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Abstract—False discovery rate (FDR) control is widely 
practiced to correct for multiple comparisons in selecting 
statistically significant features from genome-wide datasets. In 
this paper, we present an advanced significance analysis 
method called miFDR that minimizes FDR when the number 
of the required significant features is fixed. We compared our 
approach with other well-known significance analysis 
approaches such as Significance Analysis of Microarrays [1-
3], the Benjamini-Hochberg approach [4] and the Storey 
approach [5]. The results of using both simulated data sets 
and public microarray data sets demonstrated that miFDR is 
more powerful. 
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I. INTRODUCTION 
High-throughput technologies such as DNA 

microarray have made it possible to screen thousands of 
genomic features simultaneously. To identify a subset of 
interesting features for follow-up investigation, a large 
number of hypotheses are tested simultaneously. Hence, it 
is important to control false positives among the tests called 
“significant”. False discovery rate (FDR) was first 
introduced by Benjamini-Hochberg [4] in 1995 to measure 
multiple-hypothesis testing errors, which was later 
improved by the Storey approach [5] in 2002. Both the 
Benjamini-Hochberg (BH) approach and the Storey 
approach estimate FDR values by taking the p-values of 
features calculated using some sorts of hypothesis tests 
(such as, Student’s t-test [6] and the Wilcoxon ranksum test 
[7]). However, the calculation of p-values can be hampered 
by the number of samples and the deviation of true 
distributions from the one assumed by the p-value 
calculation methods. Significance Analysis of Microarrays 
(SAM) [1-3] offers a powerful alternative to the p-value 
based approaches (e.g., the BH and Storey approaches) for 
controlling FDR. Instead of calculating p-values first and 
then correcting them, SAM permutes the values of each 
feature under two different conditions and calculates a 
corrected t-statistics to measure the relative difference of 
the feature between two conditions. The statistics of a 
feature from all permutations are then used to calculate the 
expected statistics of the feature. SAM uses the difference 
between the observed statistics and the expected statistics 
to decide the cutoffs for calling significant features. 

Although SAM has been found to outperform the BH 
approach and the Storey approach in analyzing many 
datasets, our analysis and experiments suggest that its 
results are often not optimal due to the way it chooses 
cutoffs.  

We therefore developed a more advanced significance 
analysis method to minimize FDR when the number of 
required significant features was fixed, and named this 
method miFDR. We compared miFDR, SAM, the BH 
approach, and the Storey approach using both simulated 
data sets and microarray gene expression data sets. The 
results showed that miFDR significantly outperformed the 
other three approaches. In particular, the results of 
simulation tests showed that miFDR did not under-estimate 
FDRs because its true FDRs were consistently bounded by 
its estimated FDRs. In addition, both the true FDRs and the 
estimated FDRs of miFDR were bounded by their 
counterparts of the other three approaches. When tested on 
the microarray data sets, miFDR was capable of identifying 
more biologically relevant genes than the other approaches 
as supported by literature evidence. 

The rest of the paper is organized as follows: Our 
miFDR adopts the permutation method used in SAM. To 
better explain miFDR, we first describe SAM and point out 
an important problem in Section II. We then propose 
miFDR to address this problem in Sections III. The 
comparisons of miFDR, SAM, the BH approach, and the 
Storey approach are presented and discussed in Section IV. 
Finally, Section V concludes this paper. 

 

II. SAM APPROACH TO CONTROL FDR 
Without losing generality, we assume that the samples 

are divided into two groups: group C1 with n1 samples and 
group C2 with n2 samples. SAM [3] computes a corrected t-
statistic (or d-value) ݀௜ ൌ ሺݔҧ௜ଵെݔҧ௜ଶሻ/ሺݏ௜ ൅ ଴ሻݏ  to measure 
the relative difference of the i-th feature between two 
groups, where: 

 ҧ௜ଶ are the average values of the i-th feature inݔ ҧ௜ଵ andݔ 
C1 and C2, respectively. 

 si is feature specific scatter ටܽሾ∑ ሺݔ௜௠ െ ஼భאҧ௜ଵሻଶ௫೔೘ݔ ൅ ∑ ሺݔ௜௡ െ ஼మאҧ௜ଶሻଶ௫೔೙ݔ ሿ, and 
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ܽ ൌ ሺ1/݊ଵ ൅ 1/݊ଶሻ/ሺ݊ଵ ൅ ݊ଶ െ 2ሻ. 
 s0 is a regularization factor chosen to minimize the 

dependency of d-values on the feature value. Details 
for computing s0 are described in [3]. 

