
Ling130 – Lecture Notes for 2/12/10 

 Goals for today

 Start over with λ-calculus

 Abstraction and Application Rules

 Type Derivations

 More interesting types

 Interpreting typed expressions

 Problem Set 2

 What’s the deal with λ-calculus?

 It’s used to define functions and we can think of everything in

FOL as a function

 Consider ∀x(sleepy(x)). This could mean “everyone is

sleepy” and it is either true or false (it has type t).

 Now consider sleepy(x). This is like a “holey” preposition. It

doesn’t really mean anything unless we know what x stands

for.

 The FOL quantifiers tell us what the free variable could stand

for, but what if we just want to define the preposition?

 λx[sleepy(x)] = a function that takes in a value for x and

outputs a truth value.

 The Syntax of λ-Expressions

 Variables – x, y, z, etc.

 Just like the variables we have in FOL

 Can be bound or free

 Abstractions – λV.E

 V is a bound variable over the body E.

 Example: λx[P(x)] means that the variable x is bound in P.

 This is how functions are defined in λ-calculus.

 What is the type of a λ-abstraction?

• The type is composed by the type of the argument variable

V and the type of the expression E.

• x:e, φ:t |-- λx[φ]:et

 Applications – (E1E2)

 Function application where we apply E1 to E2.

 Example: λx[sleepy(x)](j)

• The argument j must be the same type as x.

 Basic Normal Form

 E::=V|λV.E|(E1E2)

 V::=x|y|z|…

 Note that expressions in λ-calculus can also have quantifiers in

them.

 Example: λx[∃y[loves(y,x)]](m) is wellformed.

 Conversion and Reduction Rules

 There are 3 rules you can use in λ-calculus, but we will be

mostly interested in β-conversion.

 α-conversion: Any abstraction λV.E can be converted to

λV.E[V’/V] iff [V’/V] in E is valid.

• Read [V’/V] as “replace V with V’”.

• This just means you can change all of the bound

occurrences of V in E with a different variable.

 η-conversion: Any abstraction (λV.E) where V has no free

occurrences in E can be converted to E.

 β-conversion: Any application (λV.E1)E2 can be converted to

E1[E2/V] iff [E2/V] in E1 is valid.

• This is the basic rule of function application for λ-calculus

and we’ll use it a lot!

• Example: λx[sleepy(x)](j)  sleepy(j)

• Example: λx[∃y[loves(y,x)]](m)  ∃y[loves(y,m)

 Back to Types

 We’ve already talked about types a little bit for λ-calculus.

 Let’s look at another example: “John loves Mary.”

 λyλx[loves(x,y)] ≡ Love’:eet

 Type Tree

 It’s pretty easy to see how the basic types work in λ-calculus,

but what about other elements of language such as adverbs and

conjunctions?

 We can figure out the types of different categories by figuring

out what they input and output.

 Example: “John walks slowly.”

• What we already know: j:e, λx[walks(x)]:et

• Type Tree for John walks.

• We still need to get type t at the top of the tree. Applying

λx[walks(x)](j) does that, so we don’t want the adverb to

change the type of the verb.

• So, adverbs take in the type of the verb phrase et and

output the same type: (et)(et)

• Type Tree for John walks slowly.

 Let’s figure out the types of different syntactic categories:

 Clausal Verb: Jess believes that Elana is the cutest baby.

• What is the type of the clause? t

• Again, we want to end up with a t at the end, so the type

of believes is t(et).

 Auxiliary Verb: Jess may be wrong. (but probably not)

• This is similar to adverbs.

• be wrong is type et; may is type (et)(et)

 Negations: It is not the case that Jess is wrong.

• Negations take in sentences and output sentences so they

have type tt.

 Conjunctions (of sentences)

• t(tt)

• Conjunctions take in things of the same type and then

output that same type. We will return to conjunctions

later.

 The ability to talk about all of these (complex) categories is what

makes type theory (and therefore λ-calculus) much more

powerful than FOL.

