
Edit Distance with Move Operations

Dana Shapira and James A. Storer

Computer Science Department

shapird/storer@cs.brandeis.edu

Brandeis University, Waltham, MA 02254

Abstract. The traditional edit-distance problem is to find the minimum

number of insert-character and delete-character (and sometimes change

character) operations required to transform one string into another. Here

we consider the more general problem of strings being represented by

a singly linked list (one character per node) and being able to apply

these operations to the pointer associated with a vertex as well as the

character associated with the vertex. That is, in O(1) time, not only can

characters be inserted or deleted, but also substrings can be moved or

deleted. We limit our attention to the ability to move substrings and leave

substring deletions for future research. Note that O(1) time substring

move operations imply O(1) substring exchange operations as well, a

form of transformation that has been of interest in molecular biology. We

show that this problem is NP-complete, show that a “recursive” sequence

of moves can be simulated with at most a constant factor increase by a

non-recursive sequence, and present a polynomial time greedy algorithm

for non-recursive moves with a worst-case log factor approximation to

optimal. The development of this greedy algorithm shows how to reduce

moves of substrings to moves of characters, and how to convert moves

with characters to only insert and deletes of characters.

1. Introduction

The traditional edit-distance problem is to find the minimum number of insert-
character and delete-character operations required to transform a string S of
length n to a string T of length m. Sometimes the costs of inserts and deletes
may differ, and change-character operations may have a different cost from a
delete plus an insert. Here we restrict our attention to just the insert-character
and delete-character operations where both have unit cost, although we believe
that much of what we present can be generalized to non-uniform costs.

It is well known how to solve the edit distance problem in O(n · m) using
dynamic-programming (see for example the book of Storer [?] for a presentation
of the algorithm and references). If the whole matrix is kept for trace back to
find the optimal alignment, the space complexity is O(n · m), too. If only the

values of the edit distance is needed, only one row of the matrix is necessary,
and the space complexity is O(m).

In addition to the insert and delete operations, we allow move operations
that transfer a sequence of characters from one location in S to another at a
constant cost. One way to model the move operation is by viewing strings as
singly-linked lists (one character per vertex), and allow operations to apply to
the pointer associated with a vertex as well as the character associated with the
vertex. To define the problem properly, we can assume that special characters
and $ are first added to S to form the string #S$, and the problem is to
transform #S$ to #T$ with the stipulation that # and $ cannot be involved in
any operation, although #’s pointer might be ($’s pointer is always nil). That is,
defines the list head, the process must produce a list that goes from # to $, and
the characters stored at the vertices traversed are the transformed string, which
must be equal to T (all vertices unreachable from # after the transformation is
complete are considered deleted). For simplicity, we assume that all operations
(insert-character, insert-pointer, delete-character, and delete-pointer) have the
same unit cost. In terms of what can be done in O(1) time, what has been gained
with the addition of the insert-pointer and delete pointer operations is the ability
to:

1. Move a substring in O(1) time.
2. Delete a substring in O(1) time.
We limit our attention to the ability to move substrings and leave substring

deletions for future research. Note that O(1) time substring move operations
imply O(1) substring exchange operations as well, a form of transformation
that has been of interest in molecular biology. Move operations can perform
transformations in O(1) time that could not be done in O(1) time in the standard
edit distance model. For example, let S = anbmcndmen and T = andmcnbmen,
where m << n but m is not a constant. The usual edit distance between S and
T is O(m), as we would like to swap every b with every d, and visa verse. Using
the new model the edit distance is reduced to O(1), by changing O(1) pointers.

Kececioglu and Sankoff [?] and Bafna and Pevzner [?] consider the reversal
model, which takes a substring of unrestricted size and replaces it by its reverse in
one operation. Move operations can be simulated with O(1) reversal operations.
For example, instead of moving a substring B to the right in S, let C be the
substring of S between A and its destination position (so for some possibly
empty strings A and D we wish to transform S = ABCD to ACBD) and we
can simply reverse BC and then reverse each of B and C separately. However,
a reversal cannot in general be simulated by O(1) moves (so the reversal model
is more powerful than the move model).

