden units (The best results are
achieved by using an MLP with 600 hidden units). We
found that it is in practice difficult to use just one MLP to
handle the whole audio-to-visual mapping due to the large
searching space and high computational complexity in the
training phrase. We divided Ψ0 into 44 subsets according
to the audio feature vector −→a 0i.2 The audio features of
subset are modelled by a Gaussian mixture. Each audio-
visual sample 〈−→a 0i,

−→v 0i〉 is classified into one of the 44
subsets whose Gaussian mixture gives the highest score for
−→a 0i.

A three-layer perceptron Ξ0i is trained to perform audio-
to-visual mapping using each subset. The input of Ξ0i is
the audio feature vectors taken at seven consecutive time
frames (3 backward, current and 3 forward time windows).
Those 3 backward and 3 forward audio frames are the con-
text of the current audio frame. Therefore, the delay be-
tween the input and the output is about 100 ms. In the
estimation stage, an audio feature vector −→a is first classi-
fied into one of the 44 subsets using those Gaussian mix-
tures. The corresponding MLP is selected to estimate the
visual feature given −→a and the its contextual information.
In our experiments, the maximum number of the hidden
units used in {Ξ0i}44

i=1is only 25 and the minimum num-
ber of the hidden units is 15. Therefore, both training and
estimation have very low computational complexity.

B. Audio-to-UMUP+EMUP Mapping

A straightforward way to build the mapping for speech-
driven expressive talking face is to retrain a new set of
MLPs for each Ψk. This problem can be greatly simplified

2The reason of choosing 44 classes is that we use a phoneme symbol
set that consists of 44 phonemes.

by taking advantage of the correlation between the facial
deformations without expressions and facial deformations
with expressions that account for the same speech content.
The mapping can then be divided into two steps. The first
step maps the speech to the UMUPs, which represent the
facial deformation caused by producing speech. The second
step maps the estimated UMUP of the first step to the final
UMUPs and EMUPs. The function of the second step is to
add expression information to the results of the first step.
Therefore, we can reuse {Ξ0i}44

i=1 that are trained in the
previous subsection and train an MLP to perform the task
of the second step for each Ψk.

The trained {Ξ0i}44
i=1 is used to estimate the UMUPs for

each audio feature vector −→a ki in Ψk. Of course, the esti-
mation results will not be accurate and do not contain ex-
pression information. An MLP Υk with one hidden layer is
further trained to map the estimated UMUPs to the visual
feature vector −→v ki of −→a ki. In our experiments, the number
of the hidden units of the Υk is only thirty. Therefore, this
approach is computationally very efficient.

VII. Experimental Results

A. Numeric Evaluation

We collect the audio-visual training database by record-
ing the front view of a speaking subject with and without
expressions. Currently, we only examine two expressions:
smile and sad. One hundred sentences are selected from the
text corpus of the DARPA TIMIT speech database. Both
the audio and video are digitized at thirty frame per second,
which results in 19563 audio-visual training data samples.
The sampling rate of the audio is 44.1 kHz. The MU-based
facial motion tracking algorithm in Section V is used to
analyze the facial image sequence of the video. The track-
ing results are represented as MUP sequences and used as
the visual feature vector in the audio-visual database. Ten
MFCCs are calculated for each audio frame as the audio
features. Eighty percent of the data is randomly selected
for training. The rest is used for testing.

We reconstruct the estimated displacements of the facial
feature points using MUs and the estimated MUPs. We
divide the displacement (both the ground truth and the es-
timated results) of each facial feature point by the its max-
imum absolute displacement in the collected audio-visual
database so that the displacement is normalized to [-1.0,
1.0]. To evaluate the performance, we calculate the Pearson
product-moment correlation coefficients (R), the average
standard deviations, and the mean square errors (MSEs)
using the normalized data. The Pearson product-moment
correlation coefficient measures how good the global match
between the shapes of two signal sequences is. It is calcu-
lated as

R =
trace(Cov−→

d
−→
d ′)√

trace(Cov−→
d
−→
d
)trace(Cov−→

d ′−→d ′)
(6)

where
−→
d is the normalized ground truth,

−→
d ′ is the normal-

ized estimated result, and
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−→µ −→
d