 Type assignments that are more than just e are called higher-

order. Predicates like et can be arguments as well as

individuals.

 Example: John didn’t willingly love Mary.

Constituent Translation Type

love λyλx[loves(x,y)] = Love’ e(et)

Mary m e

love Mary Love’(m) et

willingly Willingly’ (et)(et)

willingly love

Mary

Willingly’(Love’(m)) et

didn’t λPλz[¬P(z)] (et)(et)

didn’t willingly

love Mary

λPλz[¬P(z)](Willingly’(Love’(m))) et

John j e

John didn’t

willingly love

Mary

λz[¬(Willingly’(Love’(m)))(z)](j)

≡ ¬(Willingly’(Love’(m)))(j)

t

 Type Tree

 The main thing to notice during this exercise was the use of the

capital letter P in the translation for didn’t.

 As always, capital letters mean predicates, so this is an

example of a predicate being used in an abstraction.

 Look again at the type for didn’t: (et)(et)

• The type tells us that didn’t requires a predicate and an

entity, and that’s just what the corresponding λ-

expressions says: λPλz[¬P(z)]

 We’ll use predicates in λ-expressions more when we get to

the next chapter.

 Interpreting Typed Expressions

 Typed expressions that are just FOL can use the same

interpretation as FOL does, described in section 3.3.

 Obviously, given what we just saw, that would be an incomplete

interpretation for all typed expressions though!

 Our plan is to try to stick with set theory, but modify things a bit

to account for the extra power of type theory.

 Denotations we already know:

 The denotation of an expression of type e is an entity from

the domain of individuals. (written De)

 The denotation of an expression of type t is a truth value from

the domain {0,1}. (written Dt)

 The denotation of an expression of type et is a set of

entities.

 The denotation of an expression of type at where a is a type

is a set of objects of type a.

 Unfortunately, we need to take a step back to talk about some

more “mathy” stuff before we can figure out what all types

denote.

 Relations: a set of ordered pairs mapping elements in the

domain to elements in the range.

• Ex. {<a,2>,<b,2>, <b,4>, <b,5>, <d,5>}

 Functions: a special kind of relation; A relation is a function iff

every element in the domain is assigned one and only one

value in the range.

• Ex. {<a,1>, <b,2>, <c,2>, <d,4>, <e,4>}

• Functions are unambiguous and fully specified.

 Characteristic Function: a special kind of function that directly

defines a set; it maps the elements of its domain onto 1 if

that element is in the set or 0 if it is not.

 Back to the denotations of types

 Recall that 1-place predicates denote sets and are

expressions of type et

 Characteristic functions are functions from entities to truth

values. (sounds familiar!)

 Now we can figure out the denotations of all typed

expressions recursively, just as we defined the definitions of

types recursively.

 Let Dτ be the denotation domain for a type τ. Then we have:

 This is basically what the denotations of typed expressions

look like:

• A function from the domain of things denoted by their

antecedent type to the range of things denoted by the

consequent type.

 The general denotation of type τ is symbolized as Dτ and is

defined as:

• a) De = A (the set of entities)

• b) Dt = {1,0} (the set of truth values)

• c) If a and b are types, then Dab is , a set of

functions from elements of type a to elements of type b.

 Figuring out the denotation of a particular type involves

unpacking the denotation of its parts:

• Ex.

(functions from entities to functions from entities to

truth values)

• Ex.

(functions from functions from entities to truth values to

functions from entities to truth values

 Chapter 3 Problem Set

 Exercise 3.1(a,c) – truth tables for propositional logic

 Exercise 3.2(a-d) – FOL models

 Exercise 3.3(a-c) – More FOL stuff (translations, truth conditions,

evaluations)

 Exercise 3.5(b,c) – Basic λ-calculus

 Exercise 3.6(‘detest’, ‘or’, b) – Types for expressions, building up

types for sentences

 Exercise 3.7(‘detest’, ‘or’) – Denotations for typed expressions

 New Due Date: March 2

 Something to think about for next time:

 What happens when the types don’t fit nicely together?

