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Abstract

This paper presents the methodology and theory for automatic spatial pattern discovery from
multiple attributed relational graph samples. The spatial pattern is modelled as a mixture of
probabilistic parametric attributed relational graphs. A statistic learning procedure is designed to
learn the parameters of the spatial pattern model from the attributed relational graph samples.
The learning procedure is formulated as a combinatorial non-deterministic process, which uses
the expectation–maximization (EM) algorithm to 2nd the maximum-likelihood estimates for the
parameters of the spatial pattern model. The learned model summarizes the samples and captures
the statistic characteristics of the appearance and structure of the spatial pattern, which is observed
under various conditions. It can be used to detect the spatial pattern in new samples. The
proposed approach is applied to unsupervised visual pattern extraction from multiple images in
the experiments.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In many application domains (e.g., image/video retrieval, software engineering,
understanding the biological activity of chemical compounds, etc.), structured informa-
tion is dependently distributed among the basic primitives and the relationships between
them. Extracting regular structured information from observations is an interesting and
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(a) (b) (c)

Fig. 1. The McDonald’s logo is observed under diAerent conditions.

(a) (b) (c)

Fig. 2. Three diAerent image patterns are formed by shuBing the same set of image blocks so that the
spatial relationships between the image blocks in the patterns are diAerent from each other.

challenging problem. The extracted information can be used to summarize old observa-
tions and predict new observations. This paper reports our work on automatic regular
structured information extraction from samples. The regular structured information is
represented as a spatial pattern. The samples consist of various backgrounds as well
as the instances of the spatial pattern (see Fig. 1).
We chose a general graphic representation, attributed relational graphs (ARGs) [17],

to represent structured information. An ARG consists of a set of nodes that are con-
nected by a set of arcs. The nodes represent the basic primitives (e.g., image pixels,
edges, image segments, atoms, molecules, gene, computer programming segments, etc.).
The arcs represent the relationships between the primitives. The attributes of the nodes
encode the properties of the primitives. The attributes of the relationships describe the
context of the primitives. In the rest of this paper, we call the ARG representations of
the samples as sample ARGs.
There are many approaches for learning spatial pattern models from multiple samples

of the spatial patterns. Ratan et al. [13] used the diverse density algorithm [12] to learn
“visual concepts” (i.e., spatial patterns), from multiple images. A “visual concept” is a
pre-speci2ed conjunction of several image primitives. The representation of the “visual
concept” in [13] is similar to ARG. Nonetheless, the relationships between the image
primitives are not modelled in [13]. DiAerent spatial patterns may share the same set
of primitives while containing considerably diAerent relationships (see Fig. 2).
Adopting the data augmentation scheme [5,16], Frey and Jojic [7] treated transforma-

tions as latent variables and used the probabilistic graphical model to represent image
patterns and their transformations. They used the EM algorithm [5] to learn the model
from image samples. The transformations of an image pattern are de2ned as shuBes
of image pixels inside the pattern. They limited the value range of the transformations
to a small pre-de2ned discrete set because the number of the potential transformations
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is exponential with respect to the number of pixels of an image pattern. It requires
non-trivial prior knowledge to de2ne the discrete transformation set. In addition, the
image pixels of an image pattern are just like the nodes of an ARG. However, similar
to [13], they did not model the relationships between image pixels.
Zhu and Guo [20] studied the conceptualization and modelling of visual patterns

from the perspective of statistical physics. They proposed a Gestalt ensemble for model-
ling spatial organization of attributed points (i.e., the nodes in an ARG). The Gestalt
ensemble is associated with a probability model, which can be learned from samples
via a minimax entropy learning scheme [21]. The learned model captures visual pat-
terns by examining the local interactions among attributed points in a dynamic local
neighborhood.
The contextual information of image pixels was utilized by Hong and Huang to

automatically detect recurrent image patterns in a big image [9]. They showed how
image patterns could be extracted by the local interactions of image pixels. However,
the only allowable transformation of the image patterns was translation. Hong et al.
[10] used the generalized EM algorithm to learn the spatial pattern model from multiple
sample ARGs. Nevertheless, the theory in [10] is far from fully developed. This paper
improves the work of [10], and reports the methodology and theory for unsupervised
spatial pattern discovery by learning a spatial pattern model as a probabilistic parametric
model from multiple sample ARGs.
We assume that the instances of the spatial pattern are governed by some underlying

probabilistic distribution, which is represented by a parametric spatial pattern model.
The task is to infer the parameters of the model from multiple sample ARGs. Section
2 introduces the mathematic representations of the sample ARGs and the parametric
spatial pattern model. Section 3 mathematically formulates the task and uses the EM
algorithm to learn the maximum-likelihood parameters for the parametric model. Sec-
tion 4 addresses implementation issues and analyzes the computational complexity.
Section 5 discusses how to use the learned model for pattern detection. Experimental
results are shown in Section 6. Finally, the paper closes with summary and discussions
in Section 7.

2. The representations

In reality, the instances of a spatial pattern will not be the same because of the
noise of sensors, diAerent observation conditions, and so on. Probabilistic modelling
tools have been shown to be eAective for handling noise and variation. We design a
probabilistic parametric model to represent the spatial pattern.

