
From Hilbert Spaces to Dilbert Spaces:

Context Semantics Made Simple

Harry G. Mairson ?

Computer Science Department
Brandeis University

Waltham, Massachusetts 02454
mairson@cs.brandeis.edu

Abstract. We give a first-principles description of the context semantics

of Gonthier, Abadi, and Lévy, a computer-science analogue of Girard’s
geometry of interaction. We explain how this denotational semantics
models λ-calculus, and more generally multiplicative-exponential linear
logic (MELL), by explaining the call-by-name (CBN) coding of the λ-
calculus, and proving the correctness of readback, where the normal form
of a λ-term is recovered from its semantics. This analysis yields the cor-
rectness of Lamping’s optimal reduction algorithm. We relate the context
semantics to linear logic types and to ideas from game semantics, used to
prove full abstraction theorems for PCF and other λ-calculus variants.

1 Introduction

In foundational research some two decades ago, Jean-Jacques Lévy attempted
to characterize formally what an optimally efficient reduction strategy for the
λ-calculus would look like, even if the technology for its implementation was
at the time lacking [13]. For the language designer, the λ-calculus is an impor-
tant, canonical abstraction of the essential features required in a programming
language, just as the classical physicist (or freshman physics student) views the
world via a model of massless beams and frictionless pulleys, and as machine
architects have the Turing machines as their essential, ideal archetype.

Lévy wanted to build a λ-calculus interpreter that was correct and optimal.
Every interpreter specifies an evaluation strategy, determining what subexpres-
sion is evaluated next. A correct interpreter never chooses a subexpression whose
evaluation is divergent unless there is no other choice, so that it produces a nor-
mal form (answer) if there is one. An optimal evaluator shares redexes (procedure
calls) in a technically maximal sense: the problem here is that evaluation can
easily duplicate redexes, for example in (λx.xx)((λw.w)y).

John Lamping [12] found the algorithm that Lévy specified. Then Gonthier,
Abadi, and Lévy [9, 10] made a lovely discovery: they gave a denotational se-
mantics to Lamping’s algorithm, called context semantics, and showed that it
was equivalent to Jean-Yves Girard’s geometry of interaction (GoI) [8]. Girard’s
GoI is an abstract mathematical notion, employing a lot of higher mathematics
that theoretical computer scientists are not accustomed to using: Hilbert spaces,

? Supported by NSF Grants CCR-0228951 and EIA-9806718, and also by the Tyson
Foundation.

C∗-algebras, and more. In contrast, context semantics is built from familiar, or-
dinary data structures: stacks and trees of tokens. The vectors of a Hilbert space
are just a data structure, and the linear operators Girard designed were just
ways of hacking the data structure. Context semantics provides a precise flow
analysis, where static analysis is effected by moving contexts (a data structure)
through a fixed program graph, so that questions like “can call site α ever call
function f?” become straightforward to answer. Girard’s matrix execution for-
mula modulo a path algebra is then just transitive closure of a directed graph
(just like in an undergraduate automata theory class), where the algebra rules
out certain paths. The GoI formalism is not unlike the use of generating func-
tions to analyze combinatorial problems. Computer scientists should find context
semantics to be a more compelling formalism, because there is no math, and the
resemblance to static program analysis is so strong.

The main purpose of this paper is to give a simple explanation of context
semantics—it’s the paper I wish I could have read six or eight years ago. I par-
ticularly want to give a first-principles proof of the algorithmic correctness of
optimal reduction, via a naive explanation of readback: the process whereby the
normal form of a λ-term is recovered from its context semantics. A key goal is
to explain how GoI, and context semantics, and games, and full abstraction, are
founded on technical, detailed ways of talking about Böhm trees (term syntax);
like Molière’s Monsieur Jourdain, we should know prose when we are speaking it.
This observation is not meant to be dismissive—I want to explain how context
semantics details the mechanics of reduction and the extraction of answers, via
static analysis. I want to explain how linear types give a refined view of con-
texts. Most important, I want the discussion to be as informal and intuitive as
possible—like a conversation—with incomplete proofs and basic intuitions.

For those who from semantics recoil, recall: this is algorithm analysis, estab-
lishing the correctness of an incremental interpreter. Related complexity analysis,
both of Lamping’s algorithm and the problem, can be found in [6, 4].

2 Linear λ-terms

The best place to start—representing the essence of the full problem, but in mini-
ature—is with linear λ-terms: every variable must occur exactly once. Church
numerals λs.λz.snz are ruled out (s may occur more than once or not at all),
also Boolean truth values (recall T ≡ λt.λf.t, F ≡ λt.λf.f discard an argu-
ment).1 We now code terms as graphs—or proofnets in the terminology of linear
logic. Represent application (@) and λ-abstraction by ternary nodes: the @-node
has continuation and argument ports, which are called auxiliary, and a function
port, which is called principal. A λ-node has auxiliary body and parameter ports,
and a principal root port. Since a bound variable occurs exactly once, the wire

1 Yet the language still has expressive power: for example, we could define True

and False as λt.λf.〈t, f〉 and λt.λf.〈f, t〉, where 〈x, y〉 ≡ λz.zxy. Then let Not ≡
λp.λt.λf.pft and Or ≡ λp.λq.λt.λf.pTrue q(λu.λv.vIIIu). Add a fanout gate, and
we can simulate circuits; thus evaluation is complete for PTIME.

coding its occurrence is connected to the λ-node coding its binder. A β-reduction
happens when an edge connects an @- and λ-node by their principal ports: the
graph is rewritten so that these nodes annihilate, and we fuse the wires previ-
ously connected with the @-continuation and the λ-body, and the λ-parameter
and the @-argument (see Figure 1).

x

λ

E

@

E F

@

λ

⇒

Fig. 1. Coding and reducing linear λ-terms as graphs.