SAM can also use ranksum statistics. However, we found 
that SAM performed worse in the experiments carried out 
in this study when the ranksum statistics was used. Hence, 
we did not consider using the ranksum statistics with SAM 
in this paper. 

SAM ranks features by their d-values so that the d-
value of the i-th feature is the i-th largest.  Then, SAM uses 
random permutation to generate a large number of controls. 
The relative differences (i.e., d-values) from each 
permutation are ordered so that the i-th largest d-value in 
the permutation is assigned to the i-th feature. An expected 
d-value E[di] is calculated for the i-th feature as the mean of 
the relative differences from all permutations. Note that 
E[di] may be calculated using the permutations from other 
features. SAM then calculates ∆ൌ ݀௜ െ  ሾ݀௜ሿ for the i-thܧ
feature.  Given a threshold ∆෨ , SAM finds the first feature 
indexed by k that satisfies ∆௞൐ ∆෨ , and defines cutup= dk. 
The features with d-values > cutup are called “significant 
positive” features.  Similarly, െ∆௞൐ ∆෨  is used for deciding 
cutdown and calling “significant negative” features. The 
number of falsely called features in each permutation is 
computed by counting the number of features with their 
permutated d-values exceed the cutoffs (cutup and cutdown). 
Finally, FDR is computed as the median of the number of 
falsely called features across all permutations multiplied by 
a factor π0 and then divided by the total number of features 
called significant.  The factor π0 indicates the proportion of 
the true null features in the data set (details about how to 
calculate π0 are described in [3]). 

SAM decides both cutup and cutdown based on Δ-values. 
We found that Δ-values did not always increase/decrease 
with the corresponding d-values. In some cases, the Δ-
values of some features were positive even though their d-
values were negative. Figure 1 shows an example using a 
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) 
dataset GDS3661 [8]. Although the Δ-values increase 
monotonically with the d-values in most part of the curve, 
this trend disappears at both ends of the curve, where 
usually the most significant features are located. If we 
choose the absolute of the Δ-value indicated by the black 
horizontal lines in Figures 1a & 1b as  ∆෨  to decide cutdown, 
SAM will use the d-value indicated by the solid arrow in 
Figure 1b as cutdown to select significant negative features. 
This cutdown will exclude a feature set framed by the ellipse 
in Figure 1b. The d-values of these features do not 
concentrate within a narrow band, but spread out in a large 
region ranging from -6.3 to -7. Decreasing the chosen ∆෨  by 
a very small amount to the next cutoff notch will change 
cutdown to the value indicated by the open arrow in Figure 

1b. This new cutdown will call all features in the ellipse. 
There is no other intermediate ∆෨  that allows us to call a 
subset of those features even though doing so may maintain 
or improve FDR (calling more features can sometimes 
result in a smaller FDR, see our simulation results in the 
Result section). This means, SAM sometimes fails to 
explore many options.  Hence, we concluded that Δ-value is 
not always a reliable index for determining d-value cutoffs. 
 