2.1. Probabilistic modelling of the spatial pattern

Without losing generality, we assume that the instances of the spatial pattern are
governed by some probability distribution function (PDF) f(G|Z), where Z is the
spatial pattern model of interest and G is a variable representing the instance of Z .
Our goal is to infer Z given the sample ARGs.
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It is in general very diLcult to estimate Z without any prior knowledge about
f(G|Z). In practice, the PDF f(G|Z) is usually assumed to have a structure, for
example, a linear combination of parametric mixtures. Adopting this method, we assume
that f(G|Z) is a linear combination of parametric mixtures and Z consists of a set of
parametric model components {Mw}W

w=1, where W is the number of model components.
Each mixture of f(G|Z) is represented by a model component Mw. Hence, we have

f(G|Z) =
W∑

w=1

�w�(G|Mw); (1)

where �(G|Mw) is a parametric mixture (or parametric distribution sub-function) of
f(G|Z), �w is the weight of �(G|Mw), and

∑W
w=1 �w = 1. �(G|Mw) has simpler struc-

ture and is easier to estimate. The value of �w implies the amount of information which
is captured by �(G|Mw). For the purpose of data summarization, the value of W should
be much smaller than the number of the sample ARGs.
To calculate f(G|Z), we need to know how to evaluate {�(G|Mw)}w. In the follow-

ing subsections, we 2rst de2ne the representations for the sample ARGs and Z . Then,
we derive the computational forms for {�(G|Mw)}w.

2.2. The sample ARGs

The sample ARG set is denoted as G = {Gi}S
i=1, where S is the number of the

sample ARGs. The nodes of the sample ARGs are called sample nodes. The relations
of the sample ARGs are called sample relations. A sample ARG is represented as
Gi = 〈Ai; Ri〉, which is explained in details as below.

(a) Ai = {〈oik ;
→
a
ik

〉}Ui
k=1, where oik is a sample node,

→
a
ik

is the attribute vector of oik ,

and Ui is the number of the sample nodes in Gi.

(b) Ri = {〈ricd;
→
b
icd

〉}Ui
c;d=1, where ricd represents the relation between oic and oid,

→
b
icd

is

the attribute vector of ricd. We assume the relationships are directional. If ricd and

ridc are directionless, we have ricd = ridc and
→
b
icd

=
→
b
idc
. If there is no relationship

from oic to oid, both ricd and
→
b
icd

are void.

2.3. The parametric pattern model

The model components are represented as parametric attributed relational graphs.
The nodes of the model components are called model nodes. The relations of the
model components are called model relations. Each model component is denoted as
Mw = 〈Ow;Pw〉, where:

(a) Ow = {〈!wk ;
→
’
wk
; �wk〉}Nw

k=0. !wk is a model node. Particularly, !w0 is a null model

node. Nw is the number of non-null model nodes. To allow occlusions, diAerent
model components may have diAerent number of non-null model nodes. Each
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non-null model node !wk is associated with a parametric node PDF p(oim|!wk)

whose parameter vector is
→
’
wk
. The parameter �wk implies the relative frequency of

the model node !wk being observed in the sample ARGs. It is normalized with
respect to all the model nodes in Mw. We have

∑Nw
k=0 �wk =1. The null model node

!w0 does not have physical existence and is used to provide a modelling destina-
tion for those sample nodes that represent backgrounds. The node PDF p(oim|!w0)

and the parameter vector
→
’
w0

are void.

(b) Pw = 〈 w��;
→
#
w��

〉.  w�� is a model relation. The model relation  w�� is a null relation

if there is no relation from !w� to !w�. Each non-null relation  w�� is associated

with a parametric relation PDF p(ricd|!w��) whose parameter vector is
→
#
w��

. The

relation PDF and the parameter vector of a null model relation are void.

Let �w ={→
’
wk

}∪{�wk}∪{ →
#
w��

} denote the parameter set of Mw. Let �̃=
⋃

w �w denote

the parameter set of Z .

2.4. The probability density function of the spatial pattern model

To evaluate {�(G|Mw)}w and f(G|Z), the match between G and the model Z is

required. Let
→
y
i
= [qi; yi1; : : : ; yiUi ] denote the match between a sample ARG Gi and

the model Z . The information in
→
y
i
represents two-level match between Gi and Z . The

2rst level information is represented by qi, which denotes Gi as a whole graph matches
the component Mqi of Z . The value range of qi is [1; W ]. The second level information
is represented by [yi1; : : : ; yiUi ], which denotes the match between the sample nodes
of Gi and the model nodes of Mqi . The element yij denotes that the sample node oij

matches the model node !qiyij . The value range of yij is [0; Nqi ].
Let P(yij|Gi;Mw) (i.e., P(yij|Gi;�w)) denote the matching probability between oij

and !wyij . Assuming P(yij|Gi;Mw) is available (The details about calculating P(yij|Gi;
Mw) will be discussed in Section 4), we have �(Gi|Mw) as

�(Gi|Mw) =
Ui∑
k=1

Nw∑
j=1

P(yik = j|Gi;Mw)p(oik |!wj)

+
Ui∑
c=1

Ui∑
d=1

Nw∑
�=1

Nw∑
�=1

P(yic = �|Gi;Mw)

×P(yid = �|Gi;Mw)p(ricd| w��): (2)

The probability of Gi matching Mw given the model Z is

P(qi = w|Gi; Z) =
�(Gi|Mw)∑W
t=1 �(Gi|Mt)

: (3)
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3. Estimating the parameters of the spatial pattern model via the EM algorithm

The parameter estimation problem becomes straightforward if we known the match-
ing probabilities between the sample ARGs and Z . However, it is tedious and labor
intensive to manually specify the matching information for a large set of sample ARGs.
We are interested in automatically learning the spatial pattern model without manually
specifying the matching information. This section derives the theory for inferring the
maximum likelihood parameters for Z using the EM algorithm [5]. The learning pro-
cedure simultaneously estimates the parameters of Z and the matching probabilities
between the sample ARGs and Z .

