9 The ACQUILEX LKB: An Introduction

ANN COPESTAKE, ANTONIO SANFILIPPO, TED BRISCOE AND
VALERIA DE PAIVA

9.1 Introduction

This chapter and those following describe the LKB, a lexical knowledge base
system which has been designed as part of the ACQUILEX project to allow the
representation of syntactic and semantic information semi-automatically extract-
ed from machine readable dictionaries (MRDs) on a large scale. An overview
of the ACQUILEX project is given by Briscoe (1991).

Although there has been previous work on building lexicons for Natural Lan-
guage Processing (NLP) systems from MRDs (e.g. Carroll and Grover, 1989),
most attempts at extracting semantic information have not made use of a for-
mally defined representation language; typically a semantic network or a frame
representation has been suggested, but the interpretation and functionality of the
links has been left vague. Several networks based on taxonomies extracted from
MRDs have been built (following Amsler, 1980) and these are useful for tasks
such as sense-disambiguation, but are not directly utilisable as NLP lexicons.
For a lexicon to be genuinely (re)usable, a declarative, formally specified, rep-
resentation language is essential. A large lexicon has to be highly structured;
it is necessary to be able to group lexical entries and to represent relationships
between them, both in order to capture linguistic generalisations and to achieve
consistency and conciseness. But, unless these notions of structure are properly
specified, a lexicon based on them is in danger of being incomprehensible except
(perhaps) to its creators. We therefore take semantic structuring seriously, and
use taxonomic information as one of the ways of providing such structure, but
we do this within the context of a formally specified representation language.

The LKB’s knowledge representation language (LRL) can be viewed as an
augmentation of a typed graph-based unification formalism with minimal default
inheritance; default inheritance is formalised in terms of default unification of
feature structures (see e.g. Carpenter, this volume). We chose to use a graph
unification based representation language (e.g. Shieber, 1986) for the LKB, be-
cause this offered the flexibility to represent syntactic and semantic information,
and the interaction between them, in a way which could be easily integrated
with much current work on unification grammar, parsing and generation. In
contrast to DATR (Evans and Gazdar, 1990) for example, the LRL has not been
designed specifically for lexical representation. This made it much easier to

148

The ACQUILEX LKB: an introduction 149

incorporate a parser in the LKB (which is almost essential for developing a
type system and for testing lexical entries) and 'to experiment with notions such
as lexical rules and inter-lingual links between lexical entries, Although this
means that the LRL is perhaps too general for its main application, the type
system provides a way of flexibly constraining the representation according to
the particular linguistic treatment adopted.

The main structure of the lexicon is given by the type system. Our typed
feature structure language is based on Carpenter’s (1990, 1992) work on the
HPSG formalism, although there are some significant differences. The type
system can be regarded as a way of providing (non-default) inheritance, com-
bined with emmor-checking. The notion of types, and features appropriate for a
given type, gives some of the functionality of frame representation languages,
such as KL-ONE; in particular, classification of a feature structure is possible.

We augment the typed feature structure language with a default inheritance
mechanism. This can be used to organise the lexicon in a completely user-
defined way, to allow morphological or syntactic information to be concisely
specified, for example, as has been done with DATR and other systems (for
example, Russell ef a/. and Krieger and Nerbonne's chapters in this volume).
However much of the motivation behind our formalisation of default inheri-
tance comes from consideration of the sense-disambiguated taxonomies semi-
automatically derived from MRDs, which we are using to structure the LKB.
The top level of the inheritance structure, which cannot be automatically derived
from MRDs, is, in effect, given by the type system.)

Thus the operations that the LRL supports are (default) inheritance, (default)
unification and lexical rule and translation link application. It does not support
any more general forms of inference and is thus designed specificaily to sup-
port processes which concern lexical rather than general reasoning. The type
system provides the non-default inheritance mechanism and constrains default
inheritance. We use lexical rules as a further means of structuring the lexicon,
in a flexible, user definable manner, but lexical rules are also constrained by the
type system.

In the remainder of this introduction we provide an informal account of the
type system and other aspects of the LKB including the lexical rule and trans-
lation link mechanisms. Other chapters in this volume discuss various aspects
of the LRL in more depth and describe two applications in detail. De Paiva
discusses the theoretical background to typed feature structures and the way that
they are formalised in the LRL. Sanfilippo describes the type system which has
been used in the ACQUILEX project to represent lexical entries for verbs, using
information extracted from MRDs. Copestake completes the description of the
LRL by considering the default unification and default inheritance mechanisms
and the way they interact with the type system, and discusses the use of the
default system in the representation of taxonomic information extracted from
MRDs. Vossen and Copestake continue the discussion of the representation

150 - Copestake et al.

I lex-couni-noun
ORTH = kmb

CAT = [noun-cat]
unary-formula-entity-argl

SEM = IND = [entity

SEX = gender
QUALIA = | PHYSICAL-STATE = solid:::

_ | physform .
FORM = SHAPE = individuated

Figure 9.1: Simplified LKB lexical entry for lamb

of taxonomic information, and show how more problematic examples may be
tackled. Appendix 13.8 is a bibliography of relevant papers produced under
ACQUILEX. Appendix 13.8 gives a full description of the syntax of the LKB’s
feature structure description language.

9.2 An Informal Intreduction to Typed Feature Structures

The feature structure shown in Figure 9.1 is a (highly simplified) example of
a lexical entry in the LRL which illustrates the notational conventions which
we will use in this group of chapters. Bold font is used for types, features are
capitalised. A box round a type indicates that that portion of the feature structure
is not shown. The lexical entry as shown has four components; ORTH is the
orthography, CAT the syntactic information (not shown}, SEM the formal semantic
structure. This essentially corresponds to the expression, Ax{lamb_L_1.1(x}],
where the predicate indicates that the sense corresponds to a particular dictionary
sense, in this case lamb' I in LDOCE (Longman Dictionary of Contemporary
English, Procter, 1978). The feature QUALIA introduces the lexical semantic
information, the representation of which.is loosely based on Pustejovsky’s (1989,
1991) notion of qualia structure. The basic structure of the lexical entry is
determined by the type system.

The type system can be described as having two components; the type hier-
archy and the constraint system. The type hierarchy defines a partial ordering
(notated) on the types and specifies which types are consistent. Only feature
structures with mutvally consistent types can be unified — two types which
are unordered in the hierarchy are assumed to be inconsistent unless the user
explicitly specifies a common subtype, Bvery consistent set of types § C TYPE
has a unique greatest lower bound or meet {notation NS). This condition allows
feature structures to be typed deterministically — if two feature structures of
types & and b are unified the type of the result will be a ' b, which must be
unique if it exists. If arb does not exist unification fails. Thus in the fragment
of a type hierarchy shown in Figure 9.2 artifact and physical are consistent;
artifact M physical = artifact_physical. We will use a very simplified type sys-

The ACQUILEX LKB: an introduction 151

: N

.B.amn._\m.u_. . _u_.wnau_\.sa..ﬁ_r/-:ﬂ-n
—E..S_-n.ﬁ.n..\ !::..u_\ /-E?EE.R

Figure 9.2: A fragment of a type hicrarchy

tem in this introduction for ease of exposition; for more realistic type systems
see the chapters by Sanfitippo and by Vossen and Copestake in this volume.

Our system differs somewhat from that described by Carpenter (1990, 1992) in
that we adopt a different notion of well-formedness of typed feature structures.
In our system every type must have exactly one associated feature structure
which acts as a constraint on all feature structures of that type, by subsumning
all well-formed feature structures of that type. The constraint also defines which
features are appropriate for a particular type; a well-formed feature structure
may only contain appropriate features. Constraints are inherited by all subtypes
of a type, but a subtype may introduce new features (which will be inherited as
appropriate features by all its subtypes). A constraint on a type is a weli-formed
feature structure of that type; all constraints must therefore be mutually consis-
tent. Constraints can be seen as extending the PATR-I notion -of templates (e.g.
Shieber, 1986) in that the inheritance of constraints allows concise definitions
of all feature structures, not just lexical entries; but in an untyped system, such
as PATR-TI, there is no restriction on the features that can occur in a feature
structure.

For example the unexpanded constraint associated with the type artifact might
be:

H artifact “

TELIC = formula

This constraint states that any feature structure of type artifact must have a
feature structure of type formula as the value for its TELIC (purpose) feature. The
type formula is intended to represent a formula in predicate logic; it therefore
would have a complex constraint itself:

formula

IND = entity

PRED = iogical-pred
ARGl = sem

The full constraint associated with a type is found by expanding the constraints
associated with all the types inside the constraint feature structure, thus the
expanded constraint for artifact would be:

152 Capestake et al.

™ artifact ST
formula
_ | IND = entity
TELIC = PRED = logical-pred
ARG] = sem

The type physical might have constraint:

" physical
PHYSICAL-STATE = state
SHAPE = shape

Here shape and state are both atomic types, and have no appropriate features,
For example the constraint on state is simply the atomic feature structure [state].
The constraint on artifact_physical will contain information inherited from both
parents, thus:

artifact_physical
PHYSICAL-STATE = state
SHAPE = shape
formula
IND = entit
TELIC = | pogn - logical-pred
ARGl = sem

Given that solid is an atomic subtype of state, and that entity is an atomic
subtype of sem, the feature structure below is well-formed. It contains all the
appropriate features and no inappropriate ones, it is subsumed by the constraints
on its type and all its substructures are well-formed.

artifact_physical
PHYSICAL-STATE = solid
SHAPE = shape
formula
- IND = [@ entity
TELIC = | pRED - logical-pred
ARGl = [

Since the type system gives us a concept of a well-formed feature structure it
foilows that non well-formed feature structures can be detected, allowing error
checking. This is particularly important for our particular application where
mistakes may occur, either because of errors in the original dictionary entries,
or because of problems in the automatic extraction processes.