Proposition 1. Let GΛ denote the graph coding of λ-term Λ. Then E → E ′ iff
GE reduces to GE′ by the above annihilation and rewiring.

Now interpret each graph node as a transformer on primitive contexts c ∈ Σ∗

(where Σ = {◦, •}, called tokens) which travel on graph wires. Entering an
@-continuation or λ-body port transforms c to ◦c; entering an @-argument or
λ-parameter port transforms c to •c, and the context emerges at the respective
principal port. Dually, entering an @-node (λ-node) at the principal @-function
(λ-root) port with context τc, the token τ is popped, and the context c emerges at
the @-continuation (λ-body) port if τ = ◦, and at the @-argument (λ-parameter)
port if τ = •. Notice that as context transformers on Σ∗, @- and λ-nodes are
implemented by exactly the same hardware, which pushes and pops tokens, with
routing to appropriate auxiliary ports in the latter case; we call this hardware a
fan node.

The ports of a λ-term E (and its graph coding) are the dangling wire ends
that represent the root and each free variable v of E; call these ports ρ and πv . E
has a context semantics—the relation given by paths between graph ports, where
a path is defined by a context that is itself transformed by nodes along the path:
CE = {(〈c, π〉, 〈c′, π′〉) | context c enters at port π and exits as c′ at port π}.

Proposition 2. CE is symmetric, and is preserved by β-reduction.

Proof. The nodes forming a β-redex transform context c by pushing and then
popping either ◦ (between an @-continuation and λ-body) or • (between an
@-argument and λ-parameter), leaving c unchanged. The resulting paths are
described by the wire fusings above.2

Linear λ-calculus is strongly normalizing, as reduction makes the λ-term
(graph) get smaller. Since reduction preserves context semantics, the context
semantics of a λ-term identifies its normal form. We now consider the process of
readback: how can we reconstruct the normal form of E from CE?

2 For this reason, the path algebra of Girard’s GoI include equations like p∗p+q∗q = 1
(pushing and then popping ◦ [or •] is the identity transformation), or q∗p = 0 (you
cannot push ◦ and then pop •).

Readback for linear λ-calculus. Let N ≡ λx0. · · ·λxp.vN0 · · ·Nq be the normal
form of E. Let c0 = ◦+ be some arbitrarily large string (stack) of ◦ tokens,
enough so that, informally, as c0 (or later, some variant of it) traces a path
through the graph, the context is never empty when entering the principal port
of a node, “stopping” the path. (We also write ◦k for the word consisting of k
◦ tokens.) If we add or subtract some small number of ◦ tokens to c0, we don’t
care—we still write it as ◦+. Insert c0 at the root ρ: if (〈c0, ρ〉), 〈c, π〉) ∈ CE ,
what does 〈c, π〉 tell us about the normal form of E?

Proposition 3. Context c identifies the head variable of N : v = xi iff 〈c, π〉 =
〈◦i • ◦+, ρ〉, and v is a free variable if 〈c, π〉 = 〈◦+, πv〉.

If v = xi, then the address α of the head variable is ◦i•, otherwise the address is
ε. Starting at port π above, α ◦j • defines a path ending at the root of subterm
Nj . Recursing on this construction, we examine CE for (〈α ◦j •◦+, π〉, 〈c′, π′〉); as
in Proposition 3, c′ identifies the head variable of Nj ≡ λy0. · · ·λyr.wF0 · · ·Fs:

observe that 〈c′, π′〉 is 〈◦+, πw〉 if w is free, 〈◦i′ • ◦+, ρ〉 if w ≡ xi′ , and finally
〈α ◦j • ◦j′

•◦+, π〉 if w ≡ yj′ . Thus contexts can be decoded to recover the head
variables and subterms of all subexpressions of N .

Readback can be thought of as a game between an Opponent (Op) who wants
to discover the normal form of a λ-term known by the Player (Pl). The initial
move 〈c0, ρ〉 codes the Op-question, “what is the head variable of the term?” The
Pl-answer 〈c, π〉 is then transformed (by splicing ◦j• into the context just before
the ◦+) into the next Op-question “what is head variable of the jth argument of
the head variable?” and so on.3 The Op-moves identify the addresses of subterms,
the Pl-moves those of their head variables. A “winning strategy” for the Player
means she can always respond to an Op-move; each λ-term codes a winning
strategy for the Player—it gives her a λ-term to talk about. Games in the style
of [1, 11] are essentially this guessing of normal forms. We use this argot to
describe the input and output of contexts at graph ports.

How does the readback algorithm terminate? In linear λ-calculus, η-expansion
preserves context semantics: the graph of λx.Ex pops and then pushes a token
at its root. Thus there is no termination if the semantics is infinite: we just
generate ever-larger pieces of the Böhm tree, a computation which quickly be-
comes boring. However, we can (nonconstructively) consider a minimal subset
C0 ⊆ C where (〈c, π〉, 〈c′, π′〉) ∈ C0 iff for all σ ∈ Σ∗, (〈cσ, π〉, 〈c′σ, π′〉) ∈ C. Then
readback terminates when all elements of C0 have been used.