3.1. The basic EM algorithm

The EM algorithm is a technique for iteratively 2nding the maximum-likelihood esti-
mates for the parameters of a underlying distribution from a training data set, which is
incomplete or has missing information. The EM algorithm de2nes a likelihood function

Q(H ;H (n)) = E[logp(D0; Dm|H)|D0; H (n)]; (4)

where H is the unknown parameter set, D0 is the observed data, Dm is the missing
information, and n is the number of the iterations of the EM algorithm. The complete
data set is D0 ∪ Dm. The likelihood function Q(H ;H (n)) is a function of H under the
assumption that H = H (n). The right hand side of (4) denotes that the expected value
of the complete data log-likelihood logp(D0; Dm|H) with respect to Dm and D0 while
assuming H = H (n).
The EM algorithm starts with an initial value of H , say H (0), and re2nes the value

of H iteratively in two steps: the expectation step (or the E-step) and the maximiza-
tion step (or the M-step). In the E-step, Q(H ;H (n)) is computed. In the M-step, the
parameter set H is updated by

H (n+1) = argmax
H

Q(H ;H (n)): (5)

The iterative procedure stops when it converges or a pre-de2ned maximum number of
iterations is reached.

3.2. The likelihood function for learning the parameters of the spatial pattern model

In our case, the observed data D0 is the sample ARG set G. The missing data Dm

corresponds to the match between the sample ARGs and Z . Let Y={→
y
i
}. The unknown

parameter set is �̃. The likelihood function for our problem is

Q(�̃; �̃(n)) = Ef[logp(G;Y|�̃)|G; �̃(n)]

=
∑
Y

f(G;Y|�̃(n)) logp(G;Y|�̃)



P. Hong, T.S. Huang /Discrete Applied Mathematics 139 (2004) 113–135 119

=
∑
Y

f(Y|G; �̃(n))f(G|�̃(n)) logp(G;Y|�̃)

=f(G|�̃(n))
∑
Y

f(Y|G; �̃(n)) logp(G;Y|�̃): (6)

We can remove f(G|�̃(n)) from (6) because it does not depend on either �̃ or Y
and will not aAect the 2nal results. We further assume that Gi is independent of each

other. Consequently,
→
y
i
is independent of each other. Hence, (6) can be rewritten as

Q(�̃; �̃(n)) =
∑
Y

f(Y|G; �̃(n)) logp(G;Y|�̃)

=
∑

→
y
1

· · ·
∑

→
y
S

S∑
i=1


logp(Gi;

→
y
i
|�̃)

S∏
j=1

f(
→
y
j
|Gj; �̃(n))




=
S∑

i=1

∑
→
y
i

f(
→
y
i
|Gi; �̃(n)) logp(Gi;

→
y
i
|�̃)

=
S∑

i=1

∑
→
y
i

f(
→
y
i
|Gi; �̃(n)) log(p(Gi|

→
y
i
; �̃)p(

→
y
i
|�̃))

=
S∑

i=1

∑
→
y
i

f(
→
y
i
|Gi; �̃(n)) log(p(Gi|

→
y
i
; �̃)p(

→
y
i
)): (7)

The term f(
→
y
i
|Gi; �̃(n)) in (7) is the marginal distribution of

→
y
i
, i.e., the unobserved

match between Gi and Z . It is dependent on the observed data G and the current value
of the parameter set �̃. The contextual information of the nodes is fully described in
Gi. In other words, the interdependence among {yik} is described by Gi. Hence, we
have

f(
→
y
i
|Gi; �̃(n)) = P(qi|Gi; �̃(n))

Ui∏
k=1

f(yik |Gi;�(n)
qi ): (8)

Since the value space of yik is uniformly discretized with respect to the number of
model nodes in Mqi, (8) can be rewritten as

f(
→
y
i
|Gi; �̃(n)) = P(qi|Gi; �̃(n))

Ui∏
k=1

P(yik |Gi;�(n)
qi ): (9)
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The term p(Gi|
→
y
i
; �̃) in (7) is the marginal distribution of Gi given the model Z and

the match
→
y
i
. It can be rewritten as

p(Gi|
→
y
i
; �̃) =p(Gi|[yi1 · · ·yiUi ]; �qi)

=
Ui∏

m=1

p(oim|!qiyim)
Ui∏
c=1

Ui∏
d=1

p(ricd| qiyicyid); (10)

where p(oim|!qiyim) is the node PDF of !qiyim and p(ricd| qiyicyid) is the relation PDF
of  qiyicyid . If the relations are directionless, (10) should be written as

p(Gi|
→
y
i
; �̃) =p(Gi|[yi1 · · ·yiUi ]; �qi)

=
Ui∏

m=1

p(oim|!qiyim)

(
Ui∏
c=1

Ui∏
d=1

p(ricd| qiyicyid)

)1=2
: (11)

In the following derivation, we use (10). It can be easily shown that only part of the
results will be aAected by a scale of 1/2 if we use (11).

