Ling130 — Lecture Notes for 2/12/10

% Goals for today

» Start over with A-calculus

VvV V V V V

Abstraction and Application Rules
Type Derivations

More interesting types
Interpreting typed expressions
Problem Set 2

< What's the deal with A-calculus?

> It's used to define functions and we can think of everything in

FOL as a function

Consider Vx(sleepy(x)). This could mean “everyone is
sleepy” and it is either true or false (it has type t).

Now consider sleepy(x). This is like a “holey” preposition. It
doesn’t really mean anything unless we know what x stands
for.

The FOL quantifiers tell us what the free variable could stand
for, but what if we just want to define the preposition?
ix[sleepy(x)] = a function that takes in a value for x and

outputs a truth value.

% The Syntax of A-Expressions

» Variables - x, y, z, etc.

Just like the variables we have in FOL

Can be bound or free

> Abstractions — AV.E

V is a bound variable over the body E.

» Example: Ax[P(x)] means that the variable x is bound in P.
» This is how functions are defined in A-calculus.
= What is the type of a A-abstraction?
* The type is composed by the type of the argument variable
V and the type of the expression E.
e Xxle, ¢:t |-- Ax[¢]:e>t
> Applications - (E:E>)
» Function application where we apply E; to E;,
» Example: Ax[sleepy(x)](j)
* The argument j must be the same type as x.
» Basic Normal Form
= E::=V|AV.E|(E:E>)
= Vir=x]y|z|...
> Note that expressions in A-calculus can also have quantifiers in
them.
» Example: Ax[3y[loves(y,x)]](m) is wellformed.

% Conversion and Reduction Rules
» There are 3 rules you can use in A-calculus, but we will be

mostly interested in p-conversion.

» a-conversion: Any abstraction AV.E can be converted to
AV.E[V/V] iff [V/V]in E is valid.
* Read [V/V] as “replace V with V™.
* This just means you can change all of the bound

occurrences of V in E with a different variable.

» p-conversion: Any abstraction (AV.E) where V has no free
occurrences in E can be converted to E.

» pB-conversion: Any application (AV.E;)E, can be converted to
Ei[E>/V] iff [Ex/V] in E; is valid.

* This is the basic rule of function application for A-calculus
and we’ll use it a lot!

 Example: Ax[sleepy(x)](j) > sleepy(j)

 Example: Ax[3y[loves(y,x)]](m) > Jy[loves(y,m)

% Back to Types
> We've already talked about types a little bit for A-calculus.
> Let’s look at another example: “John loves Mary.”
» AyAX[loves(X,y)] = Love':e>e>t
= Type Tree

> It's pretty easy to see how the basic types work in A-calculus,
but what about other elements of language such as adverbs and
conjunctions?
= We can figure out the types of different categories by figuring
out what they input and output.
» Example: “John walks slowly.”
* What we already know: j:e, Ax[walks(x)]:e>t
* Type Tree for John walks.

 We still need to get type t at the top of the tree. Applying
x[walks(x)](j) does that, so we don’t want the adverb to
change the type of the verb.

* So, adverbs take in the type of the verb phrase e->t and
output the same type: (e=>t)=>(e-=>t)

* Type Tree for John walks slowly.

Let’s figure out the types of different syntactic categories:

= Clausal Verb: Jess believes that Elana is the cutest baby.

 What is the type of the clause? t
* Again, we want to end up with a t at the end, so the type
of believes is t2>(e->t).
= Auxiliary Verb: Jess may be wrong. (but probably not)
* This is similar to adverbs.
* be wrong is type e=2>t; may is type (e=>t)=>(e>t)
» Negations: It is not the case that Jess is wrong.
* Negations take in sentences and output sentences so they
have type t->t.
= Conjunctions (of sentences)
o t(t>t)
* Conjunctions take in things of the same type and then
output that same type. We will return to conjunctions
later.

> The ability to talk about all of these (complex) categories is what
makes type theory (and therefore A-calculus) much more

powerful than FOL.

Type assignments that are more than just e are called higher-

order. Predicates like e=>t can be arguments as well as
individuals.

