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 Goals for today 

 Start over with λ-calculus 

 Abstraction and Application Rules 

 Type Derivations 

 More interesting types 

 Interpreting typed expressions 

 Problem Set 2 

 

 What’s the deal with λ-calculus? 

 It’s used to define functions and we can think of everything in 

FOL as a function 

 Consider ∀x(sleepy(x)).  This could mean “everyone is 

sleepy” and it is either true or false (it has type t). 

 Now consider sleepy(x).  This is like a “holey” preposition.  It 

doesn’t really mean anything unless we know what x stands 

for. 

 The FOL quantifiers tell us what the free variable could stand 

for, but what if we just want to define the preposition? 

 λx[sleepy(x)] = a function that takes in a value for x and 

outputs a truth value. 

 

 The Syntax of λ-Expressions 

 Variables – x, y, z, etc. 

 Just like the variables we have in FOL 

 Can be bound or free 

 Abstractions – λV.E 

 V is a bound variable over the body E. 



 Example: λx[P(x)] means that the variable x is bound in P. 

 This is how functions are defined in λ-calculus. 

 What is the type of a λ-abstraction? 

• The type is composed by the type of the argument variable 

V and the type of the expression E. 

• x:e, φ:t |-- λx[φ]:et 

 Applications – (E1E2) 

 Function application where we apply E1 to E2. 

 Example: λx[sleepy(x)](j) 

• The argument j must be the same type as x. 

 Basic Normal Form 

 E::=V|λV.E|(E1E2) 

 V::=x|y|z|… 

 Note that expressions in λ-calculus can also have quantifiers in 

them. 

 Example: λx[∃y[loves(y,x)]](m) is wellformed. 

 

 Conversion and Reduction Rules 

 There are 3 rules you can use in λ-calculus, but we will be  

mostly interested in β-conversion. 

 α-conversion: Any abstraction λV.E can be converted to 

λV.E[V’/V] iff [V’/V] in E is valid. 

• Read [V’/V] as “replace V with V’”. 

• This just means you can change all of the bound 

occurrences of V in E with a different variable. 

 η-conversion: Any abstraction (λV.E) where V has no free 

occurrences in E can be converted to E. 

 β-conversion: Any application (λV.E1)E2 can be converted to 

E1[E2/V] iff [E2/V] in E1 is valid. 



• This is the basic rule of function application for λ-calculus 

and we’ll use it a lot! 

• Example: λx[sleepy(x)](j)  sleepy(j) 

• Example: λx[∃y[loves(y,x)]](m)  ∃y[loves(y,m) 

 

 Back to Types 

 We’ve already talked about types a little bit for λ-calculus. 

 Let’s look at another example: “John loves Mary.” 

 λyλx[loves(x,y)] ≡ Love’:eet 

 Type Tree 

 

 

 

 

 

 It’s pretty easy to see how the basic types work in λ-calculus, 

but what about other elements of language such as adverbs and 

conjunctions? 

 We can figure out the types of different categories by figuring 

out what they input and output. 

 Example: “John walks slowly.” 

• What we already know: j:e, λx[walks(x)]:et 

• Type Tree for John walks. 

 

 



• We still need to get type t at the top of the tree.  Applying 

λx[walks(x)](j) does that, so we don’t want the adverb to 

change the type of the verb. 

• So, adverbs take in the type of the verb phrase et and 

output the same type: (et)(et) 

• Type Tree for John walks slowly. 

 

 

 

 

 

 

 Let’s figure out the types of different syntactic categories: 

 Clausal Verb: Jess believes that Elana is the cutest baby. 

• What is the type of the clause? t 

• Again, we want to end up with a t at the end, so the type 

of believes is t(et). 

 Auxiliary Verb: Jess may be wrong. (but probably not) 

• This is similar to adverbs. 

• be wrong is type et; may is type (et)(et) 

 Negations: It is not the case that Jess is wrong. 

• Negations take in sentences and output sentences so they 

have type tt. 

 Conjunctions (of sentences) 

• t(tt) 

• Conjunctions take in things of the same type and then 

output that same type.  We will return to conjunctions 

later. 



 The ability to talk about all of these (complex) categories is what 

makes type theory (and therefore λ-calculus) much more 

powerful than FOL. 

 Type assignments that are more than just e are called higher-

order.  Predicates like et can be arguments as well as 

individuals. 