Expanding the term P(
→
y
i
) in (7), we have

P(
→
y
i
) = P(qi)

Ui∏
t=1

P(yit |qi); (12)

where P(qi = h) = �h and P(yic = -|qi = h) = �h-.
Substituting (9), (10), and (12) into (7), we have

Q(�̃; �̃(n)) =
S∑

i=1

∑
→
y
i

P(qi|Gi; �̃(n))
Ui∏
k=1

P(yik |Gi;�(n)
qi )

× log

(
Ui∏

m=1

p(oim|!qiyim)
Ui∏
c=1

Ui∏
d=1

p(ricd| qiyicyid)P(qi)

×
Ui∏
t=1

P(yit |qi)

)
: (13)

Expanding
∑
→
y
i

and replacing log
∏

g(x) with
∑

log g(x) in (13), we have

Q(�̃; �̃(n)) =
S∑

i=1

W∑
qi=1

Nqi∑
yi1=0

· · ·
Nqi∑

yiUi=0

P(qi|Gi; �̃(n))
Ui∏
k=1

P(yik |Gi;�(n)
qi )

×
[
logP(qi) +

Ui∑
m=1

log(p(oim|!qiyim)P(yim|qi))

+:
Ui∑
c=1

Ui∑
d=1

logp(ricd| qiyicyid)

]
: (14)
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Eq. (14) can be simpli2ed into (see Appendix A)

Q(�̃; �̃(n)) =
S∑

i=1

W∑
h=1

Pqi(h|Gi; �̃(n))

[
log �h

+
Ui∑

m=1

Nh∑
-=0

Pyim(-|Gi;�
(n)
h ) log �h-

+
Ui∑

m=1

Nh∑
-=0

Pyim(-|Gi;�
(n)
h ) logp(oim|!h-)

+
Ui∑
c=1

Ui∑
d=1

Nh∑
�=0

Nh∑
�=0

Pyic(�|Gi;�
(n)
h )

×Pyid(�|Gi;�
(n)
h ) logp(ricd| h��)

]
; (15)

where Pqi(h|Gi; �̃(n)) denotes P(qi = h|Gi; �̃(n)) and Pyim(-|Gi;�
(n)
h ) denotes P(yim =

-|Gi;�
(n)
h ). The probability Pqi(h|Gi; �̃(n)) can be calculate using (3). The calculation

of Pyim(-|Gi;�
(n)
h ) will be discussed in Section 4.1.

3.3. The expressions for updating the parameters in the M-step

In the Maximization step, �̃ is updated by �̃(n+1)=argmax
�

Q(�̃; �̃(n)). The expres-

sions for updating �h and �h- can be obtained as below regardless the forms of the
node PDFs and those of the relation PDFs (see Appendix B)

�(n+1)
h =

∑S
i=1 Pqi(h|Gi; �̃(n))

S
; (16)

�(n+1)
h- =

∑S
i=1

∑Ui
m=1 Pyim(-|Gi;�

(n)
h )Pqi(h|Gi; �̃(n))∑S

i=1 Pqi(h|Gi; �̃(n))Ui
: (17)

Both the parameters of the node PDFs and those of the relation PDFs are decided by
the forms of the PDFs, and so are their updating expressions.
If the node PDFs and relation PDFs are Gaussian PDFs, analytical expressions can

be derived for updating the parameters of the PDFs in the M-step of the EM algorithm.
Assume the node PDF is Gaussian

p(oim|!h-) =
exp (− 1

2 (
→
a
im

− →
0
h-
)T 1−1

h- (
→
a
im

− →
0
h-
))

(22)&=2|1h-|1=2 ; (18)



122 P. Hong, T.S. Huang /Discrete Applied Mathematics 139 (2004) 113–135

where
→
0
h-

and 1h- are the mean and covariance matrix of the node PDF of the model

node !h- respectively, and & is the dimension of
→
0
h-
. We can obtain the expressions for

updating
→
0
h-

and 1h- as below (see Appendix C)

(n+1)
→
0
h-

=

∑S
i=1

∑Ui
m=1

→
a
im

Pyim(-|Gi;�
(n)
h )Pqi(h|Gi; �̃(n))

S∑
i=1

Ui∑
m=1

Pyim(-|Gi;�
(n)
h )Pqi(h|Gi; �̃(n))

; (19)

1→
h-

(n+1) =

∑S
i=1

∑Ui
m=1

(n)
→
x
im

(n)
→
x
im

T

Pyim(-|Gi;�
(n)
h )Pqi(h|Gi; �̃(n))∑S

i=1

∑Ui
m=1 Pyim(-|Gi;�

(n)
h )Pqi(h|Gi; �̃(n))

; (20)

where
(n)
→
x
im

=
→
a
im

−
(n+1)

→
0
h-

.