= E[
−→
d ]

−→µ −→
d ′ = E[

−→
d ′]

Cov−→
d
−→
d ′ = E((

−→
d −−→µ −→

d
)(
−→
d ′ −−→µ −→

d ′)
T )

Cov−→
d
−→
d

= E((
−→
d −−→µ −→

d
)(
−→
d −−→µ −→

d ′)
T )

Cov−→
d ′−→d ′ = E((−→s ′ −−→µ −→

d
)(
−→
d ′ −−→µ −→

d ′)
T )

We also calculate the the average standard deviations

ν−→
d

=

∑γ
c=1(Cov−→d −→d [c][c])1/2

γ

ν−→
d ′ =

∑γ
c=1(Cov−→d ′−→d ′ [c][c])1/2

γ

(7)

where γ is the dimension of
−→
d . The MSEs are calculated

by

MSE = E

[
‖
−→
d −

−→
d ′‖2

γ

]
(8)

The results are shown in Table I and II. The “Neutral”
column shows the results of Ψ0. The “Smile” column shows
the results of the audio-visual data with smile expression.
The “Sad” column shows the results of the audio-visual
data with sad expression.

TABLE I

The numeric evaluation results of the training set.

Training set
Neutral Smile Sad

R 0.980 0.972 0.977
ν−→

d
0.197 0.205 0.209

ν−→
d ′ 0.179 0.192 0.197

MSE 0.0025 0.0031 0.0033

TABLE II

The numeric evaluation results of the testing set.

Testing set
Neutral Smile Sad

R 0.968 0.945 0.942
ν−→

d
0.196 0.208 0.213

ν−→
d ′ 0.184 0.202 0.208

MSE 0.0029 0.0034 0.0037

B. Generate Face Animation Sequence

We have developed a face modelling and animation sys-
tem, called the iFACE system [1]. The iFACE system uses
a generic geometric face mesh model and uses the linear
keyframe technique to animation the face model. The tech-
nique described in Section IV-B is used to convert the es-
timated MUPs into the keyframe parameters. It enables

the iFACE system to utilize MUs without undergoing large
modification. Currently, eight keyframes are used. They
are smile, sad, and six visemes, which correspond to six
phonemes “i”, “a”, “o”, “f”, “u”, and “m”, respectively.
The keyframes are shown using the generic geometric face
model in Figure 4.

(a) Smile. (b) Sad. (c) “a”. (d) “i”.

(e) “o”. (f) “m”. (g) “f”. (h) “u”.

Fig. 4. The keyframes that are used for the conversion between
MUPs and the keyframe parameters.

Given the CyberwareTM scanner data of an individ-
ual, the user can use the iFACE system to interactively
customize the generic model for that individual by click-
ing some facial feature points. The facial texture can be
mapped onto the customized model to achieve realistic ap-
pearance (see Figure 5).

(a) Dr. Russell L. Storms. (b) The actress.

Fig. 5. The customized face models.

Figure 6 shows a speech-driven face animation sequence
generated by the iFACE system using the method described
in this paper. The speech content of the animation se-
quence is: ”Dialog is an essential element.” Figure 7 shows
three typical frames in three animation sequences with or
without expressions. Those three frames in Figure 7 share
the same speech context while baring different expressions.

Fig. 6. An example of real-time speech-driven face animation.

C. Human Emotion Perception Study

Since the end user of the real-time speech-driven syn-
thetic talking face are human beings, it is necessary to carry
out human perception study on the synthetic talking face.
For convenience, we will use synthetic talking face or syn-
thetic face to denote our real-time speech-driven synthetic
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(a) Neutral. (b) Smile. (c) Sad.

Fig. 7. Typical face animation frames.

talking face in the rest of the paper. Here, we design the
following experiments to compare the influence of the syn-
thetic talking face on human emotion perception with that
of the real face. The experimental results can help the user
with how to use the synthetic talking face to deliver the
intended visual information.