What about terms not in normal form? In this case, readback constructs the
normal form from contexts at the ports—but what do contexts mean as they
travel through the interior of the graph? A “call” to a subgraph S, intuitively,
requests the subterm of the graph that is bound to the head variable of the
normal form of S. Consider a term (λx.E)F ; focus on the contexts that travel
on the wire down from the @-node to the function λx.E, and on the same wire up
from the function to the @-node. First, a “call” is made down to the function; if

3 The generation of Op-moves from Pl-answers is called shunting in [9], evoking a train
at a head variable shunting off a “track” of applications to one of its arguments.

its head variable h0 is the parameter, a context travels up that is the address • of
the variable. Then the call is made to the argument F ; if its head variable h1, is
bound, its address is routed back to h0 to find the subterm (an argument of h0)
that is bound to h1. In turn, the address of the head variable h2 of that subterm
may be routed back to h1 in search of its bound subterm. And so on: head
variable addresses in λx.E are used to find subterms in F and vice versa—like
Player and Opponent, the two terms play against each other.

Finally, we should mention the connection to linear logic [7]. The graphs de-
scribed are proofnets for multiplicative linear logic, which has logical connectives
⊗ (conjunction) and

�
(disjunction). The ⊗ (alias @) constructs a pair from a

continuation and an argument; the
�

(alias λ) unpairs them for the body and
parameter of the function. But if the nodes are logical connectives, what are the
formulas? We discuss this briefly in Section 4.

3 Sharing

Now let’s generalize linear λ-calculus, and allow multiple references to a bound
variables. Three problems arise: What do we do when a bound variable is not
referenced? How do we combine references? And what is being shared? To address
these implementation issues, the graph technology, and its context semantics,
get more complicated. First, some brief answers: In the case of no reference, we
attach a unary plug node to the parameter: for example, in λx.λy.x, a plug is
attached to the end of the wire coding y. Multiple references are combined with
a fan node—the same kind of hardware used for @ and λ-nodes; we call it a
sharing node. Expressions being shared by a bound variable are encapsulated in
a box. To be used, a box needs to be opened; we introduce a binary croissant
node that opens (erases) boxes. Boxed expressions may contain references to
other boxed values; we thus introduce a binary bracket node to absorb one box
into another, and a means to fuse one box with another. These ideas are now
presented in the context of the call-by-name version of the λ-calculus.

Call-by-name coding and graph reduction. Figure 2 illustrates the coding; we write
GE for the coding of λ-term E. Observe that each free variable is represented by
a single port. A variable v is coded as a croissant; when reduction attaches the
wire for v to the boxed expression it is bound to, the croissant opens the box. An
abstraction λx.E modifies GE , using a λ-node to connect its root with the port
of free variable x. An application EF is coded by coding E and F connected
by an @-node, where F is additionally boxed.4 The principal port of the box
is located at the root of the graph coding F ; each free variable v (coded by a
croissant) in F , appearing as an auxiliary port of that box, is equipped with a
bracket node that absorbs any box bound to v inside the box for F . Finally, if
E and F share a free variable x, the two ports for x in their respective codings
are combined with a sharing node.

We now describe three graph reduction schemes—global, insular, and optimal.
Global and insular reductions are almost identical, and produce the same head

4 The name CBN comes from the (en)closure of each argument by a box which can
then be passed around without evaluating inside the box.

x

λ

E

@

E F

Fig. 2. Call-by-name graph coding.

normal forms. Insular and optimal reductions share the same context semantics
on the fragment of the semantics used to compute readback. Combining these
observations, we deduce that readback on optimally reduced graphs produces
the head normal forms of global reduction—the crux of a correctness proof.

Global reduction (Figure 3) is the easiest to understand: E →β E′ iff GE �G

GE′ . Define a global box to be a box together with the brackets glued to its free
variable ports. A global β-step annihilates a λ-@ pair, and then propagates the
(boxed) argument via global duplications and global absorptions to the variable
occurrences, each a croissant that globally opens each propagated box.

@

λ

⇒ ⇒

⇒ ⇒

Fig. 3. Global reduction.

Insular reduction (Figure 4) resembles global reduction, except that brackets
are detached from boxes, and croissants and brackets do not vanish when a box
is opened. An insular β-step annihilates a λ-@ pair, and then pushes sharing,
bracket, and croissant nodes as far as possible. Sharing nodes duplicate boxes,
but not brackets; croissants and brackets open or add a box to an existing box,
propagating to free variable ports; and two boxes adjacent (via a graph edge)
can fuse along their common boundary.

Lemma 1. Take a λ-term E and code it up as GE . Perform leftmost-outermost
global β-steps on GE, deriving G′; also perform the same leftmost-outermost
insular β-steps on GE, deriving G′′. Now erase all boxes, croissants, and brackets
in G′ and G′′—they are now identical.

@

λ

⇒ ⇒
⇒

⇒ ⇒

Fig. 4. Insular reduction.