Typing also allows for a form of classification; a feature may only be intro-
duced as appropriate at one point in the type hierarchy (and will be inherited
as an appropriate feature by all subtypes of that type); it follows from this that
there is a unique maximal type for any set of features, and therefore an untyped
feature structure can always be typed deterministically. For example, assuming
the type system introduced above, the attribute value specification;

< PHYSICAL-STATE > = solid

< TELIC : IND » = < TELIC : ARGl >
would be expanded out into the feature structure just shown. (Full details of the
feature structure description language are given in Appendix B.) The type of the
feature structure is determined automatically; since the features PHYSICAL-STATE

The ACQUILEX LKB: an introduction 153

and TELIC are specified, its“tyjpehas to be artifact_physical (or some subtype
of that type).

9.2.1 Limitations of Error Checking and Classification

Error checking and classification with respect to a type system in the LKB are
computationally efficient but have limitations. One disadvantage of the system
as described is that it is not possible in general to enforce co-occurrence restric-
tions, even of a quite limited sort. For example, Sanfilippo’s representation of
verb semantics in the LKB (Sanfilippo, this volume) involves using thematic
roles and encoding restrictions on arguments of a predicate by sorting the vari-
ables. In order to do this a type theta-formula is defined to have the following
constraint:

theta-formula

IND = [eve

PRED = theta-relation
ARGI o

ARG2 obj

e

To classify psychological predicates thematic predicates such as theta-sentient

are used; in this case the second argument to any formuta whose predicate is

theta-sentient should denote a sentient entity; i.. if the value of PRED is theta-

sentient then the value of ARG2 is e-sentient. But the nearest we could get

to achieving this would be to definé a subtypé of théta-formula, e.g. theta-

sentient-formula, with constraint: T T T
theta-sentient-formula

IND = [eve
PRED = theta-sentient
ARGl = [I

ARG2? = e-scotient

and to define other subtypes for the other possible theta relations. This does not
really achieve the desired result, however — for example:

theta-formula

IND = [eve

PRED theta-sentient
ARG] o

ARG2 e-plant

i nn

is still a well-formed feature structure, despite the fact that it cannot be extended
to be a well-formed structure with a type corresponding to that of any leaf node
in the type hierarchy (assuming that e-plant M e-sentient = 1). This seems
undesirable; the type system is supposed to be complete, so intuitively we might
expect such a feature structure to be ill-formed in some sense. It seems clear
that we cannot check for such cases efficiently in general, because to do so
would, in the worst case, involve attempting to unify the feature structure with
the constraints of all leaf types which were subtypes of its type.

We refer to a feature structure which can be extended to a well-formed struc-
ture where every type is a leaf type as ‘ultimately weli-formed’, and we can

RN (RENN

154 Copestake et af.

A e

- enforce such co-occurrence restrictions when automatically déquiring lexical ep-

tries from the MRDs by checking for ultimate well-formedness. This does not
impose an unreasonable overhead in practice, since a lexical entry need only be
acquired and checked once,

A related issue is that classification of a feature structure with respect to
type system is also limited, in that the procedure only takes account of the top
level features in a structure and not their values. Even if the only subtype of
binary-formula which had a value for PRED which was compatible with theta-
relation was theta-formula, the following feature structure would be classified
as a binary-formula rather than a theta-formnla:

top .

IND = [0 entity
PRED = theta-relation
ARGl = [3§

ARGZ = obj

Again, although full classification would be expensive computationally, allowing
such a procedure to be invoked when lexical entries are being created is a
practical option which has considerable advantages in allowing augmentation of
automatically acquired information.

9.2.2 Extensions lo the Language

A type system in the LKB has, essentially, to be fully defined before lexical
entries can be built. This causes obvious problems with respect to atomic
types representing orthography and predicate names, for example, where it is
unrealistic to assume that the complete set can be known in advance. To get
round this we allow any string as a valid LKB type; all strings are assumed
to be subtypes of the predefined atomic type string, but to be unordered with
respect to one another. Particular features such as ORTH, which are specified as
having value string, thus in effect take arbitrary string values.

Although many feature structure based languages allow disjunctive feature
structures, we have avoided this in the LKB. Arbitrary disjunction can result in
a computationally intractable system and it is not clear whether it is in fact nec-
essary, given that the type system can be set up in a way which, in effect, allows
a constrained form of disjunction. For example, given the types shown in Fig-
ure 9.2, rather than stating that a feature had value animal or artifact_physical,
we would state its value to be physical. In general new types might have to be
created in order to do this; thus given, for example, that the type person was
defined to have the subtypes first, second, third, a new type would have to be
inserted in the hierarchy in order to express the equivalent of the disjunction
second or third.

The ACQUILEX LKB: an introduction 155

AN

first second third

\/

~ second-or-third

/N

second third

In the particular case of atomic types we do allow disjunction in the language,
with an effect which is formally similar to creating an additional type in this
way. We express this as a list of values, for example, (second third).

The flexibility of the LKB is enhanced by allowing feature structures to be
described in terms of other feature structures. Particular feature structures may
have identifiers associated with them; feature structures representing complete
lexical entries are identified by a combination of orthography plus senise infor-
mation. Lexical and grammar tules also have associated names, and in general
any feature structure may be defined with an associated identifier. We refer to
all such named feature structures as psoris; the significance of this is the use of
such structures in the description of other feature structures. Feature structure
descriptions are not just local; relationships between feature structures may be
set up in a variety of ways. The simplest of these relationships conceptually
is non-default inheritance, {(notated <=); a feature structure may be described
as inheriting information from a psort. For example, we could define the fea-
ture structure corresponding to the lexical entry for ewe as inheriting its qualia
structure from a particular sense of sheep, but further specifying the SEX to be
female: .

= lex-count-noun
< QUALIA > <= sheep_L_0_1 < QUALIA >
< QUALIA : SEX > = female
Non-default inheritance is simply implemented by unification of the feature
structure with a copy of the relevant part of the psort.'

! Formally the ordinary attribute value language may be regarded as describing feature structures,
and the feature structure which is built is the minimal satisfier of this set of descriptions (see
de Paiva, this volume, for example). Non-defauit inheritance from another feature structure is
equivalent 1o adding the set of descriptions of which it is the minimal satisfier to the locally
defined sel.

- 156 Copestake et al.

We also allow a féature structire to be”Spéi pecified as being identical (moduly ™
alphabetic variance) to a psort (notated as ||V.~ (The non-default inheritance
relationship can be seen as a constraint that the daughter feature structure is
subsumed by the psort feature structure; the equality relationship corresponds to
a mutual subsumption constraint.) The default inheritance retationship (notated
as <) allows for values to be overridden, thus we could (albeit somewhat per-
versely) specify ram as inheriting information by default from ewe, but override
the <m_cm moq SEX:

= lex-count-noun
< DEFHP > < ewe_L_0_0 < QUALIA >
< QUALIA : SEX > = male
Psort feature structures may also be combined by unification and generalisation,?
or transformed by lexical rule application. For details, and some examples of
use of these operations in the lexical representation language, see Copestake
(this volume) and Vossen and Copestake (this volume).

9.3 Lexical Rules

The lexical rule mechanism, and the translation link mechanism which will be
discussed in the next section, involve no further extensions to the LRL, but indi-
cate how typing and inheritance may be applied to feature structures other than
lexical entries. We encode grammar and lexical “rules as aﬁ& feature struc-
tures, which represent relationships between two or more signs. Here we will
just consider lexical rules; further details can be found in Copestake and Briscoe
{1991) and Briscoe and Copestake (1991). A lexical rule is a feature structure
of type lexical-rule which is a subtype of rule. The expanded constraints for
the types are:
ﬁ rule E ﬁ lexical_rule g

0 sign 0 lex._sign

1 sign 1 lex_sign

[}
bl

Thus all lexical rules have to have the features 0 and [which must both have
values which are of type lex_sign. Lexical rules can be regarded as a means of
generating new lexical signs; if a lexical entry can be unified with the feature
structure at the end of the path <1> in the lexical rule then the feature structure
at the end of the path <0> is a new lexical sign. Alternatively they can be
regarded statically, as expressing the relationship between two existing lexical
signs. We use lexical rules both to represent morphological derivation and sense
exiension.

2 Earlier versions of the LKB used == for non-default inheritance.

3 The generalisation operation is the opposite of unification; it produces a feature structure which

contains only the information which is common to both of its arguments (see, for example, de
Paiva, this volume, for a formal definition). In contrast to disjunction it always yields a single
feature structure; this may be equivalent to the disjunction, but in general will be less specific.

The ACQUILEX LKB: an introduction 157

~-'Anexample of a productive sense ‘extension -process which we represerit
as a lexical rule is that which transforms animal denoting {count) nouns to
(mass) nouns denoting their meat (e.g. /amb). Because lexical rules are typed
feature structures, we can make use of the LKB’s inheritance mechanism in
their representation. In this case we regard the animal/meat sense extension as
a special case of ‘grinding’. It is well known that any count noun denoting a
physical object can be used in a mass sense to denote a substance derived from
that object, when it occurs in a sufficiently marked context. We refer to this
as ‘grinding’ because the context normally suggested is the ‘Universal Grinder’
(see Pelletier and Schubert, 1986). So if a table is ground up the result can be
referred to as table (there was table all over the floor). Several regular sense
exlensions can be regarded as special cases of ‘grinding’, where the extension
may have become conventionalised; besides the animal/meat examples, trees
used for wood (beech) have a sense denoting the wood, and so forth.

A general type for grinding lexical rules can be specified in the LKB as
follows:

grinding C lexical rule

[grinding]
tex-count-nonn
ORTH = [@
1= physical
QUALIA = -_ | physform.
FORM = ﬁ SHAPE = individusfed
i _.nu.--_-z.—:?g_»_.. . ; ‘ -
ORTH = [
0= physical]
QUALIA = _ | physform
FORM = — SHAPE = unindividuated

The effect of this rule is to transform a count noun with the qualia structure
properties appropriate to an individuated physical object into a mass noun with
properties appropriate for a substance. Thus the core component of grinding
is a linguistic operation which affects syntactic realisation, such as the ability
to appear without a determiner, correlated with an abstract and underspecified
semantic operation. .

