
LING 130: Guide to Problem Set 3

James Pustejovsky

March 10, 2010

1 Keeping Track of Substitution Values

Recall that the method of Quanitifier Substitution has two components to it.

(1) a. Quantifier Substitution
b. Substitution Application

The first rule applies when a functional expression, α, is requesting an argument of a certain type,
and the potential argument expression is not of that type. For example, if α is looking for an
entity type, e, but the other expression, β is a generalized quantifier, (e → t) → t, then perform
a substitution of β with a constantC, that satisfies the type requested by α; [C/β]. Generally, this
rule is stated as follows:

(2) Quantifier Substitution:
For every expression, γ, in a sentence, we associate a body, α, and the set of quantifier
substitutions, Σ, where Σ = {[C1/Q1]σ1 , [C2/Q2]σ2 , . . . , [Cn/Qn]σn}
γ = α{Σ}

The second part of the method is a rule called Substitution Application. This applies to each substi-
tution, σi in Σ, and it performs the following operation:

(3) α{σu} =⇒ σu(λuα[u])

Let’s see how this method works when the sentence has more than one QNP in it, such as those
in (4)-(5) below.

(4) a. A judge sentenced every prisoner.
b. ∀x[prisoner(x) → ∃y[judge(y) ∧ sentence(y, x)]]
c. ∃y[judge(y) ∧ ∀x[prisoner(x) → sentence(y, x)]]

(5) a. Every dog ate a bone.
b. ∀x[dog(x) → ∃y[bone(y) ∧ eat(x, y)]]
c. ∃y[bone(y) ∧ ∀x[dog(x) → eat(x, y)]]

Here’s how to think about this problem. How many quantifier NPs are there? For each one, you
will need a substitution. Since they are independent of one another (e.g., there’s no embedded
quantifiers), we can picture how each one gets substituted by the QS method. Consider the two
quantifiers in (4).

1



(6) a. 〈“every prisoner”, (e→ t) → t, λP∀x[prisoner(x) → P (x)]〉
b. QS: 〈 “every prisoner”, e, C1〉, [C1/λP∀x[prisoner(x) → P (x)]]σ1

(7) a. 〈“a judge”, (e→ t) → t, λP∃x[judge(x) ∧ P (x)]〉
b. QS: 〈 “a judge”, e, C2〉, [C2/λP∃x[judge(x) ∧ P (x)]]σ2

So now, let’s go through each interpretation in (4), starting with the wide-scope on a judge.
That is, there is one judge that sentenced all the prisoners.

(8) STEP-BY-STEP:
a. A judge sentenced every prisoner.
b. sentence: λxλy[sentence(y, x)]
c. Quantifier Substitution (QS): C1 : e, [C1/λP∀x[prisoner(x) → P (x)]]σ1

d. Function Application: λxλy[sentence(y, x)] : e→ (e→ t), C1 : e =⇒
λy[sentence(y, C1)]{σ1} : e→ t
e. Quantifier Substitution (QS):
C2 : e, [C2/λP∃x[judge(x) ∧ P (x)]]σ2

f. Function Application: λy[sentence(y, C1)]{σ1} : e→ t, C2 : e =⇒
[sentence(C2, C1)]{σ1, σ2} : t
g. Substitution Application on σ1:
λP∀x[prisoner(x) → P (x)]{σ2}(λz[sentence(C2, z)])
h. Function Application:
∀x[prisoner(x) → sentence(C2, x)]{σ2}
i. Substitution Application on σ2:
λP∃y[judge(y) ∧ P (y)](λw∀x[prisoner(x) → sentence(w, x)])
j. Function Application:
∃y[judge(y) ∧ ∀x[prisoner(x) → sentence(y, x)]]
o. ,

The other reading starts with the above derivation at (9f), and applies SA on σ2 first, then moves
on to SA for σ1.

(9) STEP-BY-STEP:
a. A judge sentenced every prisoner.
. . .
f. Function Application: λy[sentence(y, C1)]{σ1} : e→ t, C2 : e =⇒
[sentence(C2, C1)]{σ1, σ2} : t
g. Substitution Application on σ2:
λP∃x[judge(x) ∧ P (x)]{σ1}(λz[sentence(z, C1)])
h. Function Application:
∃x[judge(x) ∧ sentence(x,C1)]{σ1}
i. Substitution Application on σ1:
λP∀y[prisoner(y) → P (y)](λw∃x[judge(x) ∧ sentence(x,w)])
j. Function Application:
∀y[prisoner(y) → ∃x[judge(x) ∧ sentence(x, y)]]
o. ,

2