Optimal reduction (Figure 5) looks totally different from global or insular re-
duction, since it has no global structure (boxes) in its reduction rules. (For those
who object to globalization, here is the perfect interpreter: it is entirely local.)
The initial coding GE gives every graph node (@, λ, sharing, croissant, bracket)
a level—the number of enclosing boxes. Then a croissant “opens” a boxed node
by decreasing its level; a bracket “boxes” a node by increasing its level. In this
way, the creation, opening, and sharing of boxes is done incrementally. Graphs
quickly become inscrutable and do not look like λ-terms. But once we under-
stand their context semantics, the resemblance to insular reduction will return.

i = j
⇒ ⇒ ⇒

i 6= j i

j

⇒
i

j

bi

b’j

⇒
b’ j + b (i � j)

b i + b′ (j � i)

bi

j

⇒

j + b (i � j)

b b i

i � j =

�
1 if i < j

0 o.w.

bx =

�
x if b =

−x if b =

Fig. 5. Optimal graph reduction.

Context semantics for sharing. To implement a semantics for sharing, the wires
of graphs for linear λ-calculus are generalized to buses of wires. A context is no
longer a string, but a vector 〈〈χ1, . . . , χn, ◦+〉〉 where datum χi travels on the
ith wire of the bus. First we explain how contexts are modified by graph nodes.
Then we explain what contexts mean—what they say about λ-terms, reduction,
and sharing.

How: A graph node at level i modifies χi. The functions below respectively
describe how a context is changed by a function (@ and λ), sharing, croissant, and
bracket node, where the context is input to an auxiliary port of the graph node.
For example, fi,◦ pushes a ◦ token on the ith wire, describing the transformation
of a context approaching the ◦ port of an @- or λ node. Sharing nodes are
made from similar hardware: we push tokens l and r instead.5 A croissant with
level i, representing an occurrence of variable v, is interpreted semantically as
ci,v , adding a “wire” to the context holding token v.6 A bracket at level i is
interpreted as bi, pairing two values onto one wire.

fi,t 〈〈χ1, . . . , χn, ◦+〉〉 = 〈〈χ1, . . . , χi−1, tχi, χi+1, . . . , χn, ◦+〉〉 [t ∈ {◦, •}]

si,t 〈〈χ1, . . . , χn, ◦+〉〉 = 〈〈χ1, . . . , χi−1, tχi, χi+1, . . . , χn, ◦+〉〉 [t ∈ {l,r}]

ci,v 〈〈χ1, . . . , χn, ◦+〉〉 = 〈〈χ1, . . . , χi−1, v, χi, . . . , χn, ◦+〉〉

bi 〈〈χ1, . . . , χn, ◦+〉〉 = 〈〈χ1, . . . , χi−1, 〈χi, χi+1〉, χi+2, . . . , χn, ◦+〉〉

The above functions add structure to a context; when a context encounters a
croissant or bracket node at its principal port, structure is consumed:

c−1

i,v 〈〈χ1, . . . , χi−1, v, χi+1, . . . , χn, ◦+〉〉 = 〈〈χ1, . . . , χi−1, χi+1, . . . , χn, ◦+〉〉

b−1

i 〈〈χ1, . . . , χi−1, 〈χi, χi+1〉, χi+2, . . . , χn, ◦+〉〉 =

〈〈χ1, . . . , χi−1, χi, χi+1, χi+2, . . . , χn, ◦+〉〉

At the principal port of a function (sharing) node, the path is routed to the left
or right, in addition to the change of context—left if t = ◦ (t = l), and right if
t = • (t = r), and token t is removed:

f
−1

i 〈〈χ1, . . . , χi−1, tχi, χi+1, . . . , χn, ◦+〉〉 = 〈〈χ1, . . . , χi−1, χi, χi+1, . . . , χn, ◦+〉〉

s−1

i 〈〈χ1, . . . , χi−1, tχi, χi+1, . . . , χn, ◦+〉〉 = 〈〈χ1, . . . , χi−1, χi, χi+1, . . . , χn, ◦+〉〉

Why: What does all this stuff mean? A context can now identify a head
variable not only by its binders and arguments (“x, λ-bound at . . . , which is
the mth argument of head variable y, which is λ-bound at . . . , which is the nth
argument of head variable z, . . . ”)—but also by its occurrence: which x is it?
To provide this information, we need to know something about the history of
the computation leading to the normal form. Context semantics provides this
history.

5 We could use ◦ and • instead of l and r, but we choose to increase “type safety”
and make the contexts more readable.

6 Again, v could be replaced with the null symbol ε, but we want to identify each
croissant with the variable it represents.

Consider a context 〈〈χ1, . . . , χn, ◦+〉〉 input at a port π of a graph.7 If π is the
root, each χ2i+1 traces a path along a chain of λ-binders, each χ2i traces a path
along a chain of applications, and if n is even (odd), it denotes an Opponent
(Player) move that is input to (output from) the graph, identifying a subterm
(head variable). Dually, when π is a free variable port, each χ2i+1 traces along
applications, χ2i along λ-binders, and and if n is odd (even), it denotes an Op-
ponent (Player) move that is output from (input to) the graph. These parities
change because at the root, the context enters with the orientation of a contin-
uation, and at a free variable, with that of an expression.