We specialise the grinding rule to allow for cases such as the animal/meat
regular sense extension explicitly. The typed framework provides us with a
natural method of characterising the subparts of the lexicon to which such rules
shouid apply. The lexical rules can, in effect, be parametrised by inheritance in
the type system. Thus animal_grinding can be described as follows:

grinding
| = QUALIA

animal_grinding animal g

0

QUALIA

food substance H_

158 ﬁ%mhnmm et al.

We treat the lexical rule as fully productivé across the dppropriate subset of the-
lexicon and account for cases of ‘blocking’, where an existing lexeme (e.g. pork)
appears to render the sense extension highly marked (c.f. pig), by a separate
mechanism which detects the presence of an existing lexical entry comparable
to the extended sense (see Briscoe er af., in press). (This relies on the lexica]
semantic specification of lexical entries being considerably more fine-grained
than that shown here.) Thus, the use of pig to mean the meat is possible, by
tends to suggest that the substance is in some way inferior, or that the speaker
is adverse to (this type of) meat.

9.4 Representation of Translation Equivalence

In this section we complete the overview of the LKB by introducing the tech-
niques which we use for encoding translation equivalence between lexical en-
tries. A more detailed description, and a discussion of how translation links
might be used in machine translation is given in Copestake et al. (1992) and
Sanfilippo et al. (1992}

We define lexical translation equivalence in terms of cross-linguistic links,
tlinks, between the lexical entries in the monolingual lexicons. In general there
may be a many-to-many equivaience between word senses, but each possibility
is represented by a single tlink. In the simplest and commonest cases unmod-
ified pairs of lexical entries can be treated as translation equivalents, and it is
unnecessary to augment the monolingual information, other than simply to assert
that a link is present (see simple-tlink, below). However in general we have
to allow for ‘mismatches’ such as differences in argument ordering, plurality,
and specificity of reference, and for ‘lexical gaps’, where a word sense in one
language has to be translated by a phrase in the other. The tlink mechanism
allows the monolingual information to be augmented with translation specific
information, in a variety of ways, in order to cope with such problems. We
use inheritance from both lexical entries and rules in tlinks; this makes them
compact while ensuring that the multilingual and monolingual components are
compatible.

A tlink is simply a feature structure of type tlink, which is to be read as
stating that two feature structures (the ‘output siructures’) are to be regarded
as translation equivalents. The tlink encodes the relationship between the input
word senses and these output structures; it can be viewed as describing how
lexical entries may be transformed into translation equivalent pairs. A complete
tlink is essentially a relationship between two rules {as defined above) where
the rule inputs have been instantiated by the representations of the word senses
in the source and target languages which are to be linked and where the rule
outputs are translation equivalent. A level of indirection is thus involved in
stating the equivalence between lexical entries, and this allows ‘mismatches’ to
be treated.

The ACQUILEX LKB: an introduction 159

STt -

The Jﬁn ==..w is a«m:& as follows’
tlink (top)
< TLINK-ID » = tlink-id
< 8F§ > = rule
< TFS > = rule
<S8FS : 0 : SEM ;: IND > =< TFS : 0 : SEM : IRD >.
The third line indicates equivalence of the variables in the two output structures
in the particular monolingual encoding of semantic information that we are
currently adopting. For all tlinks the feature structures at the end of the paths
< SFS : 0 »>and < TFS : O > will be translation equivalent. For all tlinks
at least the paths < SFS : 1 > and < TFS : 1 > have to be instantiated by
lexical entries to produce the complete tlink.*

By defining types of tlinks the concept of translation equivalence can be
constrained and generalisations can be encoded.. The commonest and simplest
cases of translation equivalence can be represented as simple-tlinks.

simple-tlink (tlink)

<8F8 : 0>=<8F8 : 1>

<TFS : 0 >=<TF8 : 1 >.
A simple-tlink is applicable in the case where two lexical entries which denote
single place predicates (nouns etc.) are straightforwardly translation equivalent,
without any transformation being necessary. (For verbs more argument equiv-
alence mﬁ@numnmnozm are necessary; see Sanfilippo er al., 1992.) Like lexical
rules tlinks can be Rmmaon statically or dynamically; given a feature structure
in one language, and an appropriate tlink, unification with the feature structure
at the end of the appropriate path (e.g. < SFS : 0 >) in the tlink will result
in the feature structure at the end of the other output path being returned (e.g.
< TFS : 0 >).

Assuming that the LDOCE sense chocolate 1 4, is translation equivalent to
the Van Dale chocolade 0 2, we would have the tlink:

simple-tlink
< SFS : 1 > <= chocolate L_1_4 <>
< TF8 : 1 > <= chocolade_V_0_2 <>
where <= indicates non-default inheritance from the lexical entries.

Some restrictions on translation can be expressed by making the target or
source feature structures more specific. For example, both maestro and maestra
in Spanish can be translated as teacher in English; the restriction that maestro
denotes a male teacher and maestra a female one can be encoded as follows:

simple-tlink
< SFS : t > <= teacher_i <>
< TFS : 1 > <= maestro_1 <>

4 Tlinks and lexical rules are both symmetrical and reversible; we use the terminology source (sfs),
target (tfs), input (1) and output {0} solely for ease of exposition.

i60 Copestake et al.
S eF87i0 : QUALIA ¢ SEX > ='malei * v

simple—tlink

< 8FS : 1 > <= teacher.l <>

< TFS : 1 > <= maestra_l <

< SFS : 0 : QUALIA : SEX > = female.
Alternatively we can define a type human-tlink and state as a constraint that
the values for the SEX feature must be equivalent in the translation equivalent
feature structures.

human-tlink (simple-tlink)
< SFS : O : QUALIA : SEX > = < TFS : O : QUALIA : SEX >.

The restrictions would then follow, assuming that the Spanish lexical entries
were appropriately instantiated, and would apply to the whole class.

Somewhat rarer and more complex cases of linking arise when the changes to
the feature structures are those such as pluralisation, which is a process that has
to be represented separately, and which has to be viewed as a transformation
of a feature structure rather then a simple restriction, For example, a lexi-
cal/morphological rule for plural formation, which would be required anyway
for the monolingual grammar, can be used in a tlink: we encode the idea that
the equivalence is to be defined between a basic lexical entry and a lexical entry
after rule application by instantiating one half of the tlink with the appropriate
lexical rule. ‘ o , N

For example, furniture can be encoded as translation equivalent to the plural
muebles by specifying that the named rule “plurai’ has to be applied to the base
sense in Spanish.

tlink

< SF8 : 1 > <= furniture_i <>
< TFS : 1 > <= mueble_1 <>
<8FS : 0>=<8F5 :1>

< TF8 > <= plural <> .

This tlink can be represented diagrammatically as shown in Figure 9.3; unla-
belled arrows indicate token identity between F8s. Since the singular form of
mueble would not unify with the feature structure at the end of the output path
< TFS : O >, a translation of mueble as furniture would not be generated by
this tlink.

In some cases the existence of a tlink between two lexical items implies a fur-
ther transtation relationship. For example, a similar sense extension rule to that
of animal_grinding described in the previous section applies to Itatian {Ostling,
1991) but in Dutch a compound is generally used (lam, lamsviees), although the
semantic process is apparently equivalent. To represent the relationship between
these lexical rules we define the type tlink-rule:

The ACQUILEX LKB: an introduction 161

Lt] - T I R L

tlink
plural

$F81 ————— SFS50 ~—» TF50 TFS1

furniture furniture muebles mueble

Figure 9.3: Diagrammatic representation of translation link

tlink-rule (top)

< ID > = tlink-rule-id

< T0 > = tlink

< T1 > = tlink

< SRULE > = lexical-rule
<SRULE : 1 >=<T0 : 8F8 : 1 >
<BSRULE : 0 »=<T1 : SF8 : 1 >
< TRULE > = lexical-rule
<TRULE : 1 >=<TO : TF8 : 1 >

<TRULE : 0 > =<T1 : TFS : 1 >

By stating that the lexical rule for animal-grinding is linked with that for com-
pounding with vlees, we can, for example, automatically generate the relation-
ship between lamb 2 and lamsviees from a.simple tlink between.lamh I and
lam; see Figure 9.4.5 There are.many examples of such correspondences; for .
example, the English sense extension between trees and their fruits (pear, efc.)
is mirrored in Italian with a gender distinction; the trees are masculine but the
fruits feminine (pero, pera).®

95 Conclusion

In this introduction we have outlined the functionality of the ACQUILEX LKB,
A description of the software system and its use in the ACQUILEX project is
given in Copestake (1992b). In the remaining chapters we give a more detailed
description of the LRL and some of the uses to which it has been put.

The aim of the ACQUILEX project is to demonstrate that substantial amounts
of lexical information can be acquired semi-automatically from MRDs and rep-
resented in a way that makes it usable by a range of NLP systems. The first
essential for this is a well-defined representation language, which is efficiently

% Since we are just making use of the monolingual sense extension mechanism here we can rely on
that to handle cases where the sense extension is blocked.

% |t does not necessarily matter for translation purposes whether the rule can fully predict the

effects of the sense extension; even if the rele is used statically to encode the regular aspects of
the relationship between two lexicalised items, an appropriate translation link will be generated if
the monolingual processes are sufficiently similar.

162 Copestake et al.

simple-tlink

$F§] —————— SFS0 ~—= TFS0 +——— TFS1

lamb1i lambl tam lam

animal- viees-
grinding compounding

simple-tlink

§F§1 ———————+ SFS0 ~+— TF50 «+———— TF3l

lamb2 lamb2 lamsvlees lamsvlees

Figure 9.4: Tlink rule for animal grinding and compounding with viees

implementable. We have chosen to use an LRL which is relatively ‘theory-
neutral’ in the same sense as PATR-II (Shieber, 1986); it could be used to
implement different linguistic theories. The second essential requirement is to
have some theory of the data to be represented which can be encoded in the
LRL. Sanfilippo’s chapter describes one such theory for verbs; it also illustrates
one advantage that our LRL has over PATR-IL, in that the type system makes the
encoding of the theory more explicit. It would be, however, possible to make
use of the information encoded even if a different treatment were adopted; for
example, deriving a verb lexicon for a system which did not rely on theta roles
to express semantic argument structure would be straightforward, because this
information could simply be ignored.

