
SLA-driven Workload Management for
Cloud Databases

Dimokritos Stamatakis∗ Olga Papaemmanouil∗
∗ Brandeis University, Waltham, MA, USA

∗{dimos,olga}@cs.brandeis.edu

Abstract—Despite the fast growth and increased adoption of
cloud databases, challenges related to Service-Level-Agreements
(SLAs) specification and management still exist. Supporting
application-specific performance goals and SLAs, assigning in-
coming query processing workloads to the reserved resources
to avoid SLA violations and monitoring performance factors
to ensure acceptable QoS levels, are some of the critical tasks
that have not yet been addressed by the database community. In
this position paper, we argue that SLA management for cloud
databases should itself be offered to developers as a cloud-based
automated service. Towards this goal, we discuss the design of a
framework that a) enables the specification of custom applicaton-
level performance SLAs and b) offers workload management
mechanisms that can automatically customize their functionality
towards meeting these application-specific SLAs.

I. INTRODUCTION

While existing cloud infrastructures and services signifi-
cantly reduce application development time, they still require
significant effort by cloud tenants, for application deployment
often involves a number of challenges including but not limited
to performance monitoring, admission control and workload
allocation. These tasks strongly depend on application-specific
workload characteristics and performance objectives, therefore
their implementation is left to the application developers.

Furthermore, despite the importance of performance guaran-
tees for cloud databases, SLAs for cloud services are currently
offered only at the service level (e.g., server uptime [1],
[2], internal and external network latency/jitter [2], storage
availability [2], [1]). Application-specific SLAs, i.e., SLAs
that can be customized by the hosted applications, are not
supported. Therefore, critical performance management tasks,
such as performance monitoring, are also addressed through
custom, ad-hoc solutions at the application level.

A growing number of efforts on cloud databases attempt
to address some of these challenges (e.g., workload alloca-
tion [3], [4], admission control [5], resource provisioning [6],
[7]) for specific performance metrics (typically query latency).
However, the diversity of the data processing applications and
workloads (e.g., scientific, financial, e-commerce, business-
intelligence, etc) unavoidably implies the need for customiz-
able services that support equally diverse performance metrics
(e.g., throughput, response latency, load balancing, network
traffic, etc). This paper describes our vision of an extensi-
ble SLA-driven framework that allows application developers
to express their SLA objectives and customizes SLA-driven
monitoring and workload management mechanisms.

Our proposed framework includes an SLA-specification
grammar, named XCLang, designed to capture performance
goals and constraints for data processing applications. The
grammar allows application developers to declaratively ex-
press their own effectiveness and efficiency criteria for their
deployed cloud-based data management application. XCLang
specifications are leveraged to automatically customize a
cloud-based middleware that periodically monitors these per-
formance metrics and manages incoming query workloads.

Workload management aims to increase client satisfaction
by meeting the application’s SLAs. In this work we propose
extensible query admission and query allocation techniques
that can automatically accommodate diverse performance met-
rics. Admission control decides which queries should be
allowed in for execution aiming to reduce the chance of
overload. Once queries are admitted, query scheduling is
responsible for deciding the database server they will be
routed for execution such that the expected frequency of SLA
violations is minimized. Both procedures are implemented
by extensible mechanisms that are customizable to work for
diverse SLA specifications defined using XCLang.

The paper first discusses the system model of our proposed
framework (Section II). We introduce the SLA specification
language XCLang in Section III. Section IV demonstrates how
application-defined SLAs can be used to design extensible ad-
mission control and query assignment tools. Our final remarks
and our plans for future work are presented in Section V.

II. SYSTEM MODEL

In this section we provide an overview of our proposed
SLA-driven admission control model. Our system model is
depicted in Figure 1. We envision our system running as a
service on an Infrastructure-as-a-Service (IaaS) cloud (e.g.,
Amazon [1], GoGrid [2]). This service will run as a middle-
ware lying between the application users and the application’s
cloud deployment and will be responsible for the admission
control and allocation of incoming queries.

Our model addresses the workload management needs of
data management applications. Each application is responsible
for renting its own set of virtual machines (VMs) from the
IaaS cloud provider. VMs run a preloaded database engine
(e.g., SQL Server, MySQL, etc) and each VM hosts a replica
of the application’s database that serves read-only queries.
We assume acceptable performance isolation across VMs.
Incoming queries will be assigned for execution to one of these



VMs or rejected by the Admission Control component. These
decisions rely on a performance prediction models trained on
the VM configurations used by the application.