Assume the relation PDF is Gaussian

p(ricd| h��) =
exp

(
− 1

2

(→
b
icd

− →
4
h��

)T

5−1
h��

(→
b
icd

− →
4
h��

))

(22)6=2|5h��|1=2 ; (21)

where
→
4
h��

and 5h�� are the mean and covariance matrix of the relation PDF of  h��,

and 6 is the dimension of
→
4
h��

. We can obtain the expressions for updating
→
4
h��

and 5h��

as below (see Appendix C)

(n+1)
→
4
h��

=

∑S
i=1

∑Ui
c=1

∑Ui
d=1

→
b
icd

‘h(yic; yid; �; �)Pqi(h|Gi; �̃(n))∑S
i=1

∑Ui
c=1

∑Ui
d=1 ‘h(yic; yid; �; �)Pqi(h|Gi; �̃(n))

; (22)

(n+1)
→
5
h��

=

∑S
i=1

∑Ui
c=1

∑Ui
d=1

(n)
→
z
icd

(n)
→
z
icd

T

‘h(yic; yid; �; �)Pqi(h|Gi; �̃(n))∑S
i=1

∑Ui
c=1

∑Ui
d=1 ‘h(yic; yid; �; �)Pqi(h|Gi; �̃(n))

; (23)

where ‘h(yic; yid; �; �) = Pyic(�|Gi;�
(n)
h )Pyid(�|Gi;�

(n)
h ) and

(n)
→
z
icd

=
→
b
icd

−
(n+1)

→
4
h��

.

4. Implementation issues

4.1. Register the sample ARGs with the spatial pattern model

Given the current value of the parameter set of Mw, we can calculate the match-
ing probabilities between Gi and Mw using inexact two-graph matching techniques.
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Inexact two-graph matching is a fundamental combinatorial problem and is an NP
problem [8]. It has been widely investigated for 2nding a local optimum inexact match
between two graphs [1,3,4,11,14,17,15,18,19]. We use an implementation of the prob-
abilistic relaxation graph matching algorithm [4] to match each sample ARG with
every component of Z . The matching results are local maximum approximations to
{Pyim(-|Gi;�

(n)
h )}.

4.2. Initialize the spatial pattern model

Initializing the spatial pattern model is the 2rst step of the learning procedure and
is very important. The number of the model components is decided by the user or the
applications. We initialize the model components one by one. First, the average number
of the nodes of the sample ARGs is calculated. We select a sample ARG, say Gp, so
that the number of sample nodes in Gp is the closest to the average node number. The
geometric structure of Gp is used to initialize that of the 2rst model component M1.
If the node PDFs and relation PDFs are assumed to be Gaussian, the feature vectors
of the nodes and relations of Gp are used to initialize the corresponding means of the
node PDFs and relation PDFs of M1. The covariance matrixes of the node PDFs and
relation PDFs are initialized as identical matrixes.
The rest of the model components are initialized using the following algorithm. The

idea is to initialize the model components by some sample ARGs which are as diAerent
from each other as possible.

Algorithm 1 (Initialize the spatial pattern model).

(a) for w = 2 to W
(b) Select a sample Gp = argminGi

(maxMh {�(Gi|Mh)}).
(c) Initialize the model component Mw using Gp.
(d) �w = 1
(e) �wk = 1 (06 k6Nw)
(d) endfor

Before beginning the iterative procedure of the EM algorithm, the K-means algorithm
is used to pre-adjust the parameters of the spatial pattern model.

4.3. Modify the structure of the spatial pattern model

Since we select a subset of the sample ARGs to initialize the components of the
model, it is very likely that the model components have spurious nodes which represent
backgrounds. During the iterations of the EM algorithm, we calculate the average
probability of being matched for each model node !wk as

%wk =

∑S
i=1 Pqi(w|Gi; �̃

(n)
)
(∑Ui

m=1 Pyim(k|Gi;�
(n)
w )
)

∑S
k=1 Pqk (w|Gk; �̃

(n)
)

: (24)
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If %wk is smaller than a threshold :, the model node !wk and its relations will be
removed. The threshold : can be a constant or an ascendant function of the iteration
number of the EM algorithm (e.g., we choose := 1 − 0:5n).

4.4. The computational complexity

The computational complexity of the learning procedure is O (the number of the
EM iterations × ∑S

i=1

∑W
w=1 (the computational complexity of matching Gi to Mw)).

Since it might take too long for the EM algorithm to converge, a maximum number of
iterations T is empirically set for the EM algorithm (e.g., we set T to 50). The graph
matching algorithm is used by the EM algorithm to deal with the hidden variables, i.e.,
the match between the sample ARGs and the spatial pattern model. Without additional
constraints or prior knowledge, the complexity of the value space of the match between
the sample nodes of Gi and the model nodes of Mw is O((Nw+1)Ui). To deal with such
a huge searching space, we chose a bottom-up graph matching approach (see Section
4.1), which 2nds a local optimum solution by fusing the low-level information. The
computational complexity of our implementation of the graph matching algorithm is
O(N 2

wU
2
i ). The overall computational complexity of the implemented learning procedure

is O
(
T
∑

i

∑
w (N

2
wU

2
i )
)
.

5. Detect the spatial pattern

The learned model captures the statistical characteristics of a spatial pattern observed
under various conditions. It can be used to detect whether the pattern appears in a
new sample ARG, say Gx = 〈Ox; Rx〉. The similarity between Gx and the model Z is
calculated as f(Gx|Z). An instance of the pattern is said to be found in Gx if f(Gx|Z)
is larger than a prede2ned threshold j1, which depends on applications. A choice of
j1 could be minGi∈G f(Gi|Z) if each sample ARG Gi has at least one instance of the
spatial pattern.
The likelihood of each sample node oxk is calculated as

W∑
h=1

�hP(Gx =Mh|Gx; Z)
Nh∑
-=1

�h-P(oxk = !h-|Gx;Mh): (25)

Those sample nodes whose likelihood is larger than a prede2ned threshold j2 are

selected. A choice of j2 could be 0:95S=
(
W
∑S

i=1 Ui

)
. The relations among the

selected sample nodes are preserved. The selected nodes and relations form an in-
stance of the pattern in Gx.