III. MINIMIZE FDR – MIFDR 
We therefore propose to abandon Δ-values and rely on 

d-values in detecting significant features. Our idea is simple 
and goes as follows.  We first sort all features by their d-
values in descending order.  If the d-values of two features 
have the same sign, the one with the larger absolute d-value 
is more significant.  To call a fixed number of significant 
features, there can be many possible combinations of cutup 
and cutdown.  We would like to select one combination that 
minimizes the estimated FDR.  More specifically, if we 
want to call N significant features = r positive significant 
features + q negative significant features, there can be N+1 
possible choices for (r,q): (0,N), (1,N-1), (2,N-2), …, (N,0). 
Each choice of (r,q) has its own FDR. We designed the 
following straight-forward algorithm to find the 
combination with the minimal FDR: 
 

Figure 1. An example showing the problem of using Δ-values to 
decide the d-value cutoffs. The x-axis indicates d-values and the 
y-axis inciates Δ-values. (b) is the blow-out of the dashed 
rectangle region in (a). Two d-value cutoffs are indicated by the 
solid arrow and the open arrow respectively in (b) (see main text 
for detailed explanations). The solid arrow marks the d-value 
cutdown corresponding to the Δ-value indciated by the black line. 
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To call N significant features, the miFDR algorithm 
explores N+1 possible options, and hence its computational 
complexity is O(N).  The options explored by miFDR 
include the one considered by SAM.  Hence, the results of 
miFDR should have a lower estimated FDR than that of 
SAM.  In addition, at the same FDR level, miFDR will 
identify at less the same number of genes as SAM does.  It 
will takes a complexity of O(N2) to obtain a complete FDR 
vs (feature number) curve up to N significant features (such 
as those shown in Figure 2).  The complexity of finding the 
optimal N under a particular FDR cut-off is O(NlogN) when 
binary search is used.  In practice, it might not be very 
useful to call a very large number of features because of the 
following two reasons.  First, the corresponding FDR will 
very likely be unacceptably high when N is very large.  
Second, it will be too expensive to experimentally follow 
up a large number of significant features.  

IV. RESULTS 
We compared the BH approach and the Storey 

approach, SAM (version 4.0), and miFDR on simulated 
datasets and two real microarray datasets.  Two-side t-test 
was applied to calculate the p-values of features used by the 
BH approach and the Storey approach.  We also tried the 
one-side t-test, one-side and two-side Wilcoxon ranksum 
test.  However, the results were generally worse than those 
of the two-side t-test.  The implementations of the BH and 
Storey approaches in the MATLAB Bioinformatics 
Toolbox were used.  The results showed that miFDR was 
more powerful than the other three approaches at a wide 
spectrum of FDR cutoffs. 

A. Simulation Tests 
We conducted a simulation study, in which the ground 

truth was known.  In each simulation, the simulated dataset 
contained 12 samples (6 in the 1st group, and the other 6 in 
the 2nd group).  The number of features was 10400, which 
were simulated in the way shown in Table 1.  All features 
in the 1st group are controls.  The 2nd group contains 10000 
features belonging to the null (categories 1 & 2 in Table 1) 

and 400 features (categories 3, 4, 5 & 6 in Table 1) 
belonging to the alternative.  The datasets were simulated 
using a mixture of distributions so that they had the 
complexity typically seen in real data sets to fully test 
different approaches.  Note that all uniform distributions 
used in the simulation test are 2√3 in range, which makes 
the standard deviation of every feature equal to 1. 

TABLE 1. SIMULATED ALTERNATIVE HYPOTHESIS 

Category # of 
features 1st Group 2nd Group 

1 5000 Normal distribution 
(mean = 0, var = 1) 

Normal distribution 
(mean = 0, var = 1) 

2 5000 Uniform distribution in ሾെ√3, √3ሿ Uniform distribution in ሾെ√3, √3ሿ 
3 50 Normal distribution 

(mean = 0, var = 1) 
Normal distribution 
(mean = –2, var = 1) 

4 150 Normal distribution 
(mean = 0, var = 1) 

Normal distribution 
(mean = 1, var = 1) 

5 150 
Uniform distribution in ሾെ√3, √3ሿ Uniform distribution in ሾെ√3 ൅ 1, √3 ൅ 1ሿ

6 50 
Uniform distribution in ሾെ√3, √3ሿ Uniform distribution in ሾെ√3 ൅ 1.5, √3 ൅ 1.5ሿ

