Ling130 – Lecture Notes for 2/12/10

* Goals for today

- > Start over with λ -calculus
- Abstraction and Application Rules
- Type Derivations
- More interesting types
- Interpreting typed expressions
- Problem Set 2

What's the deal with λ-calculus?

- It's used to define functions and we can think of everything in FOL as a function
 - Consider ∀x(sleepy(x)). This could mean "everyone is sleepy" and it is either true or false (it has type t).
 - Now consider *sleepy(x)*. This is like a "holey" preposition. It doesn't really mean anything unless we know what x stands for.
 - The FOL quantifiers tell us what the free variable could stand for, but what if we just want to define the preposition?
 - λx[sleepy(x)] = a function that takes in a value for x and outputs a truth value.

* The Syntax of λ-Expressions

- > Variables x, y, z, etc.
 - Just like the variables we have in FOL
 - Can be bound or free
- > Abstractions $\lambda V.E$
 - *V* is a bound variable over the body *E*.

- Example: $\lambda x[P(x)]$ means that the variable x is bound in P.
- This is how functions are defined in λ -calculus.
- What is the type of a λ-abstraction?
 - The type is composed by the type of the argument variable *V* and the type of the expression *E*.
 - x:e, φ:t |-- λx[φ]:e→t
- > Applications (E_1E_2)
 - Function application where we apply E_1 to E_2 .
 - Example: λx[sleepy(x)](j)
 - The argument *j* must be the same type as *x*.
- Basic Normal Form
 - $E::=V|\lambda V.E|(E_1E_2)$
 - *V*::=x|y|z|...
- > Note that expressions in λ -calculus can also have quantifiers in them.
 - Example: λx[∃y[loves(y,x)]](m) is wellformed.

* Conversion and Reduction Rules

- There are 3 rules you can use in λ-calculus, but we will be mostly interested in β-conversion.
 - *α*-conversion: Any abstraction *λV*.*E* can be converted to
 λV.*E*[*V'*/*V*] iff [*V'*/*V*] in *E* is valid.
 - Read [V'/V] as "replace V with V".
 - This just means you can change all of the bound occurrences of *V* in *E* with a different variable.
 - η-conversion: Any abstraction (λV.E) where V has no free
 occurrences in E can be converted to E.
 - β-conversion: Any application (λV.E₁)E₂ can be converted to
 E₁[E₂/V] iff [E₂/V] in E₁ is valid.

- This is the basic rule of function application for λ -calculus and we'll use it a lot!
- Example: $\lambda x[sleepy(x)](j) \triangleright sleepy(j)$
- Example: $\lambda x[\exists y[loves(y,x)]](m) \ge \exists y[loves(y,m)]$

Back to Types

- > We've already talked about types a little bit for λ -calculus.
- > Let's look at another example: "John loves Mary."
 - $\lambda y \lambda x [loves(x,y)] = Love':e \rightarrow e \rightarrow t$
 - Type Tree

- It's pretty easy to see how the basic types work in λ-calculus, but what about other elements of language such as adverbs and conjunctions?
 - We can figure out the types of different categories by figuring out what they input and output.
 - Example: "John walks slowly."
 - What we already know: *j*:*e*, $\lambda x[walks(x)]:e \rightarrow t$
 - Type Tree for John walks.

- We still need to get type t at the top of the tree. Applying λx[walks(x)](j) does that, so we don't want the adverb to change the type of the verb.
- So, adverbs take in the type of the verb phrase e→t and output the same type: (e→t)→(e→t)
- Type Tree for John walks slowly.

- > Let's figure out the types of different syntactic categories:
 - Clausal Verb: Jess believes that <u>Elana is the cutest baby</u>.
 - What is the type of the clause? *t*
 - Again, we want to end up with a *t* at the end, so the type of *believes* is $t \rightarrow (e \rightarrow t)$.
 - Auxiliary Verb: Jess may be wrong. (but probably not)
 - This is similar to adverbs.
 - be wrong is type $e \rightarrow t$; may is type $(e \rightarrow t) \rightarrow (e \rightarrow t)$
 - Negations: It is not the case that Jess is wrong.
 - Negations take in sentences and output sentences so they have type t→t.
 - Conjunctions (of sentences)
 - t→(t→t)
 - Conjunctions take in things of the same type and then output that same type. We will return to conjunctions later.

- The ability to talk about all of these (complex) categories is what makes type theory (and therefore λ-calculus) much more powerful than FOL.
 - Type assignments that are more than just *e* are called <u>higher</u>.
 <u>order</u>. Predicates like *e*→*t* can be arguments as well as individuals.