Clearly linguistic theories, their encoding in the LRL and even the LRL itself
may have to be modified in response to the data. It is not currently possible to
construct a large lexicon which incorporates lexical semantic information with-
out developing the linguistic theory, since formal lexical semantics is a relatively
undeveloped field. In our discussion of defaults in the LRL we will show that
there are problematic areas, where modifications are required. However, even if
further changes are made to the LRL, most, if not all, of the existing data will

" be reusable, because the current language has been explicitly specified.

Acknowledgements

This work and that reported in the subsequent chapters was supported by Es-
prit grant BRA 3030. We are grateful to our colleagues on ACQUILEX in the

The ACQUILEX LKB: an introduction 163
Universities of Pisa and Ainsterdam, University College Dublifi and the Uriiver-
sitat Politecnica de Catalunya, Barcelona, for discussions on the LKB, to John
Carroll for his advice and help on the design and construction of the software

and to Bob Carpenter for his detailed comments on our use of typed feature
Structures.

10 Types and Ooﬁm..»m..:m in .:.n :m.w

VALERIA DE PATVA

Introduction

This chapter describes — from a mathematical perspective — the system of
typed feature structures used in the ACQUILEX Lexical Knowledge Base (LK-
B). We concentrate on describing the type system the LKB takes as input, making
explicit the necessary conditions on the type hierarchy and explaining how —
mathematically — our system of constraints works. It is assumed that the reader
is familiar with basic unification-based formalisms like PATR-I], as explained
in Shieber {1986). It must also be said from the start that our approach draws
heavily on the work on typed feature structures by Carpenter (1990, 1992),

The LKB works basically through unification on (typed) feature structures,
Since most of the time we deal with fyped feature structures (defined in sec-
tion 10.2) we will normally drop the qualifier and tatk about feature structures.
When necessary, to make a distinction, we refer to structures in PATR-II and
similar systems as untyped feature structures. Feature structures are defined
over a (fixed) finite set of features FEAT and over a (fixed) type hierarchy
(TYPE,C}. Given FEAT and (TYPE,C) we can define F the collection of
all feature structures over FEAT and (TYPE, C). But we are interested in fea-
ture structures which are well-formed with respect to a set of constraints, To
describe constraints and well-formedness of feature structures we specify a func-
tion C: TYPE — F, which corresponds to an association of a constraint feature
structure C{/;) to each type & in the type hierarchy TYPE. The constraint
feature structure C (¢;) imposes conditions on all well-formed feature structures
of type . We call the combination of FEAT, (TYPE, C) and the constraint
function C the type system. .

Initially we define the type hierarchies (TYPE,C) we deal with and then
formalise our notion of feature structures and some operations over them. Next
we describe our kind of constraints and what it means for a feature structure
to be well-formed in our system. Then we discuss briefly internal and extemnal
logics of feature structures. A short section concludes comparing this with

related work, especially Carpenter’s.

164

Types and constraints in the LKB 165
20.1° ° The Type Hierarchy R e

The type hierarchy is a partially ordered set (or poset) (TYPE,L) with two
extra properties. Before describing these properties we recall that if {TYPE, T)
is a poset, it satisfies:

s (reflexivity) For any ¢ in TYPE, ¢t C 1.
s (anti-symmetry) If t C s and s C ¢ in (TYPE, C), then 5 = 1.
o (transitivity) If £y C ¢, and #, € 13 then ¢ C 2.

We adopt the convention that the most general type appears at the top of
any diagram. The type hierarchy is ordered by C (which can be read ‘is more
specific than’). For example:

N\,

SRR

1t is a straightforward consequence of the definition of a poset-that the order
‘C’ has no cycles, i.e if t; T £ then & Z-fy — where - we write 1yt for
ftCrandty # b (Suppose it had a cycle, i.e. 72 C #; then using t| C £ and
anti-symmetry we have f; = #;, a contradiction!)

Following Carpenter we call a subset § C TYPE consistent" iff there is some
tp in TYPE such that # € ¢ for any 7 in §. In the example above, for instance,
the sets {1, £} and {#;,:} are consistent sets, but {12, 75} is not, so the first two
sets have meets, respectively £ Mtz and 14, while the third set has not. Then we
can define:

Definition 1 A type hierarchy (TYPE, T} is a (non-empty) poset with two extra
properties:

1. Every consistent set of types § C TYPE has a unique greatest lower
bound or meet (notation rs).

2. The partial order (TYPE,C) has no unary branches, i.e. no type may
have exactly one immediate subtype. If 1, U t) and there is no interme-
diate type s such that ty T s and s T ¢, then there must be some other
subtype t; such that t3 _ 1) and 1 [&y

Note that the empty set is (vacuously) consistent, as for any f in TYPE it
satisfies the condition that fo C ¢ for all ¢’s in the empty set. Hence the partial

! The usual term in Lattice Theory is bounded, but consistent seems more expressive.

166 de Paiva

order (TYPE, C) must have a maximal element T which is the meet of the
(consistent) empty set, T = . This element T is such that :+ T T for any ¢ in
TYPE. The first property says that the type hierarchy (TYPE,C} is (the dual
of) a bounded complete poset, cf. definition in Gunther and Scott (1991). This
property could be re-stated as saying that {TYPE, L) is a “consistently complete
meet-semilattice’.? :

If (TYPE,) is finite then all (non-empty) joins are defined. Thus we have
a poset (TYPE,C) with two operations, a partial operation of taking binary
meets [- or greatest lower bounds - and a total operation of taking joins U -
or lowest upper bounds.

The prohibition of unary branches means that posets like

1
ta L]

i4

are not allowed. The no-unary-branching condition is desirable because the
type system must be ‘intuitively complete’, where by complete we mean that
whatever is said in the partial-order is all that can be said about the types being
described. Hence if we say

4
2 3

the interpretation we have in mind is that r» things are #; and #; things are #
and things which are #, are either 7 or 73 but nothing else. Thus if we did have
the situation above where ¢4 is the only subtype of t; we would be stating that
everything which was of type 7, was also of type # (as well as the inverse). To
specify both in the hierarchy could lead to inconsistency (with respect to the
specification of constraints, for example) so unary branches are disallowed.

We can make the meet 1 operation total if we add the join of the empty-set
1 =0 to {TYPE,C). But even if we do add 1 to make {TYPE,C} a lattice,
this lattice need not be distributive, not even modular, as the example below
from Carpenter (1990) shows

2 Note that a consistently compiete meet-semilattice is rot a meet-semilattice, since it does not have
all binary meets, only the consistent ones.

Types and constraints in the LKB 167

T
1 3 5 p
1s 3s 1-p 3p
N\
3-5-m 3-s-f 3-s-n

Adding 1 to the poset above, we have:
(3-s-m L1 3-5-f) M 3-s-n = 3-s-n
(3-6-m M 3-s-n) U (3-8-F N1 3-5-0) = L

Some implementations of systems similar to ours assume a lattice of types and
a lattice of feature structures. This can always be achieved by a process of
completion of the partial order and several different completion processes are
possible; see, for instance, Davey and Priestley (1990).. X we do-add oniy.-.L to
(TYPE,), we call the resulting type hierarchy (TYPE,C}, . In.this case we
have an inclusion,

(TYPE,C) 22 (TYPE,),

Condition | on the definition of the type hierarchy (TYPE, L) seems neces-
sary for the constructions we want to make, at least if one insists on a unique
value for the unification of feature structures. Condition 2, on the other hand,
is interesting, but not necessary. In his most recent work Carpenter drops this
condition and, in effect, so do we, since the introduction of unary branches
cannot practically be avoided while developing a type system.

10.2 Feature Stractures

In this section we define formally the feature structures we shall be dealing with
and compare our definition with the traditional (untyped) PATR-II style one, as
in Moshier and Rounds (1987). We define the collection F of feature structures
over the (fixed) set of features FEAT and the (fixed) type hierarchy (TYPE, C).
Our feature structures are an acyclic variant of Carpenter’s (typed) quasi-feature
structures.

Definition 2 A feature structure is a tuple F = {Q, qp, 6, &) where

o (O is a (non-empty) finite set of (connected, acyclic) nodes;

168 de Paiva

e gq € Q is the inifial (or root) node;

e o:Q — TYPE is a total node ryping function and (TYPE,C) is a type
hierarchy as in the previous section;

o 5:0 x FEAT — Q is a partial transition function, where FEAT s g

{non-empty) finite set.

The collection of all possible feature structures for a given set FEAT and poset
{TYPE,) is denoted F.

An example of a feature structure F| in attribute-value matrix notation is:

phrase
agr
AGR = | PERS
NUM

1
sing

In this case the set of nodes consists of {go, ¢\, 42,43}, where a(go) = phrase,
alg)) = agr, olgz) = 1, a{q)) = sing, §(qp, AGR) = gy, etc. A notational
convention is that types are written in boldface and features are written in SMALL
CAPITALS within attribute-value matrices (with the exception of the type T). In
mathematical definitions ¢'s are used as variables for types, f’s as variables for
features ‘and F’s as variables for feature structures.

The intuition behind this definition goes back to Kasper and Rounds’ formal-
isation of the logic of feature structures; the main idea being that an attribute-
value matrix like:

[on = [X8 2 e |
could be thought of as a deterministic automaton (Kasper and Rounds, 1986).
By a ‘connected set of nodes’ we mean that every node g € { is reachabie
from the initial node gg by using the transition function §. More precisely, there
-exists a sequence of features {fj...f,—:) in FEAT" and a sequence of nodes
(g0, 41, ..-Gn) such that 6(g;,fi+1) = giv1 and ¢, = q.