Write each χi as kσ, where k is a numeral ◦k•, and σ is a sharing identifier.
The tokens from numerals are used by λ- and @-nodes, as in the linear case.
Let V be a set of variables including those occurring in a λ-term; the sharing
identifiers σ are generated from the grammar σ → V | lσ | r〈σ, σ〉 | 〈σ, σ〉. Each
sharing identifier σ explains how variable ν(σ) is shared, where ν(x) = x, and
ν(lσ) = ν(r〈σ′, σ〉) = ν(〈σ′, σ〉) = ν(σ).

What do the sharing identifiers mean? A variable is the simplest identifier:
in λx.x, the initial Op-move 〈〈◦+〉〉 gives the Pl-response 〈〈•x, ◦+〉〉. In λx.xx, the
Player would respond 〈〈•lx, ◦+〉〉—lx identifies the left occurrence. When the Op-
ponent asks for the head variable of the argument of the head variable of λx.xx,
coded as the Op-move8 〈〈•lx, •α, ◦+〉〉, the Player responds with 〈〈•r〈α, x〉, ◦+〉〉—
the right occurrence of x, occurring in a box that was “bound to” α. Finally, in
λy.xy, we have Op1 = 〈〈◦+〉〉 at the root, Pl1 = 〈〈x, ◦+〉〉 at πx, Op2 = 〈〈x, •α, ◦+〉〉
at πx, and Pl2 = 〈〈•〈α, y〉, ◦+〉〉 at the root—the sharing identifier 〈α, y〉 says y is
in a box “bound to” α, but not shared. In summary: σ represents the sharing of
ν(σ). When σ = 〈σ′, σ′′〉 or r〈σ′, σ′′〉, the σ′ describes the external sharing of the
occurrence of the box containing the occurrence of ν(σ), and σ′′ describes the
internal sharing of ν(σ) inside the box. Check your intuitions with the follow-
ing examples of contexts input and output (all at the root) to simple λ-terms;
since all contexts have the form 〈〈. . . , ◦+〉〉—where the ◦+ represents a “call” to
a subterm—we henceforth eliminate its mention.

λx.λy.xy: Then Op1 = 〈〈 〉〉, Pl1 = 〈〈•x〉〉 (“the head variable is x, bound”),
Op2 = 〈〈•x, •α〉〉 (“the first argument of x—which the Opponent ‘binds’ to
α—what’s its head variable?”), Pl2 = 〈〈◦ • 〈α, y〉〉〉 (“y, free in a box bound
to α”).

λx.x(λy.y): Again Op1 = 〈〈 〉〉, Pl1 = 〈〈•x〉〉 and Op2 = 〈〈•x, •α〉〉; but now Pl2 =
〈〈•x, •α, •y〉〉 (contrast with the previous example).

λx.x(λy.xy): Op1 = 〈〈 〉〉, Pl1 = 〈〈•lx〉〉, Op2 = 〈〈•lx, •α0〉〉, Pl2 = 〈〈•r〈α0, x〉〉〉,
Op3 = 〈〈•r〈α0, x〉, •α1〉〉, Pl3 = 〈〈•lx, •α0, •〈α1, y〉〉〉.

λx.λy.λz.λw.x(y(zw)): Op1 = 〈〈 〉〉, Pl1 = 〈〈•x〉〉, Op2 = 〈〈•x, •α1〉〉, Pl2 = 〈〈◦ •
〈α1, y〉〉〉, Op3 = 〈〈◦ • 〈α1, y〉, •α2〉〉, Pl3 = 〈〈◦ ◦ •〈α1, 〈α2, z〉〉〉〉, Op4 = 〈〈◦ ◦
•〈α1, 〈α2, z〉〉, •α3〉〉, Pl4 = 〈〈◦ ◦ ◦ • 〈α1, 〈α2, 〈α3, w〉〉〉〉〉.

7 For now, imagine the graph is of a normal λ-term.
8 Literally, α ≡ ε, but I include this notation to identify the Opponent’s move in the

context. Think of the Opponent as a projection function with head variable identified
by α.

Exercise: reading back the normal form of a normal λ-term. Given a closed λ-term
N ≡ λx0. · · ·λxp.xiN0 · · ·Nq in normal form, how do we read back N from
the context semantics of GN? We mimic the procedure introduced for linear
λ-calculus, using the refined idea of contexts described above. Recall Op-moves
identify subterms, and Pl-moves identify head variables; an Op-move has the form
O = 〈〈`1σ1, a1α1, . . . , `nσn, anαn〉〉, and a Pl-move has the form P = 〈〈`1σ1, a1α1,
. . . , `nσn, anαn, `n+1σn+1〉〉, where the `i and ai are numerals. The Opponent
generates new moves by taking a Pl-move (coding a head variable v), and adding
kα just before the ◦+ component (“what is the head variable of the kth argument
of v?”). The α marks the occurrence of a projection variable from the Opponent.

Follow the path from the root to a subterm defined by a context: `1 = ◦i•
traces through the λ-binders at the top level, reaching the head variable xi of
N . Then σ1 represents some occurrence of xi, and that occurrence (marked in
the graph by a croissant node) is at level d = ∂(σ1), where ∂(x) = 0, ∂(αj) = 1,
∂(lσ) = ∂(σ), and ∂(r〈σ′, σ〉) = ∂(〈σ′, σ〉) = ∂(σ′) + ∂(σ). The path then un-
packs α′1, . . . , α

′

d from σ1, and consumes the token xi. Next a1 = ◦j• is consumed
to trace through a chain of @-nodes, en route to the graph of subterm Nj , while
placing α2 from the context on the (d + 1)st wire. The explanation continues
inductively on 〈〈`2σ2, a2α2, . . . , `nσn, anαn〉〉.