» Example: John didn’t willingly love Mary.

Constituent Translation Type
love Ayix[loves(x,y)] = Love’ e>(e~>t)
Mary m e

love Mary Love’(m) e>t
willingly Willingly’ (e>t)>(e~>t)
willingly love Willingly’(Love’(m)) e>t
Mary
didn’t APAz[-P(z)] (e>t)>(e~>t)
didn’t willingly | APAz[-P(z)](Willingly’(Love’(m))) et
love Mary
John j e
John didn’t

willingly love

Mary

Az[-(Willingly’(Love’(m)))(z)](j)
= -(Willingly’(Love’(m)))(j)

= Type Tree

» The main thing to notice during this exercise was the use of the
capital letter P in the translation for didn’t.
» As always, capital letters mean predicates, so this is an
example of a predicate being used in an abstraction.
= Look again at the type for didn’t: (e=>t)>(e>t)

* The type tells us that didn’t requires a predicate and an
entity, and that’s just what the corresponding A-
expressions says: APAz[-P(z)]

= We'll use predicates in A-expressions more when we get to

the next chapter.

% Interpreting Typed Expressions
» Typed expressions that are just FOL can use the same
interpretation as FOL does, described in section 3.3.
» Obviously, given what we just saw, that would be an incomplete
interpretation for all typed expressions though!
» Our plan is to try to stick with set theory, but modify things a bit
to account for the extra power of type theory.
» Denotations we already know:
= The denotation of an expression of type e is an entity from
the domain of individuals. (written D)
= The denotation of an expression of type t is a truth value from
the domain {0,1}. (written D;)
= The denotation of an expression of type e->t is a set of
entities.
= The denotation of an expression of type a2t where a is a type

is a set of objects of type a.

» Unfortunately, we need to take a step back to talk about some
more “mathy” stuff before we can figure out what all types
denote.
= Relations: a set of ordered pairs mapping elements in the

domain to elements in the range.
* Ex.{<a2>,<b,2>, <b,4>, <b,5>, <d,5>}

= Functions: a special kind of relation; A relation is a function iff
every element in the domain is assigned one and only one
value in the range.

* Ex. {<a,1>, <b,2>, <¢,2>, <d,4>, <e, 4>}

* Functions are unambiguous and fully specified.

= Characteristic Function: a special kind of function that directly

defines a set; it maps the elements of its domain onto 1 if
that element is in the set or 0 if it is not.
» Back to the denotations of types
= Recall that 1-place predicates denote sets and are
expressions of type e=>t
» Characteristic functions are functions from entities to truth

values. (sounds familiar!)

Now we can figure out the denotations of all typed
expressions recursively, just as we defined the definitions of
types recursively.

Let D, be the denotation domain for a type . Then we have:

D =D D

This is basically what the denotations of typed expressions

look like:

* A function from the domain of things denoted by their
antecedent type to the range of things denoted by the
consequent type.

The general denotation of type 7 is symbolized as D, and is

defined as:

* a) D = A (the set of entities)

* b) D: = {1,0} (the set of truth values)

* c¢)Ifaand b are types, then D, is D, +» D,, a set of
functions from elements of type a to elements of type b.

Figuring out the denotation of a particular type involves

unpacking the denotation of its parts:
D -D D . -

B D (D D)= A (A {10}
(functions from entities to functions from entities to
truth values)
D, o =D, D, -
Ex. (D> D)—=2(D, > D)=(A—{01}) > (A {0l})

(functions from functions from entities to truth values to

functions from entities to truth values

% Chapter 3 Problem Set

» Exercise 3.1(a,c) - truth tables for propositional logic

> Exercise 3.2(a-d) - FOL models

> Exercise 3.3(a-c) - More FOL stuff (translations, truth conditions,
evaluations)

» Exercise 3.5(b,c) — Basic A-calculus

> Exercise 3.6(‘detest’, ‘or’, b) — Types for expressions, building up
types for sentences

> Exercise 3.7(‘detest’, ‘or’) — Denotations for typed expressions

» New Due Date: March 2

< Something to think about for next time:

» What happens when the types don't fit nicely together?