 
We ran the simulation 100 times. Each time we 

obtained a curve for each of the four approaches (miFDR, 
SAM, the BH approach, and the Storey approach) showing 
the estimated FDRs vs. the numbers of features called 
significant.  We then calculated the mean curve of each 
approach with respect to the number of features called 
significant.  The results are plot in Figure 2.  Since we have 
the ground-truth, we can also compare the estimated FDRs 
and the true FDRs of those approaches.  True FDR is the 
ratio between the number of null features falsely called 
significant and the total number of features called 
significant.  The calculations of the estimated FDRs of 
SAM and miFDR are explained in Sections II and III, 
respectively. 

We observed that miFDR consistently called more 
significant features than SAM did at the same estimated 
FDR levels (Figure 2a). We also compared the true FDRs 
of the features called by miFDR and SAM, respectively.  
The true FDR curve of miFDR was also consistently 
bounded by that of SAM (Figure 2b).  That is, to identify 
any fixed number of significant features, the number of 
features falsely called significant by miFDR was smaller 
than that of SAM.  Furthermore, the true FDR curve of 
miFDR was also bounded by the estimated FDR curve of 
miFDR (Figure 2c), indicating that miFDR did not under-
estimate FDRs. 

The BH and Storey approaches performed much worse 
than miFDR and SAM (Figure 2a & 2b). They consistently 
called fewer numbers of features than miFDR and SAM did 
at the same estimated FDR levels. In addition, their true 
FDRs are significantly higher than their estimated FDRs 
mainly because of the following reason. Fifty percent of 
features did not follow Gaussian distributions.  However, 

Algorithm: [fdr, pSig, nSig] = miFDR(d-values, N) 
Input: d-values are sorted from the largest to the smallest; N is 
the number of significant features to be called. 
1) Initialize the estimated false discovery rate fdr = inf, 

positive significant features pSig = [ ], and negative 
significant features nSig = [ ]. 

2) For n ← 0 to N 
2.1) Select the positive significant features as those with the 

n largest d-values. 
2.2) Select the negative significant features as those with 

the N – n smallest d-values. 
2.3) Compute current false discovery rate cFDR using the 

permutated data in the same way SAM does (see 
details in Section II). 

2.4) If cFDR< fdr, then fdr = cFDR, update pSig and nSig. 
Output: fdr, pSig and pNeg. 
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the BH and Storey approach using t-test to calculate p-
values, which assumes Gaussian distributions.  We also 
tried using the ranksum p-values in the BH and Storey 
approaches. Nevertheless, the performances were even 
worse (see Figure 3).  

B. Results of Analyzing Real Microarray Data 
We applied miFDR, SAM, the BH approach, and the 

Storey approach to two real microarray datasets GDS3661 
and GDS3689.  Both of them were publically available at 
Gene Expression Omnibus and are related to hypertension 
(or high blood pressure).  Hypertension accounts for about 
one quarter of heart failure cases [9]. Uncontrolled 
hypertension can lead to various changes in the myocardial 
structure, coronary vasculature, and conduction system of 
the heart, which in turn can lead to the development of left 
ventricular hypertrophy, atherosclerosis, and several other 
complications. Both experimental animal studies and 
clinical studies have shown that left ventricular hypertrophy 
could lead to myocardial ischemia [10], which can result in 
large-scale programmed cell death and eventually heart 
failure.  To investigate the molecular events underlying the 
onset of hypertensive heart failure, the gene expression data 
set GDS3661 is generated to profile the left ventricular 
samples from spontaneously hypertensive rats using 
Affymetrix Rat Genome 230 2.0 Array [8]. The dataset 
contains twelve samples in two groups: six without 
compensated hypertrophy versus six with compensated 
hypertrophy.   In addition, extensive epidemiological 
evidence supports that links exist between diesel exhaust 
exposure and hypertension [11-15]. To investigate the 
underlying molecular mechanisms, Gottipolu et al. [16] 
generated the GEO dataset GDS3689 by exposing both 
healthy and hypertensive rats to diesel exhaust particles and 
then profiled gene expression levels by using Affymetrix 
Gene Chip Rat 230A microarray. This dataset has 16 
samples, 8 hypertensive rats and 8 healthy rats. In each 
group, 4 out of 8 rats are exposed to diesel exhaust 
particles. In our analysis, we compared healthy rats without 
exposure (Control-rats) with healthy rats exposed to diesel 
exhaust particles (DE-rats). 