For the head variable identified by the Player in move P above, `n+1σn+1

gives the numeral `n+1 coding the lexical address of the head variable v =
ν(σn+1) in the subterm N ′ containing v’s binder, and ∂(σn+1) gives the distance
(number of enclosing boxes) separating that binder from the occurrence of v
in the enclosed subterm N ′′. The remaining information in move P gives the
address of N ′. Moreover, σn+1 identifies the occurrences of the Op-variables
bound to each of the boxes separating the occurrence of v from its binder.

Readback does not require any information from the σi, except that ∂(σi)
be correct, since it indicates how many boxes have to be entered to get to the
head variable in question. The rest of the information in σi tells what variable
occurrences v were bound to these boxes during reduction, and what variable
occurrences v

�

were bound to boxes containing v, and so on. Now consider read-
back on a term that is strongly normalizable: use insular reduction to compute
its normal form.

Proposition 4. In an insular β-step, when a variable x is bound to a box B,
the sharing, bracket, and—in particular—croissant nodes at the occurrences of x
move to the free variable ports of the copies of B produced during the reduction.
In that latter position, they do not change the level of head variables; equiva-
lently, their contribution to sharing identifiers σ in the context semantics code
the correct depth.

As a consequence, when entering the principal port of a box, the context resem-
bles that which is found in readback of a normal λ-term.

Proposition 5. When the principal port of a box at level d is encountered on a
path, the first d wires of the context hold α′

1, · · ·α
′

d, all from projection functions
of the Opponent.

In other words: paths from head variables to the root pack sharing informa-
tion into the context, which is unpacked (in the same graph location!) on return
paths to subterms. It does not matter what this information is, as long as it
has the correct depth. Recall Lemma 1, and let G′ and G′′ be the respective
graphs derived by global and insular reduction to the normal form of the same
λ-term: then G′, G′′ only differ in the accumulation of bracket and croissant
nodes at free variable ports of boxes. In G′′, these control nodes are the debris
of β-contraction—but for mere readback of the λ-term, they are only sound and
fury, signifying nothing.

Lemma 2. Let GE be the graph coding a λ-term E. Given the context semantics
of the normalized graph produced by either global or insular reduction of GE, the
readback algorithm computes the normal form of E.

Readback: the general case and optimal reduction. However, both global and insu-
lar reduction can change the context semantics. For example, in (λz.λw.wzz)(xy),
the context semantics includes paths from πx to πy that do not include sharing
information (i.e., the use of l or r). But in the context semantics of global or
insular normal forms, from which we can read back xy(xy), this information is
required, since a sharing node is found on every path from πx to πy. So if the
context semantics changes, what relation is there between the context seman-
tics of the graph at the start and conclusion of reduction? How do we know
that we are reading back the normal form of the right term? The solution is
to recognize that insular reduction does not change the fragment of the context
semantics that is used for readback. Readback traces paths in a proper manner,
a straightforward idea that we now elaborate:

Definition 1. A proper interaction with a box H at level k is a sequence of
contexts I = {o1, p1, . . . , on, pn} that alternately enter and exit the ports of H,
where

1. Let 1 ≤ r ≤ k; the rth component of every context in I is a sharing identifier.
Moreover, any two contexts in I have the same such identifier in the rth
component.

2. They are consistent with the context semantics: the input of oi followed by
the output of pi is determined by the functions defined by nodes along the
path from oi to pi;

3. o1 is input at the principal port (root) of the box, and each oi+1 is input at
the port where pi was output;

4. If the port of pi and oi+1 is not the root, then their (k + 1)st wires contain
the same sharing identifier (i.e., they are talking about the same variable
occurrence in the box); and

5. Any interactions with boxes contained in H are also proper.

Lemma 3. The context semantics defines an interaction with an implicit “box”
that encloses the entire graph. In readback on an insular or global normal form,
this interaction is proper. Furthermore, an interaction with a box is proper iff
an interaction with any insular graph reduction of that box is proper. (The latter
assertion is false for global reduction.)

The proof of this lemma is a slightly tedious but straightforward induction on
reduction sequences, where we check that each insular graph reduction rule pre-
serves the requisite properties. Since readback on an (insular) normalized graph
is a proper interaction, we conclude:

Theorem 1. Let GE be the graph coding a λ-term E. Given the context se-
mantics for GE, the readback algorithm produces the normal form of E. Since
optimal reduction leaves the entire context semantics invariant, readback on op-
timally reduced graphs is correct.

We remark that in readback of an optimally reduced graph, we use the graph
to compute the necessary fragment of the context semantics, rather than being
presented with it extensionally. Observe that this theorem can be strengthened
so that E need not have a normal form; in this case, the readback algorithm
computes the Böhm tree.