6. Experimental results

We applied the proposed approach to the problem of unsupervised visual pattern
extraction. The image samples are segmented using a segmentation algorithm [6] and
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(a) (b) (c)

(d) (e) (f)

Fig. 3. The McDonald’s logo. The 2rst row lists three images captured under the 2rst lighting condition.
The second row shows three images captured under the second lighting condition.

are represented as ARGs. Each image segment is represented as a node. The attribute of
a node denotes the mean and variance of the color (RGB) features of the corresponding
image segment. The adjacent relationships between the image segments are considered.
The attributes of the relationships in the sample ARGs are either 1 (adjacent) or 0
(non-adjacent). During the learning process, the attributes of relationships are updated
as continuous variables in the range of [0, 1]. When the learning procedure stops, a
threshold of 0.5 is used to decide whether a relationship should be kept. A model node
without any neighbor will be deleted.
We 2rst show a simple example. The pictures of the McDonald’s logo were taken

in various backgrounds, from diAerent viewpoints, and under two diAerent lighting
conditions. Ten images were captured under each lighting condition. Some of them are
shown in Fig. 3. The observed color features of the McDonald’s logo are diAerent in
the samples due to diAerent lighting conditions, diAerent viewpoints, and noise. Take
‘m’ in the middle of the logo as an example. The images shown in Fig. 3(b) and (e)
are captured under diAerent lighting conditions. The means of the color features of ‘m’
are (202.4, 138.2, 59.8) and (240.3, 180.1, 109.4) in Fig. 3(b) and (e) respectively.
The images shown in Fig. 3(a)–(c) are captured under the same lighting condition.
The means of the color features of ‘m’ are (208.2, 149.7, 69.1), (202.4, 138.2, 59.8),
and (205.7, 144.3, 71.2) in Fig. 3(a), (b), and (c), respectively.
We made two assumptions. First, the spatial model has two model components.

Second, the node PDFs and the relation PDFs are Gaussian with 2xed covariance ma-
trixes as identical matrixes. Both components of the learned model have 8 nodes.
The means of the color attributes of the model nodes, which correspond to ‘m’,
are (207.5, 140.3, 68.6) and (240.2, 179.7, 117.1), respectively. The learning results
already include the detection results of the McDonald’s logo in the training images (see
Fig. 4).
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Detect the McDonald’s logo in the training images.

(a) (b) (c)

(d) (e) (f)

Fig. 5. The ZIP logo images.

In another experiment, we used the images of the ZIP logo in various backgrounds.
The sample set has 20 images. Some of them are shown in Fig. 5. The backgrounds in
this experiment are more complicated than those in the previous one. More intermediate
results of the computation are provided.
The images are segmented (see Fig. 6) and are represented as ARGs (see Fig. 7).

The spatial pattern model is assumed to have one component. The node PDFs and the
relation PDFs are assumed to be Gaussian with 2xed covariance matrixes as identical
matrixes. Fig. 8 shows the detection results on the sample ARGs, which are shown
in Fig. 7. Fig. 9 shows the original image regions that correspond to the detected
subgraphs in Fig. 8. We also used the learned model to detect the ZIP logo in a new
image (see Fig. 10).
As shown in Fig. 9(d)–(f), the 2nal results depend on the quality of the image

segmentation results. In fact, if each image pixel is represented as a node in an
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(a) (b) (c)

(d) (e) (f)

Fig. 6. The segmentation results of the images are shown in Fig. 5. The image segments are automatically
painted in pseudo colors by the segmentation program [6].

(a) (b) (c)

(d) (e) (f)

Fig. 7. The ARG representations of the images shown in Fig. 5. The nodes represent the image segments.
The 2D coordinates of a node in the image plane are decided by the coordinates of a randomly selected
image pixel in the corresponding image segment. The coordinates of the nodes are used for visualization
only. An edge is drawn to connect two nodes if the corresponding image segments are adjacent.

ARG, our theory can be directly applied to image pixels so that we can avoid us-
ing corrupted information generated by the low-level image preprocessing step (e.g.,
image segmentation, edge detection, etc.). Nonetheless, this will result in high com-
putational complexity if the sample images have large numbers of image pixels. Im-
age segmentation was just used to reduce the computational complexity in our
experiments.



128 P. Hong, T.S. Huang /Discrete Applied Mathematics 139 (2004) 113–135

Fig. 8. The detected subgraphs that correspond to the instances of the learned spatial pattern model.

Fig. 9. The original image segments that correspond to the subgraphs in Fig. 8.