Muthukrishnan and Sahinalp [?] consider approximate nearest neighbors and
sequence comparison with block operations, and without “recursion”. With block

operations, they include moves, copies, deletes, and reversals. The addition of
the copy and reversal block operations changes the problem greatly. Reversals
are more powerful than moves (i.e., reversals can simulate moves with at most
a constant factor increase in cost but it is not necessarily true that moves can
simulate reversals). Copies allow one to do in O(1) cost something that is not
possible in O(1) time under normal assumptions about the manipulation of lists.
They show NP-completeness and give a close to log factor approximation algo-
rithm for related problems, but their construction is much more complex than
presented here and does not seem to directly apply to this more simple model
of just deletes and moves.

Bafna and Pevzner [?] refer to moves as transpositions; this is motivated by
observing that if S = uvwx is transformed by moving substring w to T = uwvx,
then the effect is to have exchanged the two substrings w and v. For the case that
S is a permutation of the integers 1 through n, they give a 1.5 approximation
algorithm for the minimum number of transpositions needed to transform S to a
different permutation T . Although similar in related to the problem considered
here, the restriction that all characters are distinct greatly changes the problem.

Lopresti and Tompkins [?] consider a model in which two strings S and
T are compared by extracting collections of substrings and placing them into
the corresponding order. Tichy [?] looks for a minimal covering set of T with
respect to a source S such that every character that also appears in S is included
in exactly one substring move; unlike our model, one substring move can be
used to cover more than one substring in T . Thus, S is constructed by using
the copy operation of substrings of the minimal covering set. Hannenalli [?]
studies the minimum number of rearrangements events required to transform one
genome into another; a particular kind of rearrangement called a translocation is
considered, where a prefix or suffix of one chromosome is swapped with the prefix
or suffix of the other chromosome, and a polynomial algorithm is presented which
computes the shortest sequence of translocations transforming one genome into
another.

We now give a formal description of the three operations insert , delete,
and move. Let Σ denote a finite alphabet. For a character σ ∈ Σ, a string
S = s1 · · · sn and a position 1 ≤ p ≤ n, the operation insert(σ, p) inserts
the character σ to the pth position of S. After performing this operation, S
is of the form s1 · · · sp−1σsp · · · sn. The operation delete(p) deletes the char-
acter which occurs at the pth position of S, and returns the character which
was deleted, i.e., s = s1 · · · sp−1sp+1 · · · sn and it returns the character sp.
Given two distinct positions 1 ≤ p1 6= p2 ≤ n and a length 1 ≤ ` ≤ n −
p1 + 1, move(`, p1, p2) moves the string at position p1 of length ` to position
p2. After performing the move operation, if p1 < p2 then S is in the form of
s1 · · · sp1−1sp1+` · · · sp2−1sp1 · · · sp1+`−1sp2 · · · sn, and if p2 < p1, S is in the form

of s1 · · · sp2−1sp1 · · · sp1+`−1sp2 · · · sp1−1sp1+` · · · sn. For simplicity, we may write
move(str, p1, p2), where str is the string which is moved.

In the following section we show that computing the edit-distance between
two linked lists is NP-complete (substring deletions are not needed for this con-
struction, move-string operations suffice to imply NP-completeness). In Section
3 we simplify the problem of finding a constant factor approximation algorithm
by showing that the elimination of recursive moves cannot change the edit dis-
tance by more than a constant factor. In Section 4 we present a greedy algorithm
that works by repeatedly replacing a given number of copies of a longest com-
mon substring of S and T by a new character, and then section 5 shows how a
reduction to the standard edit distance algorithm can be used. Sections 6 and 7
then show that this greedy algorithm gives a log factor worst-case approximation
to optimal. Section 8 mentions some areas of future research.

2. NP-Completeness of Edit Distance with Moves

Theorem: Given two strings S and T , an integer m ∈ N , using only the three
unit-cost operations insert , delete, and move. It is NP-complete to determine if
S can be converted to T with cost ≤ m.

