Ling 130 Notes: Semantics of First-order Logic

James Pustejovsky

February 4, 2010

This allows us to generalize first order objects as *terms*, defined below:

Definition 1:

(i) $\llbracket t \rrbracket_{\mathbf{M},g} = I(t)$ if t is a constant in L;

(ii) $\llbracket t \rrbracket_{\mathbf{M},g} = g(t)$ if t is a variable.

We can now give the full definition of expressions in the predicate calculus, within a model, **M**, and assignment function, *g*:

Definition 2:

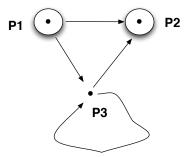
(i) If $A(a_1, \ldots, a_n)$ is an atomic sentence in L, then $V_{\mathbf{M},g}(A(t_1, \ldots, t_n) = 1 \text{ iff } \langle \llbracket t_1 \rrbracket_{\mathbf{M},g}, \ldots \llbracket t_n \rrbracket_{\mathbf{M},g} \rangle \in I(A).$

(ii)
$$[\![\neg\phi]\!]_{\mathbf{M},g} = 1$$
 iff $V_{\mathbf{M},g}(\phi) = 0$

- (iii) $\llbracket \phi \land \psi \rrbracket_{\mathbf{M},g} = 1$ iff $V_{\mathbf{M},g}(\phi) = 1$ and $V_{\mathbf{M},g}(\psi) = 1$
- (iv) $\llbracket \phi \lor \psi \rrbracket_{\mathbf{M},g} = 1$ iff $V_{\mathbf{M},g}(\phi) = 1$ or $V_{\mathbf{M},g}(\psi) = 1$
- (v) $\llbracket \phi \to \psi \rrbracket_{\mathbf{M},g} = 1$ iff $V_{\mathbf{M},g}(\phi) = 0$ or $V_{\mathbf{M},g}(\psi) = 1$
- (vi) $\llbracket \phi \leftrightarrow \psi \rrbracket_{\mathbf{M},g} = 1$ iff $V_{\mathbf{M},g}(\phi) = V_{\mathbf{M},g}(\psi)$.
- (vii) $[\![\forall v\phi]\!]_{\mathbf{M},g} = 1$ iff for all $d \in \mathcal{D}$: $V_{\mathbf{M},g[v/d]}(\phi) = 1$

(viii) $[\exists v \phi]_{\mathbf{M},g} = 1$ iff there is at least one $d \in \mathcal{D}$: $V_{\mathbf{M},g[v/d]}(\phi) = 1$

Assume a model, where constants and predicates have the following interpretation:



Model M_1 :

$$I(a) = P_1, I(b) = P_2, I(c) = P_3, I(A) = \{P_1, P_2\}$$
$$I(R) = \{\langle P_1, P_2 \rangle, \langle P_1, P_3 \rangle, \langle P_3, P_2 \rangle, \langle P_3, P_3 \rangle\}$$

Now let us use this definition to determine the truth value of the following sentences:

1.
$$\forall x \exists y \exists z [(R(x,y) \land R(z,x)) \to \neg A(x)]$$

2. $\exists x \exists y \exists x [R(x,y) \land A(y) \land R(x,z) \land \neg A(z)]$

What are the steps in calculating the interpretation of this expression for the above model M_1 ?