Fig. 10. Detect the ZIP logo in a new image. (a) The image, (b) the segmentation results, (c) the ARG
representation, (d) the detected subgraph, and (e) the image segments corresponding to the detected subgraph.
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7. Summary and discussions

We present a statistic learning approach that discovers frequently observed struc-
tured information by simultaneously examining multiple samples. We assume that the
structured information is governed by a PDF which is represented as a probabilistic
parametric graph model. The model consists of a set of parametric attributed relational
graphs. The learning procedure iteratively 2nds a local optimum estimate for the para
meter set of the model. The learned model summarizes the samples and can be used
for pattern detection. We demonstrated the approach by applying it to unsupervised 2D
visual spatial pattern extraction. The experimental results show that the learning proce-
dure is able to distinguish the instances of the spatial pattern from their backgrounds
if similar backgrounds are not always observed in the samples.
Although the proposed approach was only applied to two dimensional images in the

experiments, it is suitable for general spatial pattern learning and discovery. This is
because ARG can be used to represent data in any dimensional space. In addition, our
approach can be used for feature selection. Representing the instantiations of feature
elements as the nodes of sample ARGs, our approach is not only able to discover the
dominant feature space but also capture the relationships between the selected features.
This is important when the features are not independent.
Future work will expand the proposed methodology and theory for temporal-spatial

pattern modelling and incremental learning. We will investigate the applications of
our approach to real applications (e.g., gene function modelling and detection, network
Wow modelling, multimodal human-computer interaction, content-based image retrieval,
depth information recovery from multiple images, face detection and recognition, etc.).

Appendix A. Simplify the maximum-likelihood function

We rewrite (14) as

Q(�̃; �̃(n)) =
S∑

i=1

M∑
qi=1

P(qi|Gi; �̃(n))(L1 + L2 + L3); (A.1)

where

L1 =
Nqi∑

yi1=0

· · ·
Nqi∑

yiUi=0

Ui∏
k=1

P(yik |Gi;�(n)
qi ) logP(qi); (A.2)

L2 =
Nqi∑

yi1=0

· · ·
Nqi∑

yiUi=0

Ui∏
k=1

P(yik |Gi;�(n)
qi )

Ui∑
m=1

log (p(oim|!qiyim)P(yim|qi)); (A.3)
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L3 =
Nqi∑

yi1=0

· · ·
Nqi∑

yiUi=0

Ui∏
k=1

P(yik |Gi;�(n)
qi )

Ui∑
c=1

Ui∑
d=1

logp(ricd| qiyicyid): (A.4)

We then simplify the above three terms one-by-one. From time to time, we will use
the fact that

∑Nqi
yik=0 P(yik |Gi;�

(n)
qi ) = 1.

L1 = logP(qi)
Nqi∑

yi1=0

· · ·
Nqi∑

yiUi=0

Ui∏
k=1

P(yik |Gi;�(n)
qi )

= logP(qi)
Ui∏
k=1

Nqi∑
yik=0

P(yik |Gi;�(n)
qi )

= logP(qi); (A.5)

L2 =
Nqi∑

yi1=0

· · ·
Nqi∑

yiUi=0

Ui∏
k=1

P(yik |Gi;�(n)
qi )

Ui∑
m=1

log(p(oim|!qiyim)P(yim|qi))

=
Ui∑

m=1

Nqi∑
yim=0

log(p(oim|!qiyim)P(yim|qi))P(yim|Gi;�(n)
qi )

×

 Nqi∑

yi1=0

· · ·
Nqi∑

yim−1=0

Nqi∑
yim+1=0

· · ·
Nqi∑

yiUi=0

Ui∏
k=1; k �=m

P(yik |Gi;�(n)
qi )




=
Ui∑

m=1

Nqi∑
yim=0

log(p(oim|!qiyim)P(yim|qi))P(yim|Gi;�(n)
qi )

×
Ui∏

k=1; k �=m

Nqi∑
yik=0

P(yik |Gi;�(n)
qi )

=
Ui∑

m=1

Nqi∑
yim=0

log(p(oim|!qiyim)P(yim|qi))P(yim|Gi;�(n)
qi )

=
Ui∑

m=1

Nqi∑
yim=0

P(yim|Gi;�(n)
qi ) [logp(oim|!qiyim) + logP(yim|qi)]; (A.6)
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L3 =
Nqi∑

yi1=0

· · ·
Nqi∑

yiUi=0

Ui∏
k=1

P(yik |Gi;�(n)
qi )

Ui∑
c=1

Ui∑
d=1

logp(ricd| qiyicyid)

=
Ui∑
c=1

Ui∑
d=1

Nqi∑
yic=0

Nqi∑
yid=0

P(yic|Gi;�(n)
qi )P(yid|Gi;�(n)

qi ) log(p(ricd| qiyicyid))

×

 Nqi∑

yi1=0

· · ·
Nqi∑

yic−1=0

Nqi∑
yic+1=0

· · ·
Nqi∑

yid−1=0

Nqi∑
yid+1=0

· · ·
Nqi∑

yiUi=0

Ui∏
k=1; k �=c;d

P(yik |Gi;�(n)
qi )




=
Ui∑
c=1

Ui∑
d=1

Nqi∑
yic=0

Nqi∑
yid=0

P(yic|Gi;�(n)
qi )P(yid|Gi;�(n)

qi ) log(p(ricd| qiyicyid))

×
Ui∏

k=1; k �=c;d

Nqi∑
yik=0

P(yik |Gi;�(n)
qi )

=
Ui∑
c=1

Ui∑
d=1

Nqi∑
yic=0

Nqi∑
yid=0

P(yic|Gi;�(n)
qi )P(yid|Gi;�(n)

qi ) logp(ricd| qiyicyid): (A.7)

Finally, we can obtain

Q(�̃; �̃(n)) =
S∑

i=1

W∑
qi=1

P(qi|Gi; �̃(n))

[
logP(qi)

+
Ui∑

m=1

Nqi∑
yim=0

P(yim|Gi;�(n)
qi ) logP(yim|qi)