Recall that in the traditional definition of a feature structure as in, for instance,
Carpenter’s paper in this volume (after Moshier and Rounds, 1987), one has a
partial (injective} atomic value function & from nodes to atoms. But only nodes
for which no features are defined by the transition function can have atomic
values, so that if o{g) is defined then é(g,f) is undefined for all f in FEAT.
Some types in the definition above will correspond to the ‘nodes that do not
have features’ in the traditional definition and we shall call themn atomic types.
For instance sing and 1 in the example above are atomic types.

The main differences between the traditional definition and the one above are
that:

¢ In our definition all nodes, not only some of the terminal ones, have

types.
¢ The set of types TYPE is now endowed with a partial order.

@ﬁmh na& 8&:65& in the LKB 169

waov_a of a <m€ mcm:.mnﬂ ES of mind could E:S :.ﬁ EOm_:m WOca
nition as a triple of functions,

4o é o
1 ———— @ x FEAT » 0 - ATOMS

where a map 18 Lo picks up one object, gy, in the set @; the arrows — for &
and o are partial maps; ¢ is injective and the domain of definition of « is given

by
dom(a) = {q € Q | 6(¢,f) is undefined Vf € FEAT}

They could also write our definition as

q 5
| — .0 x FEAT 0 —2% L (TYPE,C)

where, in contrast, the function o is total and TYPE is endowed with a partial
order. Pollard and Moshier’s (1990) ordinary feature structures are slightly
different in that the function ¢ is partial, non-terminal nodes can have SORTS
(and SORTS may have a partial ordering on them) and the acyclicity condition
is n__,ovuna In all cases one should remember that Em set O is 323, {or .
connected) by the transition function.

One of the immediate consequences of our definition is that, as every feature
structure has a unique initial node gp, every feature structure has a type. We
say that

Definition 3 The type of the feature structure F = {Q, qo, §, o) is the type of
its initial node, that is, o{gqo).

Note that this definition induces a function type-of: F — TYPE, For exampie
the type of feature structure F; in the example above is phrase.

Corresponding to the distinction between atomic and non-atomic types we
have atomic and non-atomic feature structures. The feature structure /' in the
example above is a non-atomic feature structure, whereas the feature structure
consisting of the single type [sing] is an atomic one.

One similarity between the definitions above is that they can be extended to
‘paths” 7 in FEAT*. That is, every feature structure F over FEAT gives rise to

a map

&*
Q x FEAT*

170 de Paiva

sign agr

AN

phr-sign

NN

Figure 10.1: An exampie of a type hierarchy

lex-sign

e §*(g,A) = q if A is the empty path,
o Qn&ﬁﬁ?\.u - %nmmumﬂ_ .a.vrwﬁv.

10.3

In this section we describe the order on the collection F of feature structures
and describe the operation of restricting a feature structure F to a node g or a
path 7 over FEAT.

It is clear that, as in the traditional setting, we have a natural order in the
collection of feature structures F. We call this order C, overloading the symbol.
Intuitively C means is subsumed by (i

Subsumption of Feature Structures

is-more-specific-than’). Subsumption is
like usual subsumption of feature structures, with the added condition that the
order on types is ‘preserved’ (see precise definition-below),

For example, given the type hierarchy in Figure 10.1, we have:

phr.sign sign
agr C agr

AGR = PERS = | = AGR = PERS = 1
NUM = sing NUM =T

If F| and F, are feature structures of types #; and #> respectively, then £ C F,
only if #; C #;. Another example:

=1 ﬂ:.qumn;

sing
But note that the subsumption order is not simply a containment order. For
example, in the feature structures below, F; contains Fy, but F| £ Fj.

agr
PERS
NUM

sign
_ agr _ | »er
Fi= | AGR = | PERS = 1 JnT_mxmu;
NUM = sing

This order in the collection of feature structures . is mathematically expressed
using feature structure morphisms, following Moshier and Rounds.

Definition 4 Given feature structures F|, and Fi, {(Q,q0,6,,a1) and
(@2, 9§, b2, o2}, respectively, in F we say a total map h:Q; — (2 is a feature
structure morphism iff

Types and constraints in the LKB 171

o h sends the initial node Qo Q. F _ to'the initial node qy of Fa, that is, ‘

h(go) = qq. .
s | preserves the partial map structure of F\, that is, the following dia-
gram 'commutes’,

b1
Q_ x FEAT Q_
h x FEAT h
0, x FEAT (0]
82

this means that if 8§,(q.f) is defined (written as ‘51(q,f) 1’) then

S2(hig).f) | and h(é1(q,F)) = b2lhig).f).
o h ‘preserves’ the order in (TYPE,), that is, a(h(q)) C a(gq)-

For feature structures F| and F, in F, we say F\ T Fy iff there is a feature
structure morphism h: Fp — F).

Note the ‘opposite’ of the Carpenter (or Pollard and Moshier, 1990) order in
the définition above. With our definition of feature structures, the least infor-
mative feature structure is [T), that is, F € [T] for any F- in F.

This notion of morphism is a natural extension of the definition of homomor-
phism of untyped feature structures in Moshier and Rounds. The main difference
is that for untyped feature structures, if o (g) is defined, then a,(h(q)) is defined
and equal (rather than less than or equal) to a(g).

Looking at the definition of morphism of feature structures abstractly we have:

m_ [s 0}
| — Q; x FEAT ~ Qi » TYPE

h x FEAT h C

I ———— 2 x FEAT g, —— TYP

&y a3 ’

First note that the order in JF is not a partial order, but only a pre-order.
We can have F| C F, and F, C F, without F; and F3 being the same; in this
case they are called alphabetic variants, which we write as F; ~ F3, following
Carpenter. We can make this pre-order a poset by taking equivalence relations
the usual way. The equivalence classes of feature structures are called by
Moshier (1988) abstract feature structures.

172 de Paiva

‘We need some extra easy definitions. Given a feature structure F =
{0, q0,6,a) and a node g in Q we can define F|,, the restriction of F to
g, as the feature structure that starts in ¢ and is the restriction of F - as a partial
map. More formally:

Definition 5 Given a feature structure F of the form {Q,qo,6,0) and a node
q in Q we define F|, the restriction of F to q, as the feature structure F' =
(Q', 44,8, o'}, such that:

1. The new initial node q{ is q.,
2. The set of nodes Q' is the subset of the set @ of nodes of F, reachable

fromgq, ie
Q' = {q € Q| 8(q,) is defined, for all = € FEAT"}

3. The transition function §'(q.f) is the restriction of 6 to Q.
4. The typing function o' is the restriction of a to Q.

We can also define the restriction F@n of a feature structure F to a path
7 € FEAT*. The definition above would only change in the two first clauses;
the new initial node is g3 = &(qo,) and the new set of nodes is the subset of
O reachable from g). Viewed this way each feature f or path 7 determines a
partial function from feature structures to feature structures, the basis of other
formalisations of feature structure logics (cf. Smolka, 1988). .

Another definition extracts features from a node.

Definition 6 Given a feature structure F and a node ¢ in F, we define features
of the node g in F or Feat{({F,q)), as the set of features labelling the edges
coming out of the node q. Thus if F is given by {Q, 4o, 6, o) and 8{q,f) is defined
then the feature f is in Feat({F ,q)) or

Feat({F,q)) = {f € FEAT | 8(q.f) is defined}

We call Featy(F) the set of features that appear on the top level of the feature
structure F, that is, Featy(F) = Feat({F , go}).

It is reasonable to ask why do we want the morphisms in F in the direction
of definition 4, which is not the direction chosen by Carpenter or Pollard and
Moshier. The same question could be asked about the direction of the order
on TYPE. The answer is given by the use of feature structures. The main
operation one wants to perform with feature structures is unification, which we
describe in the next section. Unification of F| and F» is the conjunction of
the information contained in F; and F,. Taking the order on TYPE and the
morphisms as defined here, unification corresponds to ‘meet’ I in the pre-order
F, the natural choice for logical conjunction.

Types and constraints in the LKB 173
104 Operations on ‘Feature Structures - L R
‘We want to define two main operations on feature structures, generalisation and
wnification. We give algebraic definitions of both unification and generalisation,
following Carpenter, but since algebraically generalisation is easier, we start
with this eperation.
The operation of generalisation Li: F x F — ¥ is much more natural from the
algebraic viewpoint than the more useful unification. Given feature structures
F1 and Fy, respectively, (Q1,qo, 61,1} and {Q2,gg, 82, a2) in F, we can take

the product §; x &, of the partial maps &, and 6, and transform it in a ‘product
of automata’ as follows: .
1 TYPE
{90, 95} U

0 ® 0 —— TYPE x TYPE

(0 ® Q) x FEAT
8 @& a) X oo

To be precise:

Definition 7 - Given feature structures Fy and F. 5 their generalisation is'the fea-
ture structure Fy L1 Fy given by:

FIUF, = {01 ®(2,{90,40), 01 ® 62, 01 ® any)

e The initial node of Fy U Fy is the pair (g9, 44}
o The ransition function 8, @ b2 of F1UF, is the restriction of the product
Junction &, X & given by the composition:

Q1 x Q2 x FEAT -2 0 x 0, x FEAT x FEAT X% 9, x 0,
Thus & ® & is given by restricting b, x &3 to the pairs
(61(q1, 1) balga. 1))

where the feature ‘read’ is the same, ief =f'.

o The set of nodes Q1 @04, is the subset aof Q) X, raoted by the transition
function 8, @ 6; above. Thus (qi, g2) is in Q1 @ Oy, if there exists a path
7 € FEAT® such that

6 ® 82({g0, 90), ™) = (q1,92)

o The typing function o) @ o is given by the composition of the product
@ X ay with the function generalisation on types L: TYPE x TYPE —
TYPE restricted to the nodes in Q) & Q.

174 de Paiva
wa‘mmmw example should help o make things clear. m:vvcmn we hive F1 and
F» below and we know phr-sign C sign,

phr-sign sign
= agr
Fi=| AGR = | PERS = 1 f2= | AGR = | PERS = 1
NUM = sing NUM = pl
RGA =T

Generalising, we end up with F; LI F; given by:

sign
- agr
Fibufa= | AGR = | PERS = 1
NUM = num

Thus generalisation corresponds to taking the product of the partial maps re-
stricting to the diagonal in FEAT and making the resulting structure ‘rooted’,
i.e. getting rid of the unreachable nodes. In the example above we have 20
nodes in &, x (2, but 16 are isolated, thus only 4 appear in Q| ® Q2.