Proof: Since a non-deterministic algorithm need only guess the operations
and check in polynomial time that S is converted into T with cost ≤ m, the
problem is in NP.

We employ a transformation from the bin-packing problem, which is:
Given a bin capacity B, a finite set of integers X = {x1, ..., xn} where
xi ≤ B, and a positive integer k, the bin packing problem is to determine
if there is a partition of X into disjoint sets X1, ..., Xk, such that the sum
of the items in each Xi is exactly B. The BIN-PACKING problem is NP
Complete in the strong sense (e.g., see Garey and Johnson [?]); that is,
even if numbers in the statement of the problem instance are encoded
in unary notion (a string of n 1’s representing the number n), it is still
a NP-complete problem.
Given an instance B, X = {x1, ..., xn}, and k of the bin-packing problem, let

a, #, and $ denote three distinct characters, and let:

S = $k
n∏
i=1

#axi

T = (aB$)
k
#n

m = n

Since the bin-packing problem is NP-complete in the strong sense, we can
assume that the lengths of S and T are polynomial in the statement of the
bin-packing problem.

CLAIM: S can be converted to T with a cost ≤ m if and only if there is
a partition of X into disjoint sets X1, ..., Xk such that the sum of the items in
each Xi is B.

For the if portion of the proof, suppose that there is a partition of X into
disjoint sets X1, ..., Xk, such that the sum of the items in each Xi is B or less.
Then S can be transformed to T by, for each item xi ∈ Xj , 1 ≤ j ≤ k, moving
the corresponding a’s to between the $ of the corresponding bin. That is, perform
move(axi , k+

∑i−1
`=1 (x` + 1), (j−1)B), for a total of

∑k
j=1

∑
xi∈Xj 1 =

∑n
i=1 1 =

n operations.
For the only if portion of the proof, the full draft of this paper uses a

sequence of lemmas to show that if the edit distance with moves between S and
T is ≤ n, then there is a bin packing in k bins of size B of the items of X.

3. Recursive Moves

In this section we simplify the problem of finding an approximation algorithm by
showing that the elimination of recursive moves cannot change the edit distance
by more than a constant factor. For simplicity we refer only to move operations,
which is justified in section 6.

A sequence A = a1, a2, ..., ar of legal move operations produces a division,
Â, of the string S into blocks of characters. More formally, a move operation in
A of the form move(i, j, `) defines a partition of S = s1 · · · sn into four blocks: if
i < j the blocks are: [s1...si−1],[si...si+`−1], [si+`...sj−1] and [sj ...sn], otherwise,
the blocks are: [s1...sj−1],[sj ...si], [si...si+`−1] and [si+`...sn].

The next move operation of A refines this partition by adding at most 3
blocks (two blocks at the source location and one at its destination). Note that
any sub sequence of A defines a partition of S, and if A1 ⊆ A2 are two sub
sequences of A, then the partition of S, Â2, defined by A2 is a refinement of the
partition Â1, defined by S1.

Definition: A sequence, of move operations is recursive if it contains a move
operation which moves a string for which its characters did not occur continu-
ously in S.

For example, if S is the string abcde and the character b was moved to obtain
the string T = acdbe, then moving the substring dbe or ac are both considered
as recursive moves.

The following example shows us that performing recursive moves can reduce
the cost of the edit-distance. Let S = xababycdcdz and T = xcddcyabbaz. If
we do not allow recursive moves the minimum cost of converting S into T is
6 (Move(ab, 2, 7), Move(a, 3, 8), Move(b, 4, 8), Move(cd, 7, 2), Move(c, 8, 3) and
Move(d, 9, 3)). By allowing recursive moves we can reduce the cost to be 4
operations (Move(b, 5, 4), Move(d, 10, 9), Move(abba, 2, 7) and Move(cddc, 7, 2).