We video tape a speaking subject, whose audio-visual
data is used in Section VII-A. The subject is asked to
calmly read three sentences without expression, with smile
expression, or with sad expression. Hence, the audio tracks
do not convey any emotional information. The content of
the first sentence is “It is normal.”, which contains neutral
information. The content of the second sentence is “It is
good.”, which contains positive information. The content
of the third sentence is “It is bad.”, which contains negative
information. The audio tracks are used to generate three
sets of face animation sequences. All three audio tracks
are used in each set of animation sequence. The first set is
generated without expression. The second set is generated
with smile expression. The third set is generated with sad
expression. Twenty untrained human subjects, who never
used our system before, participate the experiments.

The first experiment investigates human emotion percep-
tion based on either the visual stimuli alone or the audio
stimuli alone. The subjects are first asked to recognize the
expressions of both the real face and the synthetic talking
face and infer their emotional states based on the anima-
tion sequences without audio. All subjects correctly rec-
ognized the expressions of both the synthetic face and the
real face. Therefore, our synthetic talking face is capable
to accurately deliver facial expression information. The
emotional inference results in terms of the number of the
subjects are shown in Table III. The “S” columns show the
results using the synthetic talking face. The “R” columns
show the results using the real face. As shown, the effec-
tiveness of the synthetic talking face is comparable with
that of the real face.

TABLE III

Emotion inference based on the animation sequences without

audio.

Facial Expression
Neutral Smile Sad
S R S R S R

Emotion
Neutral 20 20 3 2 0 0
Happy 0 0 17 18 0 0
Sad 0 0 0 0 20 20

The subjects are then asked to listen to the audio and
decide the emotional state of the speaker. Each subject lis-
tens to each audio only once. Note that the audio tracks are
produced without emotions. Hence, the subjects try to in-
fer the emotion from the content of the speech tracks. The
results in terms of the number of the subjects are shown in
Table IV.

TABLE IV

Emotion inference based on the audio.

Audio 1 Audio 2 Audio 3

Emotion
Neutral 20 7 6
Happy 0 13 0
Sad 0 0 14

The second and third experiments are designed to com-
pare the influence of synthetic face on bimodal human emo-
tion perception and that of the real face. In the second
experiment, the subjects are asked to infer the emotional
state while observing the synthetic talking face and listen-
ing to the audio tracks. In the third experiment, the sub-
jects are asked to infer the emotional state while observing
the real face and listening to the same audio tracks. We
divide the subjects into two groups. Each of them has
ten subjects. One group first participates the second ex-
periment and then participates the third experiment. The
other group first participates the third experiment and then
participates the second experiment. The results are then
combined and compared in Table V, VI, and VII. The “S”
columns in Table V, VI, and VII show the results using the
synthetic talking face. The “R” columns in Table V, VI,
and VII show the results using the real face.

TABLE V

Bimodal emotion inference using audio track 1.

Facial Expression
Neutral Smile Sad
S R S R S R

Emotion
Neutral 20 20 4 2 1 0
Happy 0 0 16 18 0 0
Sad 0 0 0 0 19 20

TABLE VI

Bimodal emotion inference using audio track 2.

Facial Expression
Neutral Smile Sad
S R S R S R

Emotion
Neutral 16 17 2 0 0 0
Happy 4 3 18 20 0 0
Sad 0 0 0 0 12 15

Not sure 0 0 0 0 8 5

We can see the face movements (either synthetic or real)
and the content of the audio tracks jointly influence the
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TABLE VII

Bimodal emotion inference using audio track 3.

Facial Expression
Neutral Smile Sad
S R S R S R

Emotion
Neutral 13 14 14 13 0 0
Happy 0 0 2 4 0 0
Sad 7 6 0 0 20 20

Not sure 0 0 4 3 0 0

decisions of the subjects. Let’s take the first audio track as
an example. Although the first audio track only contains
neutral information, sixteen subjects think the emotional
state is happy if the expression of the synthetic talking face
is smile. And nineteen subjects classify the emotional state
into sad if the expression of the synthetic face is sad. The
influence of sad expression is slightly stronger than that
of smile expression. This may be because the subjects see
smile expression more frequently than sad expression in the
daily life. Therefore, the subjects react more strongly when
they see sad expression.