A unique feature of our framework is that it allows appli-
cation developers to specify SLA specifications for their data
management application. These specifications are expressions
of our proposed SLA definition grammar named XCLang
(eXtensible Cloud Language) and are submitted to our mid-
dleware. Developers use XCLang to declaratively specify their
SLA metric, its composition (i.e., how it can be calculated), the
SLA evaluation period, as well as the conditions under which
the SLA is violated. SLA expressions are used to customize
the Statistics Manager component. This component resides
on each VM and is responsible for collecting the necessary
statistics for evaluating the application’s SLA. Statistics are
pushed periodically to the admission control module.

SLA expressions are parsed and evaluated by our SLA
Grammar Parser component. The parser applies the statistics
collected from the current application deployment to identify
(or predict) possible violations. For instance, this evaluation is
applied upon the arrival of a new query and is used to identify
the impact of the new query on the SLA. Based on this impact,
our admission control module decides whether to admit the
query and if so, to which replica it should be executed.

Our proposed model is easily extensible. For instance cloud
providers can offer a set of predefined SLA templates using our
grammar, each offering a different performance level for a dif-
ferent price. Application developers would simply customize
the SLA template that fits their needs better. Finally, our
grammar allows for SLA definitions on both the application
and the query level. For instance, one application might want
to ensure that the maximum query latency over all queries
completed within an evaluation period will not exceed x secs,
while another application might want to ensure that each
admitted query is guaranteed a maximum latency of x secs.

Fig. 1. Our system model.

III. SLA SPECIFICATION WITH XCLANG

Supporting extensible SLAs for diverse data management
applications requires a declarative language for specifying the
application’s SLA metrics and parameters. In this section we
describe a declarative language for specifying SLA metrics as
a function of system properties and statistical performance-
related metrics. XCLang aims to offer a unified grammar that
facilitates the expression SLAs based on properties of different

TABLE I
THE BUILT-IN CONTEXT-FREE GRAMMAR

Symbol Grammar Rules
<Deployment> ::= <VM>*
<VM> ::= (<ID>, <DB-Engine>)
<DB-Engine> ::= (<ID>, <Query>*)
<Query> ::= (<ID>)

levels of granularity, ranging from cloud deployment, database,
resource properties to query and operator features. Depending
on their familiarity with the database internals, developers
can compose their SLA metrics based on either high-level
properties (e.g., number of VMs, query response time, etc)
or lower level query properties (e.g., I/O requests, query plan
characteristics, operators etc).

XCLang Our declarative SLA specification language lever-
ages formal context-free attribute grammars (AGs). AGs pro-
vide a modular framework to define attributes for the symbols
of a context-free grammar and synthesize them through at-
tribute rules. XCLang represents system entities as grammar
symbols and expresses their relationships through grammar
rules. Examples of entities we have used so far are the follow-
ing: (a) Deployment that represents the cloud deployment of an
application, b) Virtual Machine (VM) that captures the VMs
used by the specific application deployment, c) DB-Engine
that represents the database engine running on each VM and
d) Query that captures the queries executing on the database
engine running on a given VM. These entities can be expanded
to include query plans, query operators, etc, providing a more
fine-grained definition model, if needed. However, we believe
that very few developers will be comfortable expressing SLAs
as a function of low level query properties and semantics.

An example grammar is shown in Table I. The grammar
expresses that an application’s deployment is defined as its set
of reserved virtual machines (<VM>∗). Each VM is defined by
the database engine it hosts (<DB-Engine>) and the ID of
the VM (e.g., its IP address). The database engine is defined
by the currently executing queries (<Query>∗) and the ID of
the database engine. Each query is defined by its ID. Grammar
rules cannot be modified by the application.

Application developers can extend this grammar by provid-
ing attribute rules that define various performance metric(s)
for the system entities. They define also one of these metrics
to be the SLA metric and specify the condition that satisfies
the SLA. An example of an SLA specification that defines the
maximum query latency is shown in Table II. Each rule refers
to specific grammar symbol (e.g., <VM>, <Query>, etc) that
defines the name of a metric and its evaluation rule. Metrics
are categorized as built-in or composite or predicted:

1) Built-in: Attribute rules can assign a value to a metric
through built-in methods that expose entity properties
to the user. These methods are assumed to be available
by the cloud and database providers through APIs.
Examples include retrieving the execution latency of a
query, or the number of running queries of a DB-engine.

2) Composite: One can define metrics through (optional)
multi-level composition steps. At the lowest level, one



can specify a metric for a query and combine this (e.g.,
through aggregation) to express metrics for the database
engine the query is running on. Similarly, database
metrics can be used to define application properties (e.g.,
its performance metric). For instance, one can define the
maximum query latency of an application by aggregating
the query latency metric.

3) Predicted: These are metrics that are evaluated through
prediction models. XCLang includes built-in perfor-
mance prediction models for certain traditional metrics
(e.g., query latency) and also allows applications to
incorporate their own prediction techniques by applying
user-defined functions on system properties.