Theorem: Suppose there is a recursive sequence, A, of size n which converts
S into T . Then a non recursive optimal algorithm uses no more than 3n moves.

proof: By induction on n.
A worst case example: In the full draft of this paper we give an infinite

class of strings for which non-recursive is a factor of 3 more costly than recursive.

4. The Greedy Algorithm

In this section we present a polynomial time approximation algorithm for the
minimum move edit-distance. It is a greedy method that reduces the two strings
S and T to two other strings, so that we can perform the traditional edit distance
algorithm on the new strings. Define LCS(S, T) as the longest common sub-
string of the two strings S and T . For example: LCS(abcd, edbc) = 2, since
bc is the longest common substring of S and T , and consists of 2 characters,
but LCS(abc, def) = 0, since there is not any common character of these two
strings. The algorithm uses two procedures. The ed(S, T) procedure computes
the traditional edit distance of S and T by using the dynamic programming
method. The check move(S, T) procedure checks whether we can reduce the
edit-distance by using move operations instead of inserting and deleting the
same character. The algorithm is given in Figure 1.

Stage 1: while (|LCS(S, T)| > 1) {
P ← LCS(S, T)

Let A be a new character, i.e., A /∈ Σ.

Replace the same number of occurrences of P in S and in T by A.

Σ ← Σ ∪ {A}
}

Stage 2: d← ed(S, T)

Stage 3: d← check move(S, T)

return d

Figure 1: The Greedy algorithm

In this section we explain the algorithm and in the following section we
discuss the check move procedure it uses. Consider the following example: let
Σ = {a, b, c, d, e}, S = cdeab and T = abcde. After the first stage of the greedy
algorithm, S′ = AB and T ′ = BA, where A = cde and B = ab. In the second
stage, by performing the traditional edit distance on S′ and T ′, we find that
d ≤ 2. The third stage does better by using check move to determine that S can
be converted to T by performing A← delete(1) and insert(A, 2) (which deletes
and inserts the same character A), and therefore d = 1 since we can simply move
the string cde to the end of S.

The greedy algorithm reduces the strings S and T to (possibly) shorter strings
by replacing the LCS(S, T) by a new single character. In a first attempt it seems
as if we must replace every occurrence of the LCS(S, T) by a new character, with-
out bothering about the same number of replacements in S and T . Otherwise, if
the number of occurrences of the LCS(S, T) in S and T is not equal, the copies
which were not replaced by the same new character, are not noticed as resemble
ones, which might increase the edit-distance. In the following Lemma we show
that this is not the case. We denote the edit distance returned by this version of
the greedy algorithm by greedy′ (i.e., the version without the restriction of the
equal number of replacements in both S and T). Let opt denote the edit-distance
returned by an optimal algorithm which allows move operations.

Lemma 1: The unrestricted version of the greedy algorithm is not bounded.
proof: For every n there exists an example such that greedy′

opt > n. Let

Σ = {a, b}. Let S = (ab)4n and let T = (ab)2n(ba)2n.
The optimal edit distance is 2 (insert(b, 4n + 1), b ← delete(8n)). By this

version of the greedy algorithm S is reduced to the string AA and T is reduced
to the string A(ba)2n, where A = (ab)2n. The edit distance is 2n + 1 which
includes the operations: A ← delete(2), insert(b, i − 1) and insert(a, i) for i,
4n+ 2 ≤ i ≤ 8n. Now, greedy′

opt = 2n+1
2 > n.

The problem is that A occurs twice in T and only once in S. Therefore the al-
gorithm could not identify any resemblance between A and (ba)2n. We overcome
this problem by replacing the same number of occurrences of the LCS(S, T) in
S and in T as done by the greedy algorithm with the replace operation of the
while loop.

Note that the greedy algorithm is based on the traditional edit distance
algorithm. Therefore, it does not perform any recursive move, as every block
participates in no more than one operation. However we have shown that by not
allowing recursive moves we do not increase the number of move operations by
more than a constant factor.