Note that F, U F; is the lowest upper bound of F| and F3 in the subsumption
order. Thatis, Fy CFiUF,and F, C FjUF; and if /) C G and F2 & G then
Fi U F; T G, Generalisation is a total function; the feature structure [T] will
always be an upper bound,

Another operation we could define looks very much like generalisation, but
uses the ‘meet’ 1 operation on types, which makes it a partial map, if we use
the type hierarchy (TYPE,C}, o

&:FxF—=F
1 TYPE
{q0,40) i
(Q1 @ Q) x FEAT G0, TYPE x TYPE
5 @6 o) X o

But if we use {TYPE,) | it is another total operation. In the example above,
we end up with F| @ F; as

phr-sign
agr
AGR = | PERS = 1
NUM = L
RGA = T .

The operation & has not been discussed in the literature, probably because it is
not clear that it has any linguistic utility.

Types and constraints in the LKB 175
104.1 Unification - : : TR LT

Unification of feature structures is defined as a partial function denoted by
i F xF — F. The definition for (typed) feature structures follows broadly
the definition for untyped feature structures. Carpenter presents a very simple
algorithm — attributed to Moshier — to compute it, Intuitively, the difference
from untyped feature structures unification is that:

If F| and F, are feature structures of types #; and #; respectively, then
F1 M Fy has to have type £, M ¢. Thus if f) M 1, does not exist then
unification fails.

If in £, and F; below phr-sign C sign:

phr-sign sign
fr= >owuﬁwnm..zwu; Fr= >mxnﬁn_nm3u=;
Then
phr-sign }
AnFf=1 AGR = ﬁ PERS = 1
NUM = pl |
But if F and F are as below and sing M pl = L:
phr-sign i sign
A= >n_~uﬁwwﬂxmn_ g =1 AGR = “nmmmu_g
NUM = sing NUM = pl

The unification F, N F; fails, as the information Fy and #» convey about the
feature NUM is not consistent. Finally unifying

phr-sign sign
= agr - agr
fr= AGR = PERS = 1 Fr = AGR = | PERS = T
NUM = sing NUM = sing

we end up with:

phr-sign
- agr
ANf= 1 AGR = Tvmww 1 g

NUM sing

Now we define unification algebraically in two steps. Recall that to unify
feature structures F; and F, we want to ‘union’ the partial maps §; and &2,
making sure that

¢ the two initial nodes are made the ‘same’; .
e if a feature £ appears in both feature structures in a consistent way, this
feature appears only once in the unification.

176 de Paiva

Trying to make the initial nodes the same, we have to check that the relation
&3 that arises from this ‘identification’ and subsequent ones is really a partial
map, not a relation. Note that, given two feature structures F, and F5, we can
{without loss of generality) consider the sets of nodes | and (; disjoint. We
then write @) + O, for the disjoint union of ¢, and Q.

Define the union 8, + §; of the transition functions §; and & by

.mu+__.m~

(G1 + Q2) x FEAT (O +@Q2)

As a graph the partial map §; + &, is disconnected; it has two initial nodes, and
a feature f may appear in both components. Thus to make the initial nodes
the same we define an equivalence relation on the set of nodes Q) + @3. Given
feature structures | = {Q), qo, 61,) and Fy = (@7, g4, 62, a2} in F, we define
the equivalence relation ‘™0’ on the set & + (> as the least equivalence relation
such that: _

e go Mgy
o 5(q,fY ™ 82(q’.f) iff both are defined and g M 4.

Because we need to identify nodes in a coherent fashion, the unification oper-
ation is more complicated from the algebraic point-of-view than the operation of
generalisation. One observation is that having a (partial or not) map f:4 — B
and an equivalence relation on A, we could define an induced map [f] on the
equivalence classes of A by saying that [fl([2]) = [f(a)] if whenever a ~ g’
then f(@) = f(a’). This is to take the identity equivalence retation on B and it is
exactly what is done with unification of untyped feature structures, where B is
the set of ATOMS and the map o names the atomic nodes. When we merge the
graphs of F| and F; (as untyped feature structures), we say F; [1F; is defined
if a{[g’]} = a for any ¢’ € [¢]. But since we have a partial order on the set of
types TYPE there are more possibilities.

We define the unification of typed feature structures F| and F, as follows:

Definition 8 Given feature structures Fi = (Q1,qo,61, 1) and F; =
{Q2, 95, 62, a0) in F, their unification F\ N F; is the feature structure

FiNFy = (O ,[q0], b , e}

e The set of nodes Qu is given by the set of equivalence classes (O +

Q2)/ ™.

e The new initial node is the equivalence class [qo).
o The transition function 6w is given by the equivalence class of the union
of the transition functions 6, + 8, when it is defined, that is:

bua([q1.f) = [61 +62(q.,0)) if b1 + 62(q.f) is defined

Types and constraints in the LKB 177

o The new typing function oeq is the ‘meet’ of the cﬁ& in'the equivalence
class of g, that is asa([q1) = N{e(g" g’ M q}

provided that Fy 1 Fy is not cyclic. If Fi 0 Fy is cyclic we say that unification
fails.

In the same way we could do generalisation with LI or ' on types, we can do
unification with either, Looking at it from the graph-theoretical viewpoint we are
glueing or merging the graphs, if they are consistent, and then choosing either
L or M for the result type. The operation described above — true unification —
chooses the meet 1 of types. We could as well define an operation @: F x F —
F, doing unification of graphs but choosing the join LJ of types.

Unification could also be defined through the subsumption order of feature
structures, which is a theorem in Carpenter (1992). The unification may FAIL,
but if it does succeed, the result of the unification is the meet {or greatest
lower bound) of the feature structures being unified. Thus £, N F; C £y and
FiNF,CFandif G ©F, and G C Fy, then G T F| M F,. That is intuitively
reasonable, as the unification gives us the conjunction of the information in F;
and Fs, if they are consistent,

It is worth noting that a product is used for ‘join’ of information and a
coproduct, albeit a complicated one, is used for a ‘meet’ of information. This
is reminiscent of the situation in Domain Theory; the similarity between feature
structures and domains has been pointed out and used by several people in
different ways; see Pereira and Shieber (1984), Omnxw:no_. (1990, 1992) and
"Pollard and Moshier (1990} .

104.2 Comparing Feature Structures

The structure on the type hierarchy TYPE repeats itself on the collection of
feature structures F, which is why we have used the same symbols. Thus
(TYPE,L) is a partial order, where M is called unification of types and LI is
called generalisation of types. Also (F,C) is a pre-order, where 1 is given
by unification and L is given by generalisation. The same way two types are
consistent if £; [t exists, we say that F; and F, are consistent if their unification
F{ N Fy exists. Moreover {F,C) is a bounded complete pre-order. If F C F,
and F C F, then F, M F, exists and F T F{ T1F,. If we deal with (TYPE,C)
we can say that types are consistent if 7| 117, exists and is different from L.
Apart from being typed, the feature structures above are very similar to the
traditional ones in Shieber’s book (1986). In particular, we do not support
cyclic feature structures, so, as mentioned before, the set of nodes @ is an
acyclic connected or rooted graph. There are two main reasons to allow cyclic
feature structures. One is implementational, since the check for cycles (no
occurs-in check) during unification is computationally expensive. The other one
is more conceptual, as mathematically one of the problems with the assumption

178 de Paiva

that feature structures are acyclic s that you can start with two acyclic feature
structures, and their unification is cyclic. This problem can be ‘solved’ by
checking for cyclicity a posteriori, which is not very elegant. .

On the other hand, if one accepts cyclic feature structures, apart from problems
with checking for well-formedness (next section), one does not have a meet
semi-lattice if the set of nodes is finite (cf. Pollard and Moshier, 1990, p. 297).
Also, as Pollard and Sag (1987) put it

In general, cyclic graphs present certain mathematical and computational com-
plexities which are best avoided, although linguistic applications for them have
been suggested from time to time.

One of the differences between the feature structures here and the ones in
PATR-II is that, because of the type hierarchy, we can support in the formalism
disjunction of atomic values. That happens because we can ‘complete’ the
hierarchy (TYPE,C) with more ‘generic’ types. For example we can add a
type num above the types sing and pl, which stands for either of the types
singular or plural. In the traditional definition of a feature structure, since
é:Q »x FEAT — (is a partial map, to say that the feature NUMBER could have
values sing or pl on a node ¢ would not be possible — a partial map cannot
have two values at some node. Another way to deal with this problem is to
introduce a notion of set-valued feature structure. This is done, using distinct,
but similar, approaches in Pollard and Moshier (1990).

If we write (UF,C) for PATR-II untyped feature structures (using the
Moshier-Rounds definition) and their subsumption order, then we have a map
that ‘forgets’ the (non-atomic) types and the ordering among them

(F,5) = UF,C)
but preserves subsumption. We also have a function
UF,g) ™% (F,0)

which assigns the trivial type ‘T" to every non-terminal node.

10.5 Constraints

So far the typing of feature structures is only providing an ordering on values.
Any arbitrary assignment of types is possible and this is intuitively too uncon-
strained. Types should tell you which features to expect, in principle. Thus the
idea here is to ‘carve out” from the pre-order of all feature structures {(F,C) a
subset, the subset of the well-formed feature structures (W.F, C) and these will
be well-formed with respect to a given constraining function.