If the audio tracks and the facial represent the same kind
of information, the human perception on the information
will be enhanced. For example, when the associated facial
expression of the audio track 2 is smile, nearly all subjects
say that the emotional state is happy (see Table VI). The
numbers of the subjects who agree with happy emotion are
higher than those using visual stimuli alone (see Table III)
or audio information alone (see Table IV).

However, it will confuse human subjects if the facial ex-
pressions and the audio tracks represent opposite informa-
tion. For example, many subjects are confused when they
listen to an audio track, which contains positive informa-
tion, and observe a facial expression, which represents neg-
ative information. An example is shown in the seventh and
eighth columns of Table VI. The audio track conveys pos-
itive information while the facial expression is sad. Eight
subjects report that they are confused if the synthetic talk-
ing face with sad expression is shown. The number of the
confused subjects reduces to five if the real face is used.
This difference is mainly due to the fact that the subjects
are still able to tell the synthetic talking face from the real
face. When confusion happens, the subjects tend to think
that the expression of the synthetic face is not the original
expression associating with the audio. Therefore, when the
visual information conflicts with the audio information, the
real face is more persuasive than this version of synthetic
face. In other words, the synthetic face is less capable of
conveying fake emotion information in this kind of situa-
tion.

Overall, the experimental results show that our real-time
speech-driven synthetic talking face successfully affects hu-
man emotion perception. The effectiveness of the synthetic
face is comparable with that of the real face though it is
slightly weaker.

VIII. Summary and Discussions

This paper presents an integrated framework for system-
atically building a real-time speech driven talking face for
an individual. To handle the non-Gaussianity of facial de-
formation distribution, we assume that the facial deforma-
tion space can be represented by a hierarchical linear man-
ifold described by the Utterance MUs and the Expression
MUs. The Utterance MUs define the manifold representing
the facial deformations caused by speech production. The
Expression MUs capture the residual information which is
mainly due to facial expressions and beyond the modelling
capacity of the Utterance MUs. PCA is applied to learning
both the Utterance MUs and the Expression MUs.

The MU-based face animation technique animates a face
model by adjusting the parameters of the MUs. We also
show that the MU-base face animation technique is com-
patible with the linear keyframe-based face animation tech-
nique. In fact, this provides a method to normalize the fa-
cial deformations of different people at the semantic level.

We propose an MU-based facial motion analysis algo-
rithm that explains the facial deformations into UMUPs
and EMUPs. The algorithm is used to obtain the vi-
sual information for an audio-visual database. We train
a set of MLPs for real-time speech-driven face animation
with expressions using the collected audio-visual database.
The audio-to-visual mapping consists of two steps. The
first step maps the audio features to UMUPs. The second
step maps the estimated UMUPs calculated by the first
step to the final UMUPs and the EMUPs. To evaluate
the mapping, we calculate the normalized MSEs and the
Pearson product-moment correlation coefficients between
the ground truth and the estimated results. The Pearson
product-moment correlation coefficients of the training set
are 0.98 for no expression, 0.972 for smile expression, and
0.977 for sad expression, respectively. The Pearson coeffi-
cients of the testing set are 0.968 for no expression, 0.945
for smile expression, and 0.942 for sad expression, respec-
tively. The normalized MSEs of the training set are 0.0025
for no expression, 0.0031 for smile expression, and 0.0033
for sad expression, respectively. The normalized MSEs of
the testing set are 0.0029 for no expression, 0.0034 for smile
expression, and 0.0037 for sad expression, respectively.

Using the proposed method, we develop the function of
real-time speech-driven face animation with expressions for
the iFACE system. The iFACE system is then used in
the bimodal human emotion perception study. We gen-
erate three sets of face animation sequences for three au-
dio tracks, which convey neutral, positive, and negative
information respectively. Each set of the face animation
sequences consist of three sequences, which contain no ex-
pression, smile, and sad, respectively. Human subjects are
asked to infer the emotion states from the face animation
sequences or the videos of the real face while listening to
the corresponding audio tracks. The experiment results
show that our synthetic talking face effectively contribute
to the bimodal human emotion perception and its effects
are comparable with a real talking face. To extensively
evaluate our method, future work on the bimodal human
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emotion perception study using the iFACE system will use
a larger subject set and more audio/visual stimuli data .
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Appendix A

Here, we show how to solve the following minimization
problem

(C∗,
−→
β ∗) = arg min

C,
−→
β

||
−→
ζ (t) − T−→

β

( K∑
k=0

αk(
Ak∑
i=1

cki
−→mki

+−→mk0) +−→s 0

)
||2

We first define the notations which will be used to derive
the results:
a. We track N facial feature points.
b.