4 Types

We can type terms by attaching data types that are linear logic formulas to
oriented graph edges. A λ-node (@-node) has an outgoing (ingoing) type α −◦ β
on its principal root (function) port, an outgoing (ingoing) type α on its auxiliary
parameter (argument) port, and an ingoing (outgoing) type β on its auxiliary
body (continuation) port. A box has ingoing types !α1, . . . , !αn on its auxiliary
ports, and an outgoing type !β on its principal port. A sharing node has !α
going in at its principal port, and !α going out at its auxiliary ports. A croissant
(bracket) has !α (!α) going in at its principal port, and α (!!α) at its auxiliary
port. The CBN coding assumes arguments are always boxed, so simple types τ
are compiled into linear logic types [τ] as [A] = A and [α → β] =![α] −◦ [β].
These types are preserved by global and insular reduction, but not by optimal
reduction.9

In the bus system, a subterm of type ! · · ·!α (m !s) must be enclosed in m
boxes, and each box has a dedicated wire on the bus, holding information about
the sharing of that box—what variable occurrence is bound to it? From these
contexts we can read part of the computation history. The information flow on
each wire clarifies how context semantics can be interpreted as a kind of flow
analysis, describing the fine structure of games in the style of McCusker’s infor-
mal presentation [2]. The Curry-Howard correspondence is reinterpreted using
the games slogan: types are arenas where games can be played (Player: “I am
thinking of a term of type τ”; Opponent: “What is its head variable?”. . .), and
a λ-term of that type represents a winning Pl-strategy.10 In the typed frame-
work we can dispense with the ◦+-notation, using the types to insert the ex-
act number of needed tokens. For example, the Pl-strategy 3 has Op1 = ?,

9 Consider the sharing of a function with type !Int −◦ Int. By duplicating the λ-node,
we then need to share the output of type Int—without a !, which is type incorrect.

10 In game semantics, the moves of game A ⊗ B are defined as the disjoint union of
A and B; the • and ◦ tokens of context semantics are what implement this disjoint
union. In this spirit, context semantics realizes a sort of “machine language” for
implementing games.

Pl1 = 3; the strategy succ : Int −◦ Int has (for each n) Op1 = ◦?, Pl1 = •?,
Op2 = •n, Pl2 = ◦(n + 1); and succ′ :!Int −◦ Int has Op1 = 〈〈◦?〉〉, Pl1 = 〈〈•α, ?〉〉,
Op2 = 〈〈•α, n〉〉, Pl2 = 〈〈◦(n+1)〉〉. Observe that a wire of type Int carries requests
(of type Int⊥) for an integer data in one direction, and supplies an integer (Int)
in the other direction. An edge of type !Int also has a dedicated “sharing wire”
identifying which shareholder wants the data; an edge of type !!Int also explains
how the shareholder is also shared. A free variable x :!Int occurring in a box has
an internal sharing wire (how is x shared in the box?), and an external sharing
wire (how is the box shared?) that is “threaded” through the entire box. Upon
exiting at x’s port, these wires are paired by the bracket. When a !!-type becomes
a !-type inside a box without transformation by any graph node, only the type
information internal to the box is being shown.

Consider the example (λf :!(!Int −◦ Int).f(f(!3)))succ′ : Int (annotated using
the CBN translation), where Op1 = ? and Pl1 = 5—but what are the calls to the
boxed version of succ′ during the computation? The first call is C1 = 〈〈lf, ◦?〉〉
(what’s the output?), and succ′ responds S1 = 〈〈lf, •α, ?〉〉 (what’s the input?);
then C2 = 〈〈r〈α, f〉, ◦?〉〉 (what’s the output?—but for a new call site), S2 =
〈〈r〈α, f〉, •α, ?〉〉 (again, what’s the input?), C3 = 〈〈r〈α, f〉, •α, 3〉〉 (the input is
3), S3 = 〈〈r〈α, f〉, ◦4〉〉 (the output is 4), C4 = 〈〈lf, •α, 4〉〉 (the input is 4),
S4 = 〈〈lf, ◦5〉〉 (the output is 5). Each wire holds type-dedicated information;
for example, in S3, r〈α, f〉 has type !(!Int −◦ Int) (sharing the function), and
◦4 has type !Int −◦ Int; the tag ◦ indicates an injection from Int. Dually, in C4,
lf : [!(!Int −◦ Int)]⊥, •α : (!Int −◦ Int)⊥ =!Int ⊗ Int⊥ (where • is the injection
from !Int), and 3 : (Int −◦⊥)⊥ = Int. In an initial coding, a bus for an edge of
type α has wires of type α, φ(α), φ2(α), . . ., where φn+1(α) =⊥ for a base type,
φn+1(!α) = φn(α), and φn+1(α −◦ β) = φn(α) −◦ φn(β). This elaborated typing
can be shown to be preserved by optimal reduction.

5 Labelled λ-calculus à la Lévy and paths

Give every application and abstraction a unique atomic label, and define labelled
β-reduction as (λx.E)`F �lab([F

`/x]E)`. For example, consider labelled reduction
of (λx.xx)(λx.xx) (see Figure 6):

((λx.(x1x2)3)4(λx(x5x6)7)8)9 �lab ((λx.(x5x6)7)841(λx(x5x6)7)842)349

�lab ((λx.(x5x6)7)8428415(λx.(x5x6)7)8428416)7841349

Now interpret underlining as reversal, so ` = ` and ``′ = `′ `. For example,
we have 8428415 = 8421485. Observe that this label on the function in the last
application above, describes a path between an @- and λ-node in the initial
graph coding of (λx.xx)(λx.xx)—read underlined atomic labels by reversing the
orientation of the graph edge. This connection between labels and paths has
been studied in [5]; we add some intuitions. First, except for K-redexes, which
discard term structure, the history of the computation is coded in the labels:
we can effectively run the reductions backwards. But the same is not true of
context semantics—we cannot reconstruct the initial term. For example, take
((λx.(x1x2)3)4(λy.y5)6)7, which reduces to (λy.y5)` where ` = 6426415641347—
try tracing this path, for fun. But the context semantics of this term is just that

@

λ λ

@ @

>9

>4

>

8

>3 >7

>1 >2 >5 >6

Fig. 6. Labelled reduction and paths.

of λy.y—so what is it about reductions that lets ` get forgotten by the context
semantics?

