Ling130 - Lecture Notes for 2/12/10

* Goals for today

> Start over with λ-calculus
> Abstraction and Application Rules
> Type Derivations
> More interesting types
> Interpreting typed expressions
> Problem Set 2

* What's the deal with λ-calculus?

> It's used to define functions and we can think of everything in
FOL as a function

- Consider $\forall x(s l e e p y(x))$. This could mean "everyone is sleepy" and it is either true or false (it has type t).
- Now consider sleepy (x). This is like a "holey" preposition. It doesn't really mean anything unless we know what x stands for.
- The FOL quantifiers tell us what the free variable could stand for, but what if we just want to define the preposition?
- $\lambda x[\operatorname{sleepy}(x)]=$ a function that takes in a value for x and outputs a truth value.
\star The Syntax of λ-Expressions
> Variables $-x, y, z$, etc.
- Just like the variables we have in FOL
- Can be bound or free
> Abstractions - $\lambda V . E$
- V is a bound variable over the body E.
- Example: $\lambda x[P(x)]$ means that the variable x is bound in P.
- This is how functions are defined in λ-calculus.
- What is the type of a λ-abstraction?
- The type is composed by the type of the argument variable V and the type of the expression E.
- $x: e, \phi: t \mid-\lambda x[\phi]: e \rightarrow t$
> Applications - $\left(E_{1} E_{2}\right)$
- Function application where we apply E_{1} to E_{2}.
- Example: $\lambda x[\operatorname{sleepy}(x)](j)$
- The argument j must be the same type as x.
> Basic Normal Form
- $E::=V|\lambda V \cdot E|\left(E_{1} E_{2}\right)$
- $V::=x|y| z \mid \ldots$
> Note that expressions in λ-calculus can also have quantifiers in them.
- Example: $\lambda x[\exists y[\operatorname{loves}(y, x)]](m)$ is wellformed.

* Conversion and Reduction Rules

> There are 3 rules you can use in λ-calculus, but we will be mostly interested in β-conversion.

- α-conversion: Any abstraction $\lambda V . E$ can be converted to $\lambda V . E\left[V^{\prime} / V\right]$ iff $\left[V^{\prime} / V\right]$ in E is valid.
- Read [V^{\prime} / V] as "replace V with $V^{\prime \prime \prime}$.
- This just means you can change all of the bound occurrences of V in E with a different variable.
- η-conversion: Any abstraction ($\lambda V . E$) where V has no free occurrences in E can be converted to E.
- β-conversion: Any application ($\lambda V . E_{1}$) E_{2} can be converted to $E_{1}\left[E_{2} / V\right]$ iff $\left[E_{2} / V\right]$ in E_{1} is valid.
- This is the basic rule of function application for λ-calculus and we'll use it a lot!
- Example: $\lambda x[s l e e p y(x)](j) \triangleright$ sleepy (j)
- Example: $\lambda x[\exists y[\operatorname{loves}(y, x)]](m) \triangleright \exists y[\operatorname{loves}(y, m)$

* Back to Types

> We've already talked about types a little bit for λ-calculus.
> Let's look at another example: "John loves Mary."

- $\lambda y \lambda x[\operatorname{loves}(x, y)] \equiv$ Love': $e \rightarrow e \rightarrow t$
- Type Tree
> It's pretty easy to see how the basic types work in λ-calculus, but what about other elements of language such as adverbs and conjunctions?
- We can figure out the types of different categories by figuring out what they input and output.
- Example: "John walks slowly."
- What we already know: $j: e, \lambda x[w a l k s(x)]: e \rightarrow t$
- Type Tree for John walks.
- We still need to get type t at the top of the tree. Applying $\lambda x[$ walks $(x)](j)$ does that, so we don't want the adverb to change the type of the verb.
- So, adverbs take in the type of the verb phrase $e \rightarrow t$ and output the same type: $(e \rightarrow t) \rightarrow(e \rightarrow t)$
- Type Tree for John walks slowly.
> Let's figure out the types of different syntactic categories:
- Clausal Verb: Jess believes that Elana is the cutest baby.
- What is the type of the clause? t
- Again, we want to end up with a t at the end, so the type of believes is $t \rightarrow(e \rightarrow t)$.
- Auxiliary Verb: Jess may be wrong. (but probably not)
- This is similar to adverbs.
- be wrong is type $e \rightarrow t$; may is type $(e \rightarrow t) \rightarrow(e \rightarrow t)$
- Negations: It is not the case that Jess is wrong.
- Negations take in sentences and output sentences so they have type $t \rightarrow t$.
- Conjunctions (of sentences)
- $t \rightarrow(t \rightarrow t)$
- Conjunctions take in things of the same type and then output that same type. We will return to conjunctions later.
> The ability to talk about all of these (complex) categories is what makes type theory (and therefore λ-calculus) much more powerful than FOL.
- Type assignments that are more than just e are called higherorder. Predicates like $e \rightarrow t$ can be arguments as well as individuals.
- Example: John didn't willingly love Mary.