For the first dataset GDS3661, at FDR < 0.05, neither 
the BH approach nor the Storey approach was able to 
identify any significant probe set no matter whether the t-
test or the ranksum test was used to calculate the p-values 
of probe sets.  Under the same FDR level, miFDR 
identified 210 probe sets while SAM identified 129 probe 
sets.  We submitted the probe set lists called by SAM and 
miFDR respectively to DAVID [17, 18] for functional 
analysis using Gene Ontology terms [19].  The results 
showed that miFDR called more genes than SAM did in the 
functional categories closely associated with phenotypic 
changes from compensated hypertrophy to systolic heart 
failure, such as stress response (miFDR called 10 probe sets 
vs. SAM called 5 probe sets), positive regulation of cell 
communication (miFDR 10 vs. SAM 5), programmed cell 

Figure 2. Compare the the average performances of BH, Storey,
SAM and miFDR on 100 simulated datasets.  In each plot, a blow-
out of the curve segment in the dash rectangle is shown at the 
bottom-right corner for clearer illustration. (a) Compare the 
estimated FDRs. The performance of miFDR is the best.  (b)
Compare the true FDRs.  Again, the performance of miFDR is the 
best. (c) Compare the estiamted FDRs and the true FDRs of 
miFDR. The true FDR of miFDR is bounded by its estimated 
FDR, indicating that miFDR does not under-estimate the number 
of features falsely called significant. 
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death (miFDR 9 vs. SAM 7), regulation of growth (miFDR 
6 vs. SAM 0), TGF beta signaling pathway (miFDR 4 vs. 
SAM 3), and so on. 

PubMed search revealed literature evidence suggesting 
that several genes called only by miFDR can indeed deepen 
our understanding about the molecular mechanisms 
underlying the deterioration of cardiac function and 
remodeling associated with hypertensive heart failure.  For 
example, Mmp2 was up-regulated (1.88 folds) in heart 
failure rats.  It was shown that angiotensin-converting 
enzyme inhibitors can suppress Mmp2 activity to prevent 
left ventricular remodeling in a rat model of heart failure 
[20].  Classic preconditioning can offer cardio-protection 
by inhibiting ischemia/reperfusion induced release and 
activation of MMP2 protein [21]. We hypothesize that 
Mmp2 plays an important role in the transition from 
hypertension to heart failure and inhibiting Mmp2 can help 
prevent such a progression from happening.  Pdlim5 was 
up-regulated (2.96 folds) in heart failure rats, and it is a 
heart and skeletal muscle-specific protein that may play an 
important role in heart development [22]. PDLIM5 protein 
preferentially interacts with protein kinase C beta that is 
markedly activated in the cardiac hypertrophic signaling 
[23]. It was suggested that PDLIM5 protein scaffolded 
protein kinase D1, which played a central role in the 
response to stress signals in cardiomyocytes, to regulate the 
activity of the cardiac L-type voltage-gated calcium 
channel [24]. When over expressed in rat neonatal 
cardiomyocytes, Pdlim5 promoted the expression of 
hypertrophy markers and increased cell volume [25]. 