Just as optimal reductions commute bracket and croissant nodes through @
and λ-nodes, rewrite (UαV) as (UV α)α and (λx.E)α as λx.Eα[xα/x]. Forget
all atomic labels except those marking variable occurrences. Then the labelling
of (λy.y5)` gets rewritten to (λy.y5)2151 and again to λy.y215152151. By adding
rules that commute and annihilate atomic labels, imitating those for optimal
reduction, we should be able to deduce that the outer label self-annihilates.

6 Conclusions and open problems

This largely tutorial paper represents an important part of research: to re-search
some of what has already been found, and to know it better. Context semantics
is an expressive foundation for static program analysis. We have given a sim-
ple correctness proof, explaining why readback of the semantics—unchanged by
optimal reduction—yields the normal form. What fragments of this semantics
correspond to tractable schemes for static program analysis? It would be nice
to tie this semantics more closely to that of games, so that an Opponent could
ask questions about aspects of the computation history, i.e., “what variable got
bound to the box containing the head variable?”. These sorts of questions suggest
the possibility of full abstraction theorems that are sensitive to sharing—that
two βη-equivalent terms are distinguishable if they share applications differently.
The informal typing of individual wires in Section 4 could be a step in providing
a semantics of optimal reduction where the nodes in “negative” position are ex-
plained properly. The relation of labels to semantics, briefly discussed in Section
5, deserves a clearer and more detailed explanation. The box-croissant-bracket
metaphor, as explained in [3], is just a comonad: the box is a functor, and the
croissant and bracket are the unit and bind described in [14]. Why not use graph
reduction, then, as a means of implementing monads? For example, state can be
represented by the !-dual functor ?, so in a game for ?α, the Opponent could
query the state as well as the type α. There is more of this story to be told.

Dedicated in memory of my father, Theodore Mairson (1919–2002)

Acknowledgements. Thanks to many people I have discussed these ideas with over

several years, including especially Alan Bawden, Jakov Kucan, Julia Lawall, Jean-

Jacques Lévy, Peter Neergaard, and Luca Roversi. Special thanks to Peter who did the

figures for me at the last minute.

References

1. S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Infor-

mation and Computation, 163(2):409–470, Dec. 2000.
2. S. Abramsky and G. McCusker. Game semantics. In H. Schwichtenberg and

U. Berger, editors, Theoretical Foundations of Computer Graphics and CAD, vol-
ume 165 of NATO ASI, pages 307–325. Springer-Verlag, 1999.

3. A. Asperti. Linear logic, comonads and optimal reductions. Fundamentae Infor-

maticae, 22:3–22, 1995.
4. A. Asperti and S. Guerrini. The Optimal Implementation of Functional Program-

ming Languages. Cambridge University Press, 1998.
5. A. Asperti and C. Laneve. Paths, computations and labels in the λ-calculus.

Theoretical Computer Science, 142(2):277–297, 15 May 1995.
6. A. Asperti and H. G. Mairson. Parallel beta reduction is not elementary recursive.

Information and Computation, 170:49–80, 2001.
7. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50, 1987.
8. J.-Y. Girard. Geometry of interaction I: Interpretation of system F. In C. Bonotto,

R. Ferro, S. Valentini, and A. Zanardo, editors, Logic Colloquium ’88, pages 221–
260. North-Holland, 1989.

9. G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda re-
duction. In Conference record of the Nineteenth Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages: papers presented at the sym-

posium, Albuquerque, New Mexico, January 19–22, 1992, pages 15–26, New York,
NY, USA, 1992. ACM Press.

10. G. Gonthier, M. Abadi, and J.-J. Lévy. Linear logic without boxes. In Proceedings

7th Annual IEEE Symp. on Logic in Computer Science, LICS’92, Santa Cruz,

CA, USA, 22–25 June 1992, pages 223–34. IEEE Computer Society Press, Los
Alamitos, CA, 1992.

11. J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II, and III.
Information and Computation, 163(2):285–408, Dec. 2000.

12. J. Lamping. An algorithm for optimal lambda calculus reduction. In POPL ’90.

Proceedings of the Seventeenth Annual ACM Symposium on Principles of Pro-

gramming Languages, January 17–19, 1990, San Francisco, CA, pages 16–30, New
York, NY, USA, 1990. ACM Press.

13. J.-J. Lévy. Réductions correctes et optimales dans le lambda-calcul. PhD thesis,
Université Paris 7, 1978. Thèse d’Etat.

14. P. Wadler. The essence of functional programming. In Conference record of the

Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages: papers presented at the symposium, Albuquerque, New Mex-

ico, January 19–22, 1992, pages 1–14, New York, NY, USA, 1992. ACM Press.

