
Ling 130 Notes: The λ-Calculus: Part 1

James Pustejovsky

February 4, 2010

1 Defining Functions

In this handout we will examine the ways in which functions are defined in a number of languages
that you are no doubt familiar with. We will then give the basic syntax for the λ-calculus and move
on to the rules of application and abstraction for the language.

The λ-calculus is a formal notation, theory, and a model of computation.1 The λ-calculus al-
lows you to define functions without giving them names, that is, they are anonymous. Expressions
defined in this notation are called λ-expressions, and every λ-expression denotes a function under
some interpretation.

A λ-expression consists of three kinds of terms:

(a.) variables: x,y, z, etc.:
Variables can be bound or free. Variables are bound to functions in an environment, and they
become bound by usage in an abstraction.

(b.) abstractions: λV.E:
V is a bound variable over the bodyE. The expression denotes the function that, when given
an argument A, evaluates to the function E′, with all occurrences of V in E replaced with a,
written as E[a/V].

(c.) applications:(E1E2):
If E1 and E2 are λ-expressions, so is (E1E2). Application is function evaluation, where we
apply the function E1 (the rator) to the argument E2 (the rand).

Specified in BNF, the formal syntax of the λ-Calculus is quite simple:

E::= V | λV.E | (E1E2)

V ::= x | y | z | . . .

1.1 Conversion and Reduction Rules

Expressions can be transformed into equivalent forms through the application of three rule schemas.

(a.) α-conversion:
Any abstraction λV.E can be converted to λV.E[V ′/V] iff [V ′/V] in E is valid.

1Prof. Mairson’s graduate class presents a lot of interesting properties of the λ-calculus, and I encourage you to
attend his class when it is offered, if you are interested in functional programming or polymorphic type systems.

1

(b.) β-conversion:
Any application (λV.E1)E2 can be converted to E1[E2/V] iff [E2/V] in E1 is valid.

(c.) η-conversion:
Any abstraction (λV.E)V where V has no free occurrences in E can be converted to E.

1.2 Syntactic Sugar

The λ-calculus binds variables in a way similar to the sugaring that the language Scheme estab-
lishes local variable binding. Scheme has let and let* operators for establishing local bindings
of variables to values over a lexically scoped block. In a let expression, all values in the list of
bindings are evaluated and then bound to the local variables. In a let* expression, the values are
evaluated and bound to the variables sequentially.

(define x 2) => x
(let ((x 3) (y x)) (* x y)) => 6
(let* ((x 3) (y x)) (* x y)) => 9

This is a sugared version of:

((lambda (x y) (* x y)) 3 x) => 6
((lambda (x) ((lambda (y) (* x y)) x)) 3) => 9

2 The Simply Typed λ-Calculus

We will now present a language which uses specific types of entities, where the entities are com-
bined with the λ-calculus. From a nonempty set BasType of basic types, the set T or types is the
smallest set such that:

(a) BasTyp ⊆ T

(b) If σ, τ ∈ T , then σ → τ ∈ T .

We will take BasTyp, following Montague, to be

BasTyp = {Ind,Bool} or {e, t}

where e is the type of individuals and t is the type of propositions.
In order to demonstrate the application and abstraction of typed expressions, let us consider

some examples from linguistic expressions. Given the basic types of e and t, we can construct
recursively other types, which in fact correspond quite nicely to notions that we are familiar with
from first order logic or semantics. Consider the following. If an expression such as “John”,
denoting the individual John in the world, is an entity and hence of type e, and an expression
such as “John fell” is a proposition that is either true or false (and hence of type t), then what is the
predicate “fell” in this expression typed as? Well, if the mode of construction is functional, then,
it will be a function, typed as e→ t.

2

t
�
�

��

@
@
@@
e→ te

The types here are acting functionally, according to the rule of application, given below:

(a) Function Application: If α is of type a, and β is of type a→ b, then β(α) is of type b.

Hence, the type for an intransitive verb is e → t. In fact, this is the type for any predicate in
general.

(i) walk: e→ t

(ii) walk slowly: e→ t

(iii) eat fish: e→ t

(iv) tell Mary where to buy her house: e→ t

The rule for abstraction allows us to substitute a predicate constant for a λ-expression of the ap-
propriate type:

(a) walk = λx[walk(x)]

(b) love = λxλy[love(y, x)]

Notice that a binary relation is yet another function, built out of the simpler function of an intran-
sitive predicate.

2.1 Determining the Type of an Expression

For any expression φ, of type τ , the functional abstraction of φ with variable x of type σ has the
type σrightarrowτ . This is visualized below:

σ→τ︷ ︸︸ ︷
λ

σ︷︸︸︷
x

τ︷︸︸︷
φ

So, it might be clear how to make unary, binary, and ternary relations using functional abstraction
and types, but what do we do for cases that appear to be higher order in nature? For example,
consider the behavior of adverbs.

(a) John fell slowly.

(b) Mary talked quickly.

(c) Bill ate noisily.

What we will do is treat adverbial phrases as functions over predicates, returning predicates. As
such, the type for an adverbial is (e → t) → (e → t)). The type tree for such a modification is
shown below:

3

e→ t
�
�

��

@
@
@@

((e→ t)→ (e→ t)e→ t

This will be the general strategy in most typed λ-calculi for treating higher order modification
relations. An example of the syntactic structure and type tree for a simple binary relation taking
proper names is illustrated below.

(a) John loves Mary. S:t. love(j,m)
H
HHHH

�
����

John:e. j VP: e→ t. λx[love(x,m)]

John

���
��

V:e→ (e→ t)

love. λxλy[love(y, x)]

HHH
HH

NP:e. m

Mary

4

