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 Goals for today 

 Start over with λ-calculus 

 Abstraction and Application Rules 

 Type Derivations 

 More interesting types 

 Interpreting typed expressions 

 Problem Set 2 

 

 What’s the deal with λ-calculus? 

 It’s used to define functions and we can think of everything in 

FOL as a function 

 Consider ∀x(sleepy(x)).  This could mean “everyone is 

sleepy” and it is either true or false (it has type t). 

 Now consider sleepy(x).  This is like a “holey” preposition.  It 

doesn’t really mean anything unless we know what x stands 

for. 

 The FOL quantifiers tell us what the free variable could stand 

for, but what if we just want to define the preposition? 

 λx[sleepy(x)] = a function that takes in a value for x and 

outputs a truth value. 

 

 The Syntax of λ-Expressions 

 Variables – x, y, z, etc. 

 Just like the variables we have in FOL 

 Can be bound or free 

 Abstractions – λV.E 

 V is a bound variable over the body E. 



 Example: λx[P(x)] means that the variable x is bound in P. 

 This is how functions are defined in λ-calculus. 

 What is the type of a λ-abstraction? 

• The type is composed by the type of the argument variable 

V and the type of the expression E. 

• x:e, φ:t |-- λx[φ]:et 

 Applications – (E1E2) 

 Function application where we apply E1 to E2. 

 Example: λx[sleepy(x)](j) 

• The argument j must be the same type as x. 

 Basic Normal Form 

 E::=V|λV.E|(E1E2) 

 V::=x|y|z|… 

 Note that expressions in λ-calculus can also have quantifiers in 

them. 

 Example: λx[∃y[loves(y,x)]](m) is wellformed. 

 

 Conversion and Reduction Rules 

 There are 3 rules you can use in λ-calculus, but we will be  

mostly interested in β-conversion. 

 α-conversion: Any abstraction λV.E can be converted to 

λV.E[V’/V] iff [V’/V] in E is valid. 

• Read [V’/V] as “replace V with V’”. 

• This just means you can change all of the bound 

occurrences of V in E with a different variable. 

 η-conversion: Any abstraction (λV.E) where V has no free 

occurrences in E can be converted to E. 

 β-conversion: Any application (λV.E1)E2 can be converted to 

E1[E2/V] iff [E2/V] in E1 is valid. 



• This is the basic rule of function application for λ-calculus 

and we’ll use it a lot! 

• Example: λx[sleepy(x)](j)  sleepy(j) 

• Example: λx[∃y[loves(y,x)]](m)  ∃y[loves(y,m) 

 

 Back to Types 

 We’ve already talked about types a little bit for λ-calculus. 

 Let’s look at another example: “John loves Mary.” 

 λyλx[loves(x,y)] ≡ Love’:eet 

 Type Tree 

 

 

 

 

 

 It’s pretty easy to see how the basic types work in λ-calculus, 

but what about other elements of language such as adverbs and 

conjunctions? 

 We can figure out the types of different categories by figuring 

out what they input and output. 

 Example: “John walks slowly.” 

• What we already know: j:e, λx[walks(x)]:et 

• Type Tree for John walks. 

 

 



• We still need to get type t at the top of the tree.  Applying 

λx[walks(x)](j) does that, so we don’t want the adverb to 

change the type of the verb. 

• So, adverbs take in the type of the verb phrase et and 

output the same type: (et)(et) 

• Type Tree for John walks slowly. 

 

 

 

 

 

 

 Let’s figure out the types of different syntactic categories: 

 Clausal Verb: Jess believes that Elana is the cutest baby. 

• What is the type of the clause? t 

• Again, we want to end up with a t at the end, so the type 

of believes is t(et). 

 Auxiliary Verb: Jess may be wrong. (but probably not) 

• This is similar to adverbs. 

• be wrong is type et; may is type (et)(et) 

 Negations: It is not the case that Jess is wrong. 

• Negations take in sentences and output sentences so they 

have type tt. 

 Conjunctions (of sentences) 

• t(tt) 

• Conjunctions take in things of the same type and then 

output that same type.  We will return to conjunctions 

later. 



 The ability to talk about all of these (complex) categories is what 

makes type theory (and therefore λ-calculus) much more 

powerful than FOL. 

 Type assignments that are more than just e are called higher-

order.  Predicates like et can be arguments as well as 

individuals. 