Constituent	Translation	Туре
love	$\lambda y \lambda x[loves(x,y)] = Love'$	e→(e→t)
Mary	т	е
love Mary	Love'(m)	e→t
willingly	Willingly'	(e→t)→(e→t)
willingly love	Willingly'(Love'(m))	e→t
Mary		
didn't	$\lambda P \lambda z [\neg P(z)]$	(e→t)→(e→t)
didn't willingly	λΡλz[¬P(z)](Willingly'(Love'(m)))	e→t
love Mary		
John	j	е
John didn't	λ <i>z</i> [¬(Willingly'(Love'(m)))(z)](j)	t
willingly love	= ¬(Willingly'(Love'(m)))(j)	
Mary		

• Example: John didn't willingly love Mary.

Type Tree

- The main thing to notice during this exercise was the use of the capital letter P in the translation for didn't.
 - As always, capital letters mean predicates, so this is an example of a predicate being used in an abstraction.
 - Look again at the type for $didn't: (e \rightarrow t) \rightarrow (e \rightarrow t)$
 - The type tells us that *didn't* requires a predicate and an entity, and that's just what the corresponding λ-expressions says: λPλz[¬P(z)]
 - We'll use predicates in λ-expressions more when we get to the next chapter.

* Interpreting Typed Expressions

- Typed expressions that are just FOL can use the same interpretation as FOL does, described in section 3.3.
- Obviously, given what we just saw, that would be an incomplete interpretation for all typed expressions though!
- Our plan is to try to stick with set theory, but modify things a bit to account for the extra power of type theory.
- Denotations we already know:
 - The denotation of an expression of type *e* is an entity from the domain of individuals. (written *D_e*)
 - The denotation of an expression of type t is a truth value from the domain {0,1}. (written D_t)
 - The denotation of an expression of type e→t is a set of entities.
 - The denotation of an expression of type *a*→*t* where *a* is a type is a set of objects of type *a*.

- Unfortunately, we need to take a step back to talk about some more "mathy" stuff before we can figure out what all types denote.
 - <u>Relations</u>: a set of ordered pairs mapping elements in the domain to elements in the range.
 - Ex. {<a,2>,<b,2>, <b,4>, <b,5>, <d,5>}

- <u>Functions</u>: a special kind of relation; A relation is a function iff every element in the domain is assigned one and only one value in the range.
 - Ex. {<a,1>, <b,2>, <c,2>, <d,4>, <e,4>}

- Functions are unambiguous and fully specified.
- <u>Characteristic Function</u>: a special kind of function that directly defines a set; it maps the elements of its domain onto 1 if that element is in the set or 0 if it is not.
- Back to the denotations of types
 - Recall that 1-place predicates denote sets and are expressions of type e→t
 - Characteristic functions are functions from entities to truth values. (sounds familiar!)

- Now we can figure out the denotations of all typed expressions recursively, just as we defined the definitions of types recursively.
- Let D_{τ} be the denotation domain for a type τ . Then we have: $D_{i \rightarrow i} = D_i \mapsto D_i$
- This is basically what the denotations of typed expressions look like:
 - A function from the domain of things denoted by their antecedent type to the range of things denoted by the consequent type.
- The general denotation of type τ is symbolized as D_{τ} and is defined as:
 - a) $D_e = A$ (the set of entities)
 - b) $D_t = \{1,0\}$ (the set of truth values)
 - c) If **a** and **b** are types, then $D_{a_{\rightarrow}b}$ is $D_{a} \mapsto D_{b}$, a set of functions from elements of type **a** to elements of type **b**.
- Figuring out the denotation of a particular type involves unpacking the denotation of its parts:

 $D_{e \rightarrow (e \rightarrow r)} = D_e \mapsto D_{e \rightarrow r} =$

• Ex. $D_e \mapsto (D_e \mapsto D_r) = A \mapsto (A \mapsto \{1,0\})$

(functions from entities to functions from entities to truth values)

$$\begin{split} & D_{(e \to t) \to (e \to t)} = D_{e \to t} \mapsto D_{e \to t} = \\ & \mathsf{Ex.} \quad (D_e \mapsto D_t) \mapsto (D_e \mapsto D_t) = (A \mapsto \{0, 1\}) \mapsto (A \mapsto \{0, 1\}) \end{split}$$

(functions from functions from entities to truth values to functions from entities to truth values

* Chapter 3 Problem Set

- > Exercise 3.1(a,c) truth tables for propositional logic
- > Exercise 3.2(a-d) FOL models
- Exercise 3.3(a-c) More FOL stuff (translations, truth conditions, evaluations)
- > Exercise 3.5(b,c) Basic λ -calculus
- Exercise 3.6('detest', 'or', b) Types for expressions, building up types for sentences
- Exercise 3.7('detest', 'or') Denotations for typed expressions
- New Due Date: March 2

Something to think about for next time:

> What happens when the types don't fit nicely together?