 Example: John didn’t willingly love Mary. 

Constituent Translation Type 

love λyλx[loves(x,y)] = Love’ e(et) 

Mary m e 

love Mary Love’(m) et 

willingly Willingly’ (et)(et) 

willingly love 

Mary 

Willingly’(Love’(m)) et 

didn’t λPλz[¬P(z)] (et)(et) 

didn’t willingly 

love Mary 

λPλz[¬P(z)](Willingly’(Love’(m))) et 

John j e 

John didn’t 

willingly love 

Mary 

λz[¬(Willingly’(Love’(m)))(z)](j) 

≡ ¬(Willingly’(Love’(m)))(j) 

t 

 

 Type Tree 

 



 The main thing to notice during this exercise was the use of the 

capital letter P in the translation for didn’t. 

 As always, capital letters mean predicates, so this is an 

example of a predicate being used in an abstraction. 

 Look again at the type for didn’t: (et)(et) 

• The type tells us that didn’t requires a predicate and an 

entity, and that’s just what the corresponding λ-

expressions says: λPλz[¬P(z)] 

 We’ll use predicates in λ-expressions more when we get to 

the next chapter. 

 

 Interpreting Typed Expressions 

 Typed expressions that are just FOL can use the same 

interpretation as FOL does, described in section 3.3. 

 Obviously, given what we just saw, that would be an incomplete 

interpretation for all typed expressions though! 

 Our plan is to try to stick with set theory, but modify things a bit 

to account for the extra power of type theory. 

 Denotations we already know: 

 The denotation of an expression of type e is an entity from 

the domain of individuals. (written De) 

 The denotation of an expression of type t is a truth value from 

the domain {0,1}. (written Dt) 

 The denotation of an expression of type et is a set of 

entities. 

 The denotation of an expression of type at where a is a type 

is a set of objects of type a. 



 Unfortunately, we need to take a step back to talk about some 

more “mathy” stuff before we can figure out what all types 

denote. 

 Relations: a set of ordered pairs mapping elements in the 

domain to elements in the range. 

• Ex. {<a,2>,<b,2>, <b,4>, <b,5>, <d,5>} 

 

 

 

 

 Functions: a special kind of relation; A relation is a function iff 

every element in the domain is assigned one and only one 

value in the range. 

• Ex. {<a,1>, <b,2>, <c,2>, <d,4>, <e,4>} 

 

 

 

 

• Functions are unambiguous and fully specified. 

 Characteristic Function: a special kind of function that directly 

defines a set; it maps the elements of its domain onto 1 if 

that element is in the set or 0 if it is not. 

 Back to the denotations of types 

 Recall that 1-place predicates denote sets and are 

expressions of type et 

 Characteristic functions are functions from entities to truth 

values. (sounds familiar!) 



 Now we can figure out the denotations of all typed 

expressions recursively, just as we defined the definitions of 

types recursively. 

 Let Dτ be the denotation domain for a type τ.  Then we have: 

 

 This is basically what the denotations of typed expressions 

look like:  

• A function from the domain of things denoted by their 

antecedent type to the range of things denoted by the 

consequent type. 

 The general denotation of type τ is symbolized as Dτ and is 

defined as: 

• a) De = A (the set of entities) 

• b) Dt = {1,0} (the set of truth values) 

• c) If a and b are types, then Dab is , a set of 

functions from elements of type a to elements of type b. 

 Figuring out the denotation of a particular type involves 

unpacking the denotation of its parts: 

• Ex.  

(functions from entities to functions from entities to 

truth values) 

• Ex.  

(functions from functions from entities to truth values to 

functions from entities to truth values 

 



 Chapter 3 Problem Set 

 Exercise 3.1(a,c) – truth tables for propositional logic 

 Exercise 3.2(a-d) – FOL models 

 Exercise 3.3(a-c) – More FOL stuff (translations, truth conditions, 

evaluations) 

 Exercise 3.5(b,c) – Basic λ-calculus 

 Exercise 3.6(‘detest’, ‘or’, b) – Types for expressions, building up 

types for sentences 

 Exercise 3.7(‘detest’, ‘or’) – Denotations for typed expressions 

 New Due Date: March 2 

 Something to think about for next time: 

 What happens when the types don’t fit nicely together? 