 Example: John didn’t willingly love Mary. 

Constituent Translation Type 

love λyλx[loves(x,y)] = Love’ e(et) 

Mary m e 

love Mary Love’(m) et 

willingly Willingly’ (et)(et) 

willingly love 

Mary 

Willingly’(Love’(m)) et 

didn’t λPλz[¬P(z)] (et)(et) 

didn’t willingly 

love Mary 

λPλz[¬P(z)](Willingly’(Love’(m))) et 

John j e 

John didn’t 

willingly love 

Mary 

λz[¬(Willingly’(Love’(m)))(z)](j) 

≡ ¬(Willingly’(Love’(m)))(j) 

t 

 

 Type Tree 

 



 The main thing to notice during this exercise was the use of the 

capital letter P in the translation for didn’t. 

 As always, capital letters mean predicates, so this is an 

example of a predicate being used in an abstraction. 

 Look again at the type for didn’t: (et)(et) 

• The type tells us that didn’t requires a predicate and an 

entity, and that’s just what the corresponding λ-

expressions says: λPλz[¬P(z)] 

 We’ll use predicates in λ-expressions more when we get to 

the next chapter. 

 

 Interpreting Typed Expressions 

 Typed expressions that are just FOL can use the same 

interpretation as FOL does, described in section 3.3. 

 Obviously, given what we just saw, that would be an incomplete 

interpretation for all typed expressions though! 

 Our plan is to try to stick with set theory, but modify things a bit 

to account for the extra power of type theory. 

 Denotations we already know: 

 The denotation of an expression of type e is an entity from 

the domain of individuals. (written De) 

 The denotation of an expression of type t is a truth value from 

the domain {0,1}. (written Dt) 

 The denotation of an expression of type et is a set of 

entities. 

 The denotation of an expression of type at where a is a type 

is a set of objects of type a. 



 Unfortunately, we need to take a step back to talk about some 

more “mathy” stuff before we can figure out what all types 

denote. 

 Relations: a set of ordered pairs mapping elements in the 

domain to elements in the range. 

• Ex. {<a,2>,<b,2>, <b,4>, <b,5>, <d,5>} 

 

 

 

 

 Functions: a special kind of relation; A relation is a function iff 

every element in the domain is assigned one and only one 

value in the range. 

• Ex. {<a,1>, <b,2>, <c,2>, <d,4>, <e,4>} 

 

 

 

 

• Functions are unambiguous and fully specified. 

 Characteristic Function: a special kind of function that directly 

defines a set; it maps the elements of its domain onto 1 if 

that element is in the set or 0 if it is not. 

 Back to the denotations of types 

 Recall that 1-place predicates denote sets and are 

expressions of type et 

 Characteristic functions are functions from entities to truth 

values. (sounds familiar!) 



 Now we can figure out the denotations of all typed 

expressions recursively, just as we defined the definitions of 

types recursively. 

 Let Dτ be the denotation domain for a type τ.  Then we have: 

 

 This is basically what the denotations of typed expressions 

look like:  

• A function from the domain of things denoted by their 

antecedent type to the range of things denoted by the 

consequent type. 

 The general denotation of type τ is symbolized as Dτ and is 

defined as: 

• a) De = A (the set of entities) 

• b) Dt = {1,0} (the set of truth values) 

• c) If a and b are types, then Dab is , a set of 

functions from elements of type a to elements of type b. 

 Figuring out the denotation of a particular type involves 

unpacking the denotation of its parts: 

• Ex.  

(functions from entities to functions from entities to 

truth values) 

• Ex.  

(functions from functions from entities to truth values to 

functions from entities to truth values 

 



 Chapter 3 Problem Set 

 Exercise 3.1(a,c) – truth tables for propositional logic 

 Exercise 3.2(a-d) – FOL models 

 Exercise 3.3(a-c) – More FOL stuff (translations, truth conditions, 

evaluations) 

 Exercise 3.5(b,c) – Basic λ-calculus 

 Exercise 3.6(‘detest’, ‘or’, b) – Types for expressions, building up 

types for sentences 

 Exercise 3.7(‘detest’, ‘or’) – Denotations for typed expressions 

 New Due Date: March 2 

 Something to think about for next time: 

 What happens when the types don’t fit nicely together? 