TABLE II
ATTRIBUTE RULES EXAMPLE

Symbol Attribute Rules
<Deployment> SLACondition::=AppPerformance < 60secs

SLAMetric::=AppPerformance
AppPerformance::=MAX(VMPerformance,<VM>*)

<VM> VMPerformance::=<DB-Engine>.DBPerformance
numQueries::=<DB-Engine>.numQueries

<DB-Engine> DBPerformance::=MAX(latency, <Query>*)
numQueries::=getConcurrentQueries(ID)

<Query> latency::=getQueryLatency(ID)

Proof-of-concept attribute rules for the above grammar are
shown in Table II. At the lowest level, query performance
is calculated through the method getQueryLatency that
returns the response time of a query (built-in metric). In the
next level, the performance of a database (DBPerformance)
is defined as the maximum latency of the queries exe-
cuted in that engine (composite metric). In our model each
VM hosts one DB engine and hence the performance of
the VM (VMPerformance) equals to the performance of
the hosted database. The performance of the application
(AppPerformance) is an aggregation of the VM perfor-
mance (i.e., maximum query latency) over all the reserved
VMs (composite metric). The SLA metric is defined as the
application performance metric (i.e., maximum query latency)
and it must be less than 60secs for the SLA to be satisfied.

The example demonstrates the extensibility feature of
XCLang. Declarative specifications abstract away the cloud
deployment (i.e., number of VMs, query assignment to VMs).
This allows our framework to transparently modify the un-
derlying deployment (e.g., adding/removing VMs) and the
workload allocation without affecting the evaluation models
of its performance criteria. Furthermore, XCLang can be
customized for any API exported by the cloud and DBaaS
providers and therefore it allows developers to experiment with
different parameters that may affect the database performance.
One challenge is to identify APIs that are both useful to
the application developers (e.g., expose metrics that impact
commonly used performance metrics) but at the same time
protect the providers from exposing metrics that cannot be
easily measured or controlled. We plan to study existing per-
formance prediction models [8], [3], [6] on cloud environments
and diverse workloads and identify the common APIs based on

Fig. 2. Deployment representation and SLA evaluation.

which we can accurately capture diverse performance criteria.
SLA Expression Evaluation SLA expressions need to be

periodically evaluated in order to identify (or predict) any
possible SLA violations. This process is executed by the
SLA Grammar Parser component. The parser implementation
relies on ANTLR [9], a software for generating compilers for
attribute grammars. Our SLA parser receives as input the SLA
expression as well as tree-based representation of the current
application deployment. An example of such representation is
shown in Figure 2. The parser then evaluates the attribute val-
ues in a bottom up fashion on the deployment tree. This allows
the aggregation of performance metrics on the deployment
tree. Once the SLA metric is evaluated the parser is designed to
check if the SLA constraints are satisfied and decide whether
the SLA is met based on the current deployment and collected
statistics or not. Figure 2 shows also the annotation of the tree
with the attributes and their values.

The above process is agnostic to the semantics of the
attributes and their evaluation method (e.g., built-in, compos-
ite, predicted). This allows the SLA evaluation process to
be extensible: it can be customized to work with any SLA
specification that follows the rules of our XCLang grammar.
Furthermore, depending on the evaluation method specified
in the SLA, the evaluation can be used to identify or predict
SLA violations. For instance, if the query latency is defined to
be its final execution time collected by a built-in method, the
evaluation will simply detect an existing violation. However,
if the query latency gets its value from a plugged-in prediction
model then the process will output a predicted value for the
SLA metric, allowing us to identify expected violations and
address them proactively.

IV. SLA-DRIVEN WORKLOAD MANAGEMENT

Our workload management mechanisms leverage the SLA
specification and evaluation process to make SLA-driven
admission control and query allocation decisions. Workload
management aims to increase client satisfaction by meeting
the application’s SLAs. In our project we aim to design query
admission and allocation tools that can automatically accom-
modate diverse SLA specifications. Towards this end we pro-
pose a timeline workload analysis mechanism driven by metric
specifications in XCLang. Our approach handles SLA evalu-



!"#$

%&#$

'#$$

%()*+,-(./$

'#$

'0$ '1$

2$

!"#$

%&#$

'#$$

%()*+,-(./$

2$

'0$$

!"#$

%&#$

'#$$

%()*+,-(./$

2$

'0$$ '1$$

!"#$

%&#$

'#$$

%()*+,-(./$

2$

'1$$

!"#$

%&#$

'#$$

%()*+,-(./$

2$

Fig. 3. Timeline analysis example.

ations on user-defined metrics for which a concurrency-aware
performance prediction model has also been provided [8], [10].

Our timeline analysis aims to identify the time segments that
query executions overlap and quantify the SLA impact inde-
pendently for each segment. This can lead to more accurate
violation predictions. For these predictions we rely on a model
that evaluates the benefits and detriments of concurrent query
executions [8] and can be plugged-in using attribute rules.