We now examine the running time of the greedy algorithm. The first stage
can be done using a suffix trie in O(min(n,m) · max(n,m)) processing time,
where n and m are the length of the strings S and T , respectively. We construct
the suffix trie, in O(n + m) processing time, for the string S$T#, where $ and
are two new symbols. We then traverse this suffix trie in post-order and label
each vertex as to whether it has descendants in only S, in only T , or in both S

and T (once you know this information for the children it is easily computed for
the parent), to find the non-leaf vertex of lowest virtual depth that has both.
This is repeated at most min(n,m)

2 times, which happens when all the common
substring consist of 2 characters, and all characters participate in these common
substrings. The second stage can be done in O(n ·m) processing time, using the
dynamic programming method. In the following section we prove that the third

stage can be done in O(n+m) processing time. Therefore, the entire processing
time of the greedy algorithm is O(n ·m)).

5. Identifying Move Operations

In the third stage of the greedy algorithm we are interested in identifying move
operations which were done in the second stage. A move operation of a character
σ is simply an insert and a delete operation of the same character σ. At a first
sight we might think that we cannot separate these two stages. It seems as if in
every stage of the dynamic algorithm, after computing the cheapest operation of
the current character, we must check if we could reduce the cost by combining
it with an opposite operation of the same character and changing it to a move
operation. We show that it is enough to identify move operations after computing
the edit-distance, and we do not have to take it into account in the inner stages.

We use the following notations: Let P denote a way to convert a string S into
a string T by using inserts and deletes. Let us denote by IPσ /D

P
σ the number of

insertions/deletions of the character σ ∈ Σ which where done when converting S
into T using the path P . The edit-distance between the string S and T which is
done according to path P would be denoted by edP . The edit-distance between
S and T , including move operations is denoted by edmP , i.e., if P includes both
insert(σ) and delete(σ) for any σ ∈ Σ, this would be calculated as one operation.
If we are interested in the minimum edit-distance we use ed for the traditional
edit distance and edm for the edit-distance with move operations.

Lemma 2: For any two paths P and P ′ and σ ∈ Σ, |IPσ −DP
σ | = |IP

′

σ −DP ′

σ |.
proof: Denote by nSσ and nTσ the number of appearances of a character σ

in the strings S and T , respectively. For any path P which converts S into T

|IPσ −DP
σ | = |nSσ − nTσ |.

Conclusion 1: Any two paths P and P ′ differ only by move operations.
Note that ∀a, b ∈ N , a+ b = 2min(a, b) + |a− b|. Assuming that the cost of

insert, delete and move operations are equal, we obtain:

edP =
∑
σ∈Σ

(
IPσ +DP

σ

)
=
∑
σ∈Σ

(
2 ·min(IPσ , D

P
σ) + |IPσ −DP

σ |
)

(1)

edmP =
∑
σ∈Σ

(
IPσ +DP

σ −min(IPσ , D
P
σ)
)

(2)

=
∑
σ∈Σ

(
min(IPσ , D

P
σ) + |IPσ −DP

σ |
)

(3)

Lemma 3: The minimal edit distance with move operations occurs in any
optimal path of the traditional edit-distance.

proof: Suppose P and P ′ are two paths converting S into T , and that
edP < edP

′
. By using Lemma 2 and equation (1) we find that∑

σ∈Σ

(
2 ·min(IPσ , D

P
σ)
)
<
∑
σ∈Σ

(
2 ·min(IP

′

σ , DP ′

σ)
)

So by using Lemma 2 again and equation (3) we find that edmP < edmP ′

Lemma 2 and Lemma 3 show that after computing the edit-distance, we
can take any optimal path which transfers S into T , and reduce the cost by
exchanging inserts and deletes of the same character with one move operation.
This can be done in O(n+ |Σ|) time, with the help of a |Σ| size array.

6. Reduction to Only Move Operations

Using Lemma 2 we already know that for any two paths P and P ′ and any
character σ ∈ Σ, |IPσ − DP

σ | = |IP ′σ − DP ′

σ |. Recall that nSσ and nTσ denote the
number of appearances of σ in the strings S and T , respectively.