For the second dataset GDS3689, at FDR < 0.05, both 
the BH approach and the Storey approach identified 0 
significant probe set if the ranksum p-values were used. 
Switching to the t-test p-values, the BH and Storey 

approaches identified 18 and 249 significant probe sets, 
respectively.  Under the same FDR level, miFDR identified 
640 significant probe sets while SAM identified 388 probe 
sets, which were significantly more than the results of the 
BH and Storey approaches.  We submitted the probe set 
lists identified by SAM and miFDR for functional analysis 
at DAVID [17, 18] using Gene Ontology terms [19].  The 
results showed that miFDR identified more genes than 
SAM did in many functional categories closely associated 
with the response to diesel exhaust exposure and 
hypertension, such as, stress response (miFDR called 21 
probe sets vs. SAM called 10 probe sets), inflammatory 
response (miFDR 12 vs. SAM 6), defense response 
(miFDR 17 vs. SAM 8), extracellular matrix organization 
(miFDR 3 vs. SAM 0), positive and negative signal 
transduction (miFDR 19 vs. SAM 11), and blood vessel 
morphogenesis (miFDR 8 vs. SAM 0). 

We were also able to retrieve literature evidence 
suggesting that the genes called only by miFDR can shed 
new lights on the cellular and molecular links between 
hypertension and diesel exhaust exposure. One of the most 
serious health problems related to hypertension is 
atherosclerosis. Arteries of hypertensive animals have a 
greater mass of vascular smooth muscle than those of 
normotensive controls.  Alteration in the differentiated state 
of vascular smooth muscle cells, such as increased 
proliferation, enhanced migration, and down-regulation of 
vascular smooth muscle cell differentiation marker genes, 
is known to play a key role in the development of 
atherosclerosis.  Recent data have implicated air pollution 
(such as diesel exhaust particles) as one of the important 
risk factors for atherosclerosis.  It has been the subject of 
extensive reviews [26, 27] and a consensus statement from 
the American Heart Association [28]. Diesel exhaust 
particles and oxidized phospholipids synergistically affect 
the expression profile of several gene modules that 
correspond to pathways relevant to vascular inflammatory 
processes such as atherosclerosis [29].  Several genes (e.g., 
Rab5a, Zeb1, and Hdac2) called by miFDR alone have 
been reported to regulate vascular smooth muscle cell 
differentiation marker genes.   

In addition, miFDR identified two other interesting 
genes: Tgfbr1 and Plau. Tgfbr1, which forms a heteromeric 
receptor complex with TGF-beta type II receptor that 
mediates TGF-beta signaling, was up-regulated (2.05 folds) 
in DE-rats.  It is shown that diesel exhaust particles activate 
p38 MAP kinase to produce interleukin 8 and RANTES by 
human bronchial epithelial cells [30].  Since TGFBR1 is 
the upstream of p38 in MAPK signaling pathway 
(http://www.genome.jp/kegg-bin/show_pathway?hsa04010), our 
discovery suggests that diesel exhaust particles trigger p38 
by activating TGFBR1. Plau was up-regulated (3.39 folds) 
in DE-rats. This gene encodes a serine protease that 
displays a post-transcriptional increase in enzyme levels in 
chemically induced mammary carcinoma and may play a 

Figure 3. Compare the avearage performances of BH + t-test, Storey +
t-test, BH + ranksum, Storey + ranksum on the simulated datasets. The
performances of BH + t-test and Storey + t-test are much better than
those of BH + ranksum and Storey + ranksum.  
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role in tumor invasion and metastasis (Entrez Gene 
summary, http://www.ncbi.nlm.nih.gov/gene/25619), which 
make it a potential molecular link between diesel exhaust 
exposure and cancers.  

V. CONCLUSION 
This paper presents miFDR, a new powerful method 

for controlling FDR. Our miFDR algorithm minimizes the 
estimated FDR when calling a fixed number of significant 
features. The results of analyzing two genome-wide 
microarray datasets and the simulated datasets demonstrate 
that miFDR is much more powerful than three widely used 
methods for controlling FDR (i.e., SAM, the BH approach, 
and the Storey approach).  We also found literature 
evidence to support that some genes identified only by 
miFDR are indeed relevant to the underlying biology of 
interest.  Since FDR control has been widely applied in 
genome-wide studies, we expect miFDR to benefit many 
such projects and generate broad impact in the future. 
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