+
Ui∑

m=1

Nqi∑
yim=0

P(yim|Gi;�(n)
qi ) logp(oim|!qiyim)

+
Ui∑
c=1

Ui∑
d=1

Nqi∑
yic=0

Nqi∑
yid=0

P(yic|Gi;�(n)
qi )

×P(yid|Gi;�(n)
qi ) logp(ricd| qiyicyid)

]

=
S∑

i=1

W∑
h=1

Pqi(h|Gi; �̃(n))

[
log �h
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+
Ui∑

m=1

Nh∑
-=0

Pyim(-|Gi;�
(n)
h ) log �h-

+
Ui∑

m=1

Nh∑
-=0

Pyim(-|Gi;�
(n)
h ) logp(oim|!h-)

+
Ui∑
c=1

Ui∑
d=1

Nh∑
�=0

Nh∑
�=0

Pyic(�|Gi;�
(n)
h )

×Pyid(�|Gi;�
(n)
h ) logp(ricd| h��)

]
; (A.8)

where Pqi(h|Gi; �̃(n)) = P(qi = h|Gi; �̃(n)) and Pyim(-|Gi;�
(n)
h ) = P(yim = -|Gi;�

(n)
h ),

P(qi = h) = �h, and P(yim = -|qi = h) = �h-.

Appendix B. Derive expressions for updating �h and �h�

First, we derive the updating expression for �h. We introduce the Lagrange multiplier
? with the constraint that 1h �h = 1, and solve the following equation

@
@�h

[
Q(�̃; �̃(n)) + ?

(
W∑
h=1

�h − 1

)]

=
@

@�h

[
S∑

i=1

W∑
h=1

Pqi(h|Gi; �̃(n)) log �h + ?

(
M∑
h=1

�h − 1

)]

=
S∑

i=1

1
�h

Pqi(h|Gi; �̃(n)) + ?= 0

⇒
W∑
h=1

[
S∑

i=1

1
�h

Pqi(h|Gi; �̃(n)) + ?

]
= 0 ⇒ ?= −S

⇒ �h =
∑S

i=1 Pqi(h|Gi; �̃(n))
S

: (B.1)

Second, we derive the updating expression for �h-. We introduce the Lagrange multi-
plier ? with the constraint that 1-�h- = 1, and solve the following equation:

@
@�h-


Q(�̃; �̃(n)) + ?


 Nh∑

-=0

�h- − 1





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=
@

@�h-


 S∑

i=1

W∑
h=1

Ui∑
m=1

Nh∑
-=0

Pyim(-|Gi;�
(n)
h )Pqi(h|Gi; �̃(n)) log �h-

+?


 Nh∑

-=0

�h- − 1






=
S∑

i=1

Ui∑
m=1

1
�h-

Pyim(-|Gi;�
(n)
h )Pqi(h|Gi; �̃(n)) + ?= 0

⇒
Nh∑
-=0

[
S∑

i=1

Ui∑
m=1

Pyim(-|Gi;�
(n)
h )Pqi(h|Gi; �̃(n)) + ?�h-

]
= 0

⇒ ?= −
S∑

i=1

Pqi(h|Gi; �̃(n))Ui

⇒ �h- =
∑S

i=1

∑Ui
m=1 Pyim(-|Gi;�

(n)
h )Pqi(h|Gi; �̃(n))

S∑
i=1

Pqi(h|Gi; �̃(n))Ui

: (B.2)

Appendix C. Derive the updating expressions for Gaussian node PDFs and Gaussian
relation PDFs

If the node PDFs and relation PDFs are Gaussian, we can obtain analytical expres-
sions for updating the parameters of the PDFs in the M-step. Basically, we take the
derivatives of Q(�̃; �̃(n)) with respect to the parameters of the PDFs, set the derivatives
to zero, and solve the equations.
Only the third term of Q(�̃; �̃(n)) is related to the node PDFs. Substituting the

Gaussian node PDF (18) into the third term of Q(�̃; �̃(n)), we obtain

S∑
i=1

Ui∑
m=1

W∑
h=1

Nh∑
-=0

Pqi(h|Gi; �̃(n))P(-|Gi;�
(n)
h ) logp(oim|!h-)

=
S∑

i=1

Ui∑
m=1

W∑
h=1

Nh∑
-=0

Pqi(h|Gi; �̃(n))P(-|Gi;�
(n)
h )

×
[−&

2
log 22+ log |1h-| + (

→
a
im

− →
0
h-
)1−1

h- (
→
a
im

− →
0
h-
)
]
: (C.1)
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The above expression is quadratic. It is a typical optimization problem to solve a
equation that is obtained by taking the derivative of (C.1) with respect to its parameter
and setting the derivative to zero [2]. We 2rst take the derivative of (C.1) with respect

to
→
0
h-
, set it equal to zero, and obtain the updating expression of

→
0
h-

as (19). Then, we

take the derivative of (C.1) with respect to 1h-, set it equal to zero, and obtain the
updating expression of 1h- as (20).
Similarly, only the forth term of Q(�̃; �̃(n)) is related to the relation PDFs. Sub-

stituting the Gaussian relation PDF (18) into the forth term of Q(�̃; �̃(n)), we obtain
a quadratic expression with respect to the parameters of the Gaussian relation PDFs.
Using the same method described above, we can obtain the updating expressions of
the parameters of the Gaussian relation PDFs as (22) and (23), respectively.
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