Given two strings S and T , we preprocess these strings and construct two
new strings S′ and T ′ as follows:

1. Let # and $ be two new characters, i.e. #, $ /∈ Σ.
2. Define Σ1 = {σ ∈ Σ : nSσ < nTσ } and Σ2 = {σ ∈ Σ : nTσ < nSσ}.
3.

S′ ← S ·
∏
σ∈Σ1

(
(#σ)n

T
σ−n

S
σ

)
$
∑

σ∈Σ2 (nSσ−n
T
σ)

T ′ ← T ·#
∑

σ∈Σ1 (nTσ−n
S
σ)
∏
σ∈Σ2

(
($σ)n

S
σ−n

T
σ

)
For example: If S = abcab and T = abcdc then after preprocessing these strings
we get that S′ = abcab#d#c$$ and T ′ = abcdc##ab. This way ∀σ ∈ Σ ∪
{#, $} nS′σ = nT

′

σ , and we can deal only with move operations.
Lemma 4: If the cost assigned to each insert, delete and move operation are

all equal then edm(S, T) = edm(S′, T ′).
proof: Suppose A is a sequence of move, insert and delete operations which

are needed in order to convert S into T by a minimum cost. The insert and delete
operations are done only when there is a missing or an additional character, re-
spectively. The following operations convert S′ into T ′. Every insert operation is
changed into a move operation of the appropriate character within the new char-
acters into the same position in S. Every delete operation is a move operation
of the character which is deleted to an appropriate position following a $ sign.
Every move operation remains unchanged. Therefore, edm(S′, T ′) ≤ edm(S, T).

As there are no two consequent # signs in S′, but they must occur continuously
in T ′, and as the $ signs occur continuously in S′ and must be separated by one
character in T ′, there are at least

∑
σ∈Σ |nTσ − nSσ | operations needed in order

to locate the
∑
σ∈Σ |nTσ − nSσ | # and $ symbols at their final position. These

operations do not influence the original characters of S and T . The number∑
σ∈Σ |nTσ − nSσ | is the number of insert and delete operations done when con-

verting S into T . If edm(S′, T ′) < edm(S, T) it means that some of the move
operations done to convert S into T were not done when converting S′ into T ′.
Therefore, there is a cheaper way to convert S into T , which contradicts the
minimalism of edm(S, T).

7. Bounds Between Optimal and Greedy

Finding a bound on the number of greedy phrases, as a function of the optimal
phrases, gives us a bound on the number of move operations (see Lemma 6).
Obviously, we are not concerned with the greedy blocks which contain optimal
ones. Therefore, let us look at an optimal block in S which contains N greedy
blocks. The following Lemma gives us a bound on the number of greedy blocks
of the corresponding optimal block in T , which contain “most” of these phrases.

Figure 2: Schematic view of Lemma 5’s proof. The curve lines

represent the greedy phrases of the optimal block given by

the vertical lines.

Lemma 5: Let N be the number of optimal phrases, and let L be the number of
characters in the longest optimal phrase. If B is an optimal block which contains
m greedy blocks in S, then at least O(m − logL) of these blocks are part of at
most O(logL) greedy blocks, in the correspondence occurrence of B in T .

Proof: Denote by B′ the sub block of B containing exactly these m greedy
blocks. The greedy algorithm creates a non increasing sequence of the lengths
of the LCS’s. As we know that B′ is a string which occurs in both S and T , we
examine the point in time when the greedy algorithm had chosen other phrases.
Suppose C is the first greedy phrase chosen, which overlaps B′. As B′ occurs

in both S and T , and was not chosen by the greedy algorithm, it must be
that C was chosen in T , and that |C| ≥ |B′|. Obviously, C crosses an optimal
block boundary. Without loss of generality, let us assume that it crosses the left
boundary of B′ in T . If C contains at least O(m− logL) greedy phases, we are
done. If there exists a block in T which crosses B′’s right boundary denote it
by D. If C and D contain together at least O(m− logL) greedy phases, we are
done. Let us define the sequence G = {g1, g2, ..., gk} to be a particular sequence
of greedy blocks ordered by time, which occur in S or in T , with the following
properties: The first greedy block in this sequence is C, i.e., g1 = C, and for
i > 1, gi is a substring of B′, which includes at least one more character of B′

which does not already occur in the previous greedy blocks {g1, ..., gi−1}. Thus
the gi’s form an increasing cover of B′. Note that the set G is finite since both
S and T are finite strings, and that |gi| ≥ |gi+1|.