Here we depart substantially from Carpenter’s work. Carpenter describes an
‘appropriateness specification’, that is, a partial map

; Types and constraints in the LKB 179

e
N

| \a :..,__,/
binary-formula unary-formula
theta-form verb-sem

Figure 10.2: Fragment of a type hierarchy

Approp: TYPE x FEAT — TYPE

(satisfying some conditions} which says that for certain types some features are
appropriate and yield some other types. This is one possible formalisation of
the idea in Pollard and Sag (1987). ¥

The partial map Approp is equivalent to a total function

Approp: TYPE — [FEAT — TYPE]

which corresponds to associating to each type a list of its appropriate features
with types. But a list of features with types can be seen as a very simple {one-
level only) feature structure. For example, if we have a fragment of a type
hierarchy as in Figure 10.2, then an appropriateness specification for the type
formula, which has features IND, PRED and ARG1, could be:

formula

IND = entity

PRED = logical-pred
ARGl = sem

and by the way we wrote the list, one can see that it is, in fact, a very simple
feature structure. Hence the idea is to generalise appropriateness specifications,
by using feature structures instead of one-level only ones.

We generalise the idea of appropriateness specification by associating with
each type a whole feature structure in our constraint specification function. Thus
every type in (TYPE,C) must have exactly one associated feature structure
which acts as a constraint on all feature structures of that type. This associated
feature structure is given by the function

C:{TYPE,C) — (F,L}
but one can think about the constraint specification function C as the set of basic

feature structures C (), C{t3),...,C (#) — the constraint feature structures —
corresponding to the enumeration of the types #(,%2,..., 4 in (TYPE,C).

180 de Paiva

We think of appropriateness conditions as being (indirectly specified) infor- "~
mation which can be extracted from the constraint feature structures C (¢;) by
reading only their first level. We actuaily refer to the ‘appropriate features’ of
a type meaning the top level features of the constraint feature structures C (t;).
Clearly, having feature structures as constraints on types gives us an extra degree
of flexibility, as we can impose re-entrant constraints.

Any association of types to (their appropriate) features must satisfy some
conditions. We proceed to describe the conditions we impose on the constraining
function. Similar conditions are imposed by Carpenter and by Pollard and Sag
(1987).

The constraints imposed on a type are inherited by all subtypes of this type.
In mathematical terms that means that the function C is monotonic, a very rea-
sonable assumption, since its domain is the poset {TYPE,C) and its codomain
the pre-order F ordered by subsumption (¥, C). Thus:

Monotenicity Given types ¢ and 1, if t) T #; then C{t) C C(£2)

Of course, a subtype may introduce new features — thus if we have the same
fragment of a type hierarchy as before and the type formula had as its constraint -
feature structure the previous example, then its subtype binary-formula could
have as constraint:

binary-formula

IND = entity

PRED logical-pred
ARGI] sem

ARG2 sem

|

But not all monotonic functions C:{TYPE,C) — F determine a constraint
function. Another obvious condition on constraints is:

Type For a given type ¢, if (Q, 40,0, @) is the feature structure F
given by C{¢) then ax(go) = ¢.

Mathematically this means that composing the function C with the function
type-of gives the identity on the set TYPE; in other words we have a retraction,

type-of
TYPE — F
C

The condition Type is part of the ‘modelling convention’ in Pollard and Moshier
(1990). We also want a condition saying that a feature can only be introduced at
one (maximal) point in the type hierarchy — it will be inherited as an appropriate
feature by subtypes of that type. (This condition ailows us to carry out type
inference; see the next section.) Recall from section 10.3 that Feary(F) is the
set of features that appear on the top level of the feature structure F and that
F |, is the feature structure F' starting from the node g.

Types and constraints in the LKB 181

Given atype t'€ TYPE and a candidate constraint function C (¢) let the set of
appropriate features of the type t be the set of features AppFeat(t) that appear
on the top level of the constraint C (¢), that is, Feato(C (1)).

Maximal Introduction Given AppFear obtained from C(t), say C
satisfies a maximal introduction condition if for every feature
f & FEAT there is a unique type t = Maxtype(f) such that
[€AppFeart) and there is no type s such that ¢+ T s and
[€Appfea(s).

An appropriateness specification has to satisfy two conditions; the first corre-
sponds to Monotonicity and the second to Maximal Intreduction. Our con-
dition Type is not necessary in Carpenter’s approach because for each type he
gives directly the list of appropriate features and their types.

Another condition on the constraining function C seems very reasonable. This
condition says that the constraining feature structures C (¢;) must be compatible
with each other.

Compatibility If C(r) = F, and some f; appears in F), that is,
if Fy is the feature structure {Q,qq, 01,) and a;{g) = 1 for
some g in @, then C(r;) = F; is such that F||, £ F,. Moreover,
Featy(F\|g) = Feato(Fs).

The compatibility condition is reminiscent of Sheaf Theory (Tennison, 1975),
as it says that where the constraining feature structures C (1), C(f2),...,C(t)
overlap they agree with each other.

The compatability condition implies that no constraint feature structure
C(t) = F can strictly contain a feature structure of type ¢ or any subtype
of ¢. That is, if F' is given by (Q, g0, 6,), then for all non-initial nodes g € Q,
g # qo the type of the node afg) & ¢. If such a node existed it would have to
be the initial node of a feature structure F|; which was more specific than F,
i.e. Fls € F, and would therefore itself have to contain such a node, and so on.
Thus such a constraint could only be satisfied by a cyclic or infinite structure,
and we disallow both of these possibilities,

Note that consistency of the constraining feature structures C (¢;), for consis-
tent types & is enforced simply by monotonicity of the function C. If types
t, and f» are consistent — as types — 4 12 exists and /y N C 4 and
4 Mt £ 5. Since the constraining function € is monotonic C(f; M2} © C ()
and C{ M) C C(r). Thus the unification of C(ry) and C(r) as fea-
ture structures, C(¢;) M C(f2) exists (F is bounded complete) and is such that
C{t;Nt) C CHMNC (). Thus the constraint feature structures C () and C (£2)
are consistent as feature structures, simply by monotonicity of C.

Definition 9 A function C: {TYPE,C) — (F,C) is a constraint specification

function with respect to FEAT and {TYPE, C} if it satisfies Monotonicity, Type,
Maximal Introduction and Compatibility.

182 de Paiva

Definition 10 A feature structure F = {Q, qo, 6, &) in the collection of feature
structures F is a well-formed feature structure with respect to a given constraint
specification C iff forall g € Q,

e Flg CClolg)) and

o Featy(F |;) = Featg(C (ca(q))).

We call the collection of all well-formed feature structures WF. WF is a pre-
order, as the order in {F, C) restricts to WF.
Recap:
1. We wanted to carve out from the collection of all feature structures
(F,C) a collection of well-formed ones (W, £) with good properties.
2. To define well-formed feature structures we use a constraining function
C:TYPE — (F,C). To calculate whether any feature structure F is
well-formed we have to calculate some subsumptions and some sets of
features.
3. But not any function C: TYPE — F is a constraining function. To be a
constraining function C must satisfy the four conditions Monotonicity,
Type, Compatibility and Maximal Introduction,

Note that the constraint feature structures C(#;) are all well-formed by defi-
nition, using the compatibility condition, but the definitions are not circular, as
the process of checking compatibility of C ()’s terminates at the atomic types.
Also the function AppFeat that we used to define Maximal Introduction could
be obtained by forgetting some information present in AppSpec, namely the

target type.

10.5.1 Type Checking and Type Inferencing

As mentioned by Copestake er al. (this volume) the maximal introduction con-
dition on features makes a form of type inference possible, whereby a fea-
ture structure is given the most general type which is consistent with its top
level features. As each feature in FEAT has a maximal type Maxtype(f) at
which it can be introduced, given a set of features S C FEAT, cither the set
T = {Maxtype(f) | f € S} is inconsistent or it has a greatest lower bound
T where that set of features § will become valid. To show that one uses the
bounded completeness of TYPE again. This is interesting because we are not as-
suming any structure on the set of features, FEAT, but the maximal introduction
condition induces a notion of ‘consistency’ of sets of features.

We have a Well-formed Inference proposition, analogous to Carpenter’s Type
Inference theorem, which says:

Proposition 1 Given a constraint specification function C there is a partial
map

Fill: (F,C) — (WF,C)

Types and constraints in the LKB 183

such that for each F in (F,C), Fill returns a well-formed feature structure
F' = Fill(F) or fails.

But note that the procedure to transform any feature structure into a well-formed
one may fail.

10.5.2 Unification of Well-Formed Feature Structures

Unification of two well-formed feature structures will involve, in general, unify-
ing with the constraint feature structure associated with the meet of their types
in order to produce a well-formed result.

If Fy and F; are well-formed feature structures of types ¢ and ¢, respectively,
then F| M Fy, if it exists, has type £ M t. Since F; and F; are well-formed,
in particular we know that F; C C(#;) and F; T C(#;). Thus if | and F; are
consistent, F{ M Fy T C(4)MNC(tz). Butto be well-formed F| M F; has to satisfy
F) NF; CC{ Mty) and C (2, Mt2) might be more specific than C (1) N C ().

Consider the following example of a type hierarchy:

N

,/ \ : \/
L] I5 Is

Assume that the types t, fs and 7 are atomic (i.c. they have constraints [#],
{t5] and [ts], respectively) and the constraints on types £, I and 3 are:

f3
cay=[p.,]Cl=[z_c]C@= |11}
h T
We then have
C)NCiy) = Tw L
. 2

Thus #; = 41116 but C{t:) C C(1)NC{,) If we have the following well-formed
feature structures

Fi=[i-u] e 227

then their unification exists:

L5}
FiMF; = %3 51;
=T

H

184 de Paiva

But F, MF; is not a well-formed feature structure of type 73, as F1 (1F2 L C (13,
Moreover it cannot be extended to a well-formed feature structure, because il
value for f; is inconsistent with the constraint for #3. Note that the same situatio
_could arise with Carpenter’s appropriateness specifications.

The problem of starting with well-formed feature structures and not getting
well-formed unification can be solved by saying that the well-formed unificatio
of F, and F is the well-formed feature structure F| N F NC{n N &), if
exists. Another possibility would be to ask C to preserve meets C(f; M) -
C(#;) M C(t2), but this is too constraining, since it would also have to appl
to the cases where 1y and f» were not immediate parents of r, M#;. Thus th
unification operation is not a closed operation in WJF. Well-formed unificatio
of well-formed feature structures will result in a structure which is totally wel
typed (strongly typed) in Carpenter’s sense in that all the features which ar
possible for that type will be present in the feature structure.