−→
ζ (t) = [x(t)

1 y
(t)
1 . . . x

(t)
N y

(t)
N ]T , where 〈x(t)

n , y
(t)
n 〉 is the

coordinate of facial feature point n in the image plane at
time t (t > 0) and N is the number of the facial feature
points.
c.

−→
β = [β1 β2 β3 β4 β5 β6]T , where β1, β2, β3, and β4

describe 2D rotation and scaling, and β5 and β6 describe
2D translation.
d. −→mki = [mki

11 mki
12 . . . mki

N1 mki
N2]

T , where 〈mki
n1,m

ki
n2〉

denotes the deformation information of the facial feature
point n, which is encoded by −→mki.
e. −→s 0 = [x0

1 y
0
1 . . . x0

N y0
N ]T , where 〈x0

n, y
0
n〉 is the coordi-

nate of facial feature point n in the neutral position.
We can then write down

∥∥∥−→ζ (t) − T−→
β

( ∑K
k=0 αk(

∑Ak

i=1 cki
−→mki +−→mk0) +−→s 0

)∥∥∥2

=
N∑

n=1

∥∥∥∥∥∥
[
x

(t)
n

y
(t)
n

]
−

[
β1 β2 β5

β3 β4 β6

]xn

yn

1

∥∥∥∥∥∥
2

(9)

where

xn =
K∑

k=0

αk(
Ak∑
i=1

ckim
ki
n1 +mk0

n1) + x0
n (10)

and

yn =
K∑

k=0

αk(
Ak∑
i=1

ckim
ki
n2 +mk0

n2) + y0
n (11)

Note that αk = 1 (k > 0) if and only if the facial is in
the expression state k. We also constrain that the face can
only be in one expression state at any time. Without losing
generality, we can assume αk = 0 for k > 1. Eq. (9) can
be then rewritten as:

‖B−→v −
−→
ζ (t)‖2 (12)

where

B = [H0 B1 . . . BA0 E1 . . . EA1 ]
H0 = [H01 H02]

H01 =


m00

11 +m10
11 + x0

1 m00
12 +m10

12 + y0
1 1

0 0 0
. . . . . . . . .

m00
N1 +m10

N1 + x0
N m00

N2 +m10
N2 + y0

N 1
0 0 0



H02 =


0 0 0

m00
11 +m10

11 + x0
1 m00

12 +m10
12 + y0

1 1
. . . . . . . . .
0 0 0

m00
N1 +m10

N1 + x0
N m00

N2 +m10
N2 + y0

N 1



Bi =


m0i

11 m0i
12 0 0

0 0 m0i
11 m0i

12

. . . . . . . . . . . .
m0i

N1 m0i
N2 0 0

0 0 m0i
N1 m0i

N2

 (A0 ≥ i ≥ 1)

Ei =


m1i

11 m1i
12 0 0

0 0 m1i
11 m1i

12

. . . . . . . . . . . .
m1i

N1 m1i
N2 0 0

0 0 m1i
N1 m1i

N2

 (A1 ≥ i ≥ 1)

−→v = [
−→
φ
−→
ψ 1 . . .

−→
ψ A0

−→
ξ 1 . . .

−→
ξ A1 ]

T

−→
φ = [β1 β2 β5 β3 β4 β6]
−→
ψ i = [β1c0i β2c0i β3c0i β4c0i] (A0 ≥ i ≥ 1)
−→
ξ i = [β1c1i β2c1i β3c1i β4c1i] (A1 ≥ i ≥ 1)

We can use a least square estimator to solve −→v from eq.
(12). It is easy to recover β1, β2, β3, β4, β5, β6 form −→v , and
then calculate {c0i}A0

i=1 and {c1i}A1
i=1.
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