Observation 1: If g2 was chosen in T , then C(= g1), D and g2, cover the
m greedy blocks of S, in particular they include O(m − logL) greedy phases.
(Since the string between C and D occurs in both S and T and is still free to
be chosen).

Observation 2: If gi−1 and gi (i > 1), were both chosen in S/T , then these
two greedy blocks end the G sequence, i.e. i = k. Since the adjacent block to
gi in S/T is the longest common substring in B′ of S and T , and these two
occurrences are still free to be chosen. In this case, about half of these k greedy
blocks of T cover the O(N − k

2) greedy blocks of S.
We still have to prove that k = O(log n). That is, that the longest sequence

of alternating gi’s is of order log n. For i ≥ 2, define ni to be the number of
characters in the suffix string of B′ starting at the first position of gi. Before
choosing the block gi+1, S and T share a common substring in B′ of length
ni − |gi|. We have chosen gi+1 since |gi+1| ≥ ni − |gi|. Using the fact that
|gi| ≥ |gi+1|, we find that |gi| ≥ ni − |gi|, thus

|gi| ≥
ni
2

(4)

Since the greedy blocks in S/T do not overlap, the difference between ni and
ni+2 (i = 2, ..., k − 2) is at least |gi|, i.e., ni − ni+2 ≥ |gi|. Therefore, by using
equation (4), 2|gi| ≥ ni ≥ |gi|+ ni+2, so we find that

|gi| ≥ ni+2 (5)

The longest sequence of {gi}’s occurs when they are chosen alternately in S

and in T and their lengths are as small as possible, i.e., when |gi| = ni
2 . If

|gi| = ni
2 , then by using equation (5), after j stages: ni ≥ 2ni+2 ≥ 4ni+4 ≥ · · · ≥

2jni+2j . This alternate series terminates when the last block consists of exactly
one character, i.e., when ni+2j = 1. In particular, L ≥ |B| > n2, so we find that
L > 2j · 1. Therefore, logL > j. This means that there are at most logL greedy

phrases in the G sequence, and that the {gi}’s in T correspond to the m greedy
blocks of B excluding those who belong to the {gi}’s in S.

A greedy block is called a primary one, if it is a member of the sequence G.
Intuitively, a primary block is one of the “big” greedy phrases either in S or in T .
We have proved that the primary blocks alternate, and that the corresponding
occurrence of the string of a primary block of S does not contain a primary block
of T , and vise verse.

The following theorem gives us a bound on the number of greedy phrases.
Theorem:The number of phrases in a greedy parsing is at most a log(L) times
the number of phrases in an optimal parsing.

Proof:Given an optimal and greedy parsing of the strings S and T , recall
that the number of optimal phrases is denoted by N . We show that the greedy
parsing does not consist of more then O(N logL) phrases. The reduction to only
move operations which was presented in the previous section ensures that each
greedy or optimal phrase in S occurs also in T , and vise verse.

Let us relate to the N optimal phrases of S. There are at most N log(L)
primary phrases, of which about half of them are in S. We now count the number
of the remaining phrases in S, by associating each one of them to a different
primary phrase of S or to a different optimal boundary of S. Since there are
not more than N log(L) primary phrases and not more than N − 1 optimal
boundaries, this concludes our proof.

Figure 3: Schematic view of the proof. The bold curve lines represent

primary phrases of the greedy algorithm corresponding to

different occurrences of the string C.