Constituent	Translation	Type
love	$\lambda y \lambda x[\operatorname{loves}(x, y)]=L^{\prime}{ }^{\prime}$	$e \rightarrow(e \rightarrow t)$
Mary	m	e
love Mary	Love'(m)	$e \rightarrow t$
willingly	Willingly'	$(e \rightarrow t) \rightarrow(e \rightarrow t)$
willingly love Mary	Willingly'(Love'(m))	$e \rightarrow t$
didn't	$\lambda P \lambda z[\neg P(z)]$	$(e \rightarrow t) \rightarrow(e \rightarrow t)$
didn't willingly love Mary	$\lambda P \lambda z[\neg P(z)]($ Willingly'(Love'(m)))	$e \rightarrow t$
John	j	e
John didn't willingly love Mary	$\begin{gathered} \lambda z\left[\neg\left(\text { Willingly' }\left(\text { Love' }^{\prime}(m)\right)\right)(z)\right](j) \\ \equiv \neg\left(\text { Willingly }^{\prime}\left(\text { Love' }^{\prime}(m)\right)\right)(j) \end{gathered}$	t

- Type Tree
> The main thing to notice during this exercise was the use of the capital letter P in the translation for didn't.
- As always, capital letters mean predicates, so this is an example of a predicate being used in an abstraction.
- Look again at the type for didn't: $(e \rightarrow t) \rightarrow(e \rightarrow t)$
- The type tells us that didn't requires a predicate and an entity, and that's just what the corresponding λ expressions says: $\lambda P \lambda z[\neg P(z)]$
- We'll use predicates in λ-expressions more when we get to the next chapter.

* Interpreting Typed Expressions

> Typed expressions that are just FOL can use the same interpretation as FOL does, described in section 3.3.
> Obviously, given what we just saw, that would be an incomplete interpretation for all typed expressions though!
> Our plan is to try to stick with set theory, but modify things a bit to account for the extra power of type theory.
> Denotations we already know:

- The denotation of an expression of type e is an entity from the domain of individuals. (written D_{e})
- The denotation of an expression of type t is a truth value from the domain $\{0,1\}$. (written D_{t})
- The denotation of an expression of type $e \rightarrow t$ is a set of entities.
- The denotation of an expression of type $a \rightarrow t$ where a is a type is a set of objects of type a.
> Unfortunately, we need to take a step back to talk about some more "mathy" stuff before we can figure out what all types denote.
- Relations: a set of ordered pairs mapping elements in the domain to elements in the range.
- Ex. $\{<a, 2>,<b, 2>,<b, 4>,<b, 5>,<d, 5>\}$
- Functions: a special kind of relation; A relation is a function iff every element in the domain is assigned one and only one value in the range.
- Ex. $\{<a, 1>,<b, 2>,<c, 2>,<d, 4>,<e, 4>\}$
- Functions are unambiguous and fully specified.
- Characteristic Function: a special kind of function that directly defines a set; it maps the elements of its domain onto 1 if that element is in the set or 0 if it is not.
> Back to the denotations of types
- Recall that 1-place predicates denote sets and are expressions of type $e \rightarrow t$
- Characteristic functions are functions from entities to truth values. (sounds familiar!)
- Now we can figure out the denotations of all typed expressions recursively, just as we defined the definitions of types recursively.
- Let D_{τ} be the denotation domain for a type τ. Then we have:

$$
D_{e \rightarrow t}=D_{e} \mapsto D_{z}
$$

- This is basically what the denotations of typed expressions look like:
- A function from the domain of things denoted by their antecedent type to the range of things denoted by the consequent type.
- The general denotation of type τ is symbolized as D_{τ} and is defined as:
- a) $D_{e}=A$ (the set of entities)
- b) $D_{t}=\{1,0\}$ (the set of truth values)
- c) If \mathbf{a} and \mathbf{b} are types, then $D_{a \nrightarrow b}$ is $D_{a} \mapsto D_{b}$, a set of functions from elements of type \mathbf{a} to elements of type \mathbf{b}.
- Figuring out the denotation of a particular type involves unpacking the denotation of its parts:

$$
D_{e \rightarrow(e \rightarrow r)}=D_{e} \mapsto D_{e \rightarrow i}=
$$

- Ex. $D_{e} \mapsto\left(D_{e} \mapsto D_{r}\right)-A \mapsto(A \mapsto\{1,0\})$
(functions from entities to functions from entities to truth values)

$$
D_{(t \rightarrow r) \rightarrow(t \rightarrow r)}=D_{e \rightarrow r} \mapsto D_{e \rightarrow i}=
$$

- Ex.

$$
\left(D_{e} \mapsto D_{z}\right) \mapsto\left(D_{e} \mapsto D_{\mathrm{r}}\right)-(A \mapsto\{0, \mathrm{I}\}) \mapsto(A \mapsto\{0,1\})
$$

(functions from functions from entities to truth values to functions from entities to truth values

* Chapter 3 Problem Set
> Exercise 3.1(a,c) - truth tables for propositional logic
> Exercise 3.2(a-d) - FOL models
> Exercise 3.3(a-c) - More FOL stuff (translations, truth conditions, evaluations)
> Exercise 3.5(b,c) - Basic λ-calculus
> Exercise 3.6('detest', 'or', b) - Types for expressions, building up types for sentences
> Exercise 3.7('detest', 'or') - Denotations for typed expressions
> New Due Date: March 2
* Something to think about for next time:
> What happens when the types don't fit nicely together?