This example illustrates that although the ordering on constraints given b
subsumption must be consistent with the type hierarchy, that is, #; C # implic
C (1)) C C(t2), we do not have that C(f; 11£g) ~ C ()N C(t;) nor that t;, C .
implies C(#) C C(f2).

10.6 Internal and External Logics

One can think about logic in the context of feature structures in two rath
different ways. One way is to think about the collection F as a set with sor
algebraic operations and try and see how these operations compare with tl
algebraic interpretations of traditional logical connectives. In this sense every s
which has the structure of a Boolean algebra is a model of classical proposition
logic, any set which has a Heyting algebra structure is a modet of intuitionist
propositional logic, any meet-semilattice is a model of a logic of conjunctio
etc. That is what we are calling the ‘internal logic’, as it is logical structure th
is already present in the algebraic definitions.

The second way is to produce a logical calcuius (or a set of formulas) fro
the feature structures. Thus we can read the paths in feature stnictures as atom
formulae and add the traditional logical connectives linking these formulae; th
was Kasper and Rounds’ approach in their seminal paper (1986). Subseque
work has been done to add more logical connectives; for instance, Moshi
and Rounds (1987) add intuitionistic implication and negation to the logic
feature structures. To make a clear distinction between the feature structur
and the formulae built using the same attributes one talks about the language
attribute-value ‘descriptions’. Descriptions are then a neat notation for pickii
up feature structures and we can talk about disjunctive descriptions — even
they cannot be represented by a single feature structure.

Types and constraints in the LKB 185
10.6.1 " Internal Logic e

When the collection of feature structures is regarded as a set with algebraic struc-
ture, where we look for the intrinsic logical operators, ar unusual propositional
logic emerges, where conjunction (or unification) is partial; that is, conjunction
only exists for certain pairs of feature structures, the consistent ones. Recall
that [T] behaves as the identity for unification as F (1{T] = [T]N¥F = F for
any F in F.

Note that even with partiai conjunction, we could tatk about one feature
structure implying another F; = F», where we would define F| = Fz as the
greatest (or least informative) feature structure X such that F, (X C #,, when
F1 M1 X is defined (Pollard and Sag, 1987). Then we have a (closed) logic of
*partial implication and partial conjunction’.

Generalisation gives us a *kind of’ disjunction. But the logical operation
given by generalisation in F is not logical disjunction. For instance, assume
that F; and F, are as below, and 1, 2, 3 are immediate subtypes of per,

phr-sign phr-sign .
_ agr . _ agr :
ft=1 AGR = | PERS = 1 f1=| AGR = | PERS = 2
NUM = sing NUM = sing

Then intuitively one expects that Fy V F> should be

[phr-sign
agr

AGR = PERS = ‘1v 2
NUM = sing

But FiUF;is
[phr-sign
agr
AGR = _vawm = vn..u—
NUM = sing

Hence (F, VF;) C (F, UF,), which means that Ll is not fine-grained enough
to model disjunction of information. Thinking about the internal logic of feature .
structures in F one is reduced to a logic of partial conjunction, partial implication i
and total (but very strange) ‘form-of-disjunction’. :

We can make conjunction total, by adding an inconsistent feature structure.
Supposing we have (TYPE,C), instead of {TYPE,C) we have an atomic
feature structure {]. We could use this feature structure to make unification ,,
total, that is, we could define F) M Fy = [L], if F; MF3 fails. This is analogous
to the situation with types.

But [1] is not an identity for generalisation. If an identity / for generalisation
existed it should satisfy f C F, for alt F’s in F, the characteristic of false, the
identity for disjunction, hence we should have a morphism of feature structures

186 de Paiva

F — I. We also want to complete the definition of 7 by saying which-is the
partial map 7: 1 x FEAT — 1 making the diagram below commute.

: 6 a
@xmmb,._. ,O \._.<_u_m

1 x FEAT ! + TYPE

But there is only one map Q — 1 and if the diagram above were a morphism of
feature structures *2(!(g),f)" would have to be defined and equal to “1(8(g,f))’
for any feature f € FEAT. That means that the partial map ‘2’ would have
2*,f) = * for all features and that is not a partial map, hence not a feature
structure.’> Even if [L] is not ideal as ‘the’ inconsistent feature structure, say,
F| and F; are consistent if | F1F, exists and is different from {L].

Thus if we use {TYPE,) we have total conjunction, but no constant false,
and disjunction and generalisation are not the same — a very poor logical set
up. But of course there are external logics. One of the first external logics was
described by Kasper and Rounds and is the subject of the next section.

10.6.2 Logic of Descriptions

In this section we introduce a restriction of the logical attribute-value language
that several researchers, notably Kasper and Rounds (1986, 1990) and Carpenter
(1992) employ to describe feature structures. Much more powerful description
languages are used by researchers who prefer feature algebras, and a comparison
between these two approaches is not attempted here.

Definition 11 The set of descriptions over the poset {TYPE,C) of types and
the collection FEAT of features is the least set DESC such that

t € DESC ift € TYPE

m:¢ € DESC if 7 € FEAT" and ¢ € DESC
T = m € DESC if m|, m € FEAT"

¢ AP € DESC if ¢ and 4 € DESC

The idea of providing descriptions as formulae of a logic to be satisfied by some
feature structures is introduced by Pereira and Shieber (1984), but they, as well
as many other researchers, have a richer set of formulae.

3 Note that we assume that the set FEAT has at least two elements.

Types and constraints in the LKB 187

- Since we restricted the formulae in DESC to the A-fragment of propositional
logic in the definition above, it does not matter how satisfaction is defined, as
the A-fragment of classical logic is equivalent to the A-fragment of intuitionistic
jogic. But if we want to add disjunction or implication or negation to DESC,
a choice of logical framework becomes necessary. Also different notions of
satisfaction will lead to different logical formalisms, which explains why there
are so many papers in the literature on this topic.

Definition 12 The satisfaction relation relates the collection of feature struc-
tures F and the set of descriptions DESC. It is the least relation ‘&=’ such that,
if F is the feature structure {Q,qo, 6, o) and ¢ € DESC

FEtift e TYPE and a{go) C ¢
FEmdifF@r=¢

Fl=m = m if 8(go, 1) = 8(qo, m2)
FEoAYIFi=dandF =9

Note that the type T, which is already in DESC by definition, behaves as
the constant true for this logic. It is satisfied by any feature structure F = T,
because for all F € F, a(ge) C T. Recall as well the following usual logical
definition,

Definition 13 Consider the set of all feature structures that satisfy a certain
description ¢, that is Sat(¢) = {F € F|F = ¢}.

If ¢ is a formula in DESC, say that ¢ is satisfiable if there exists a feature
structure F that satisfies it, that is the set Sat(¢) is not empty.

We have the traditional result:

Proposition 2 If F| = ¢ and Fy C Fy then Fy |= ¢ (monotonicity).

For every satisfiable formula ¢ there is a most general feature structure
MGSar(¢) that satisfies it.

For any feature structure in JF there is a description Desc(F) such that

F = MGSat(Desc(F }))

The results and definitions above are all in Kasper and Rounds, the only
reason to recall them here is to remind the reader that these results are another
way of expressing the existence of the internal logic. In other words, within this
small fragment of propositional logic, we have a notion of entailment ‘" and as
entailment is reflexive and transitive, we can think of {DESC,F) as a pre-order,
where meet 7 is given by conjunction and T is the constant true. Clearly, given
any feature structure F, we can write it as a big conjunction of descriptions,
hence the existence of the the function Desc in the proposition above and the

188 de Paiva
diagram below:

i

(DESC,F) —— (DESC,F),
T

Desc

(F

n

type-of

1 1
(TYPE, C) ——— (TYPE,C},

Having established a minimum common denominator one could extend the set
of descriptions to accommodate several formalisms. If we choose intuitionistic
logic, we can have the Moshier and Rounds (1987) approach. If we choose
three-valued logic we can use Dawar and Vijay-Shanker’s (1989) formalism. If
we choose classical logic, we can have the Kasper and Rounds (1986, 1990)
system and Carpenter’s (1990, 1992) system (both have classical disjunction).
Still using classical logic but at right angles, we have Smolka’s (1988, 1989)
and Johnson’s {1988) systems where DESC has variables and negation. Reape
(1991) also adds variables, but he wants to consider the features in paths of the
form (fi: ¢} as modal (possibility)* operators, thus getting a poly-modal logic.

10.7 Conclusion

We presented a rigorous mathematical definition of a system of weli-formed
typed feature structures. Qur system is very similar to Carpenter’s system, but
we allow more expressive constraints to be made over types. In our system
each type t; is constrained by a whole, possibly re-entrant, constraint feature
structure C (f;), while using Carpenter’s appropriateness specifications each type
is constrained by a list of features and types — a one-level only feature structure.
On the other hand, Carpenter allows (general) “disjunctive constraints’” which
we do not handle at the moment. It should be noted that we could not use
Carpenter’s appropriateness specifications alone to give the sort of functionality
for inheritance in the type system that we needed, thus the generalisation to
well-formedness.

We also pointed out where somewhat different choices could be made in the
formalisation of typed feature structures and presented two new operations that

4 This also seems to be the case for the Category Structures of Gazdar et 2. (1988).

Types and constraints in the LKB 189

one could consider over feature structures Jooking at them from the mathematical
viewpoint only. Finally we briefly discussed one of the reasons why there are
many different logics of feature structures in the literature, but for a survey of
these logics the reader is referred to the substantial works of Carpenter, Reape
and Johnson,

Acknowledgements

Many of the basic ideas and intuitions in this chapter are due to Ann Copes-
take, Ted Briscoe and Antonio Sanfilippo. The way in which these ideas have
been formalised is the responsibility of the author, as are any mistakes in the
formalisation.