Let us assume we want to evaluate the expected SLA metric
if a new query, q, is assigned to a rented VM. First, we quantify
the progress of all queries that are presently executing in that
VM since each current query began. This can be achieved
with a progress indicator similar to the one proposed in [8].
Next, we estimate the expected value for the SLA metric for
the new mix (i.e., existing queries plus q), operating under the
temporary assumption that the mix will not change. We then
pick the query with the least remaining time and under the
assumption that it will terminate first, we remove it from the
mix and we re-evaluate the SLA metric under the new smaller
mix. We keep iteratively predicting and eliminating the query
with the least remaining time until we have completed our
estimates for all queries running on that VM. We aggregate
the different SLA metric estimations we have collected and
we return either their weighted average or the worst predicted
performance, depending on the application’s constraints.

An example of the timeline analysis is shown in Figure 3,
where Q3 arrives while Q1 and Q2 are running. The example
shows the annotated deployment trees generated by the parser
as the query mix changes. Using the XCLang parser this
timeline analysis becomes a metric-independent process and
can work with any given SLA.

Our admission control mechanism directly applies the time-
line analysis model striving to reduce potential SLA violations.
Specifically, we issue a request for a timeline analysis on each
rented VM under the hypothesis that the new query will be
executed on this VM. The query is admitted if the results
are positive, i.e., there is at least one VM where the analysis
indicates that the application’s SLA will be met.

Once queries are admitted, the query allocation process
is responsible for deciding the VM they will be routed for
execution and the order of execution within that VM’s queue.
Again we rely on the timeline analysis to make predictions
under different scenarios. For instance, we can consider alter-
native execution orderings within each VM or different start
time offsets for the queries in the VMs queue. We can hence

formulate different assignments of the submitted queries to
the available VMs and run the timeline analysis to estimate
the expected SLA metric of each assignment. The query is
then scheduled for execution based on the assignment that
minimizes the probability of SLA violations.

Similar strategies can be developed for queries that are
not admitted into the system. Instead of dropping them, our
timeline analysis can be used to identify cases where re-
sending them in a certain time interval would allow them to
be executed without violating any SLA.

V. CONCLUSIONS & FUTURE WORK

In this paper we presented our vision and initial design steps
of an extensible SLA specification and workload management
framework. Our framework offers a new grammar for the
specification of performance criteria and performance models
through which developers will be able to explore the factors
that affect the efficiency of their data processing applications.
By building upon this grammar, we also provide new ex-
tensible workload management tools. Supporting application-
specific SLAs and seamlessly integrating them into admission
control and workload allocation mechanisms will have a clear
positive impact on both the development overhead and the
quality of web-based data management applications.

Currently, we have an implementation of our SLA specifi-
cation and evaluation module. This allows us to declaratively
define diverse SLA metrics and parameters. We are also in
the process of implementing the workload management tools
discussed in this paper and evaluating the trade-off of different
admission control and query assignment strategies. Our SLA
violation predictions rely on our previous work for latency
prediction under concurrent query executions [8]. This allows
us to evaluate the effectiveness of alternative admission control
and query assignment techniques when SLAs are expressed
as a function of the query execution times. Our goal is to
incorporate alternative prediction models (e.g., for throughput,
load balancing) and test our mechanisms on these as well.

REFERENCES

[1] Amazon web services. [Online]. Available: http://aws.amazon.com
[2] Gogrid. [Online]. Available: http://www.gogrid.com
[3] J. Rogers, O. Papaemmanouil, and U. Cetintemel, “A generic auto-

provisioning framework for cloud databases,” in SIGMOD, 2010.
[4] Y. Chi, H. J. Moon, and H. Hacigümüş, “iCBS: Incremental Cost-based

Scheduling Under Piecewise Linear SLAs,” Proc. VLDB Endow., 2011.
[5] P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, and H. HacigümüŞ, “Ac-

tiveSLA: A Profit-oriented Admission Control Framework for Database-
as-a-service Providers,” in SOCC, 2011.

[6] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and H. Hacigumus,
“Intelligent management of virtualized resources for database systems
in cloud environment,” in ICDE, 2011.

[7] W. Lang, S. Shankar, J. M. Patel, and A. Kalhan, “Towards multi-tenant
performance slos,” in ICDE, 2012.

[8] J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal, “Per-
formance prediction for concurrent database workloads,” in SIGMOD,
2011.

[9] Antlr. [Online]. Available: http://www.antlr.org
[10] B. Mozafari, C. Curino, and S. Madden, “DBSeer: Resource and Per-

formance Prediction for Building a Next Generation Database Cloud,”
in CIDR, 2013.