Consider a primary block, C, in T which covers ` greedy phrases of S, where
` >= 1. The block C occurs in S, too. We refer to the correspondence string of the
block C as C. If C crosses an optimal boundary, this boundary can cross at most
one of the ` original greedy phrases. We associate this particular phrase with
this optimal boundary. Otherwise, suppose C is fully contained in an optimal
block α in S, and therefore appears in the corresponding occurrence of α in T .
If C in S is a non primary block of α, then the correspondence occurrence of the
string C in T is contained in a primary block D of T , and we continue to the

following appearance of D in S. Finally we end this process when the string C
occurs in a primary block of S.

Let us refer to the correspondent occurrence of this primary block in T . The
greedy phrases of C were not merged by the greedy algorithm, since at least `−2
of these original greedy phrases are covered by at most 2 greedy phrases. We
associate these two uncovered phrases to this primary block of S. This process
ends when there are not two adjacent original greedy phrases which remain
attached in T . Otherwise these adjacent blocks can be merged into one larger
block. Since every primary block is charged at most once, and each greedy block
in T was separated (and therefore was counted), we have included all ` phrases
in this count.

The following Lemma gives us a bound on the number of move operations
when the bound on the number of phrases is known.

Lemma 6: Every parsing of N blocks, gives a lower bound of N+1
3 move

operations, and an optimal upper bound of N − 1.
Proof: If these blocks occur in their reversed order, then every block except

one must be moved, which gives us N − 1 operations. Every move operation
creates at most 3 new boundaries (two in its source location, and one in its
destination). Thus, N blocks, which have N + 1 boundaries, reflect at least N+1

3

move operations.
Corollary: The number of move operations in a greedy parsing is at most

a logL factor times the number of move operations in an optimal parsing.
proof: Lemma 6 gives us at most a factor of three on the number of moves.

To illustrate the different parsing of the greedy and optimal algorithms, sup-
pose S = abaxxxababaxxxxab and T = baxxxxababaxxxaba. Using the greedy
algorithm we get that S′ = BAxab and T ′ = baxAB, where A = xxxababaxxx

and B = aba. The edit distance of S′ and T ′ is 4 (since these blocks occur at
their reverse order). The optimal parsing of S and T includes only two blocks in
which require only one move operation,move(baxxxab, 1).

B A x a b︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷︸︸︷ ︷︸︸︷ ︷︸︸︷
a b a x x x a b a b a x x x x a b︸ ︷︷ ︸ ︸ ︷︷ ︸

Figure 4: The Different parsing of the Greedy and Optimal algorithms

8. Future Research

Here we have shown the edit distance problem with substring move operations
to be NP-complete and have presented a greedy algorithm that is a worst-case
log factor approximation to optimal. We have limited out attention to when all
operations have unit cost, and hence an obvious area of future research would
be to extend these ideas to non-uniform costs. Another area of interest is the
incorporation of substring deletions, which are needed to capture the full power of
the linked list model (to within a constant factor). Experiments with the greedy
algorithm on real-life data (e.g., from molecular biology) are also of interest,
although given the NP-completeness of an optimal computation, a framework
for measuring performance of greedy for a particular application needs to be
addressed.

Acknowledgments We thank Maxime Crochemore for suggesting the edit
distance with the exchange operation, which helped to motivate this work.

References

[1] Bafna V. and Pevzner P.A., Genome rearrangements and sorting by rever-

sals, 34th IEEE Symposium on Foundations of Computer Science, (1993) 148–

157
[2] Bafna V. and Pevzner P.A., Sorting by transpositions, 34th SIAM J. Discrete

Math., 11(2), (1998) 124–240
[3] Garey M.R. and Johnson D.S., Computers and Intractability, A guide to the

Theory of NP-Completeness, Bell Laboratories Murry Hill, NJ, (1979)
[4] Hamming R.W., Coding and information Theory, Englewood Cliffs, NJ, Prentice

Hall, (1980)
[5] Hannenhalli S., Polynomial-time Algorithm for Computing Translocation Dis-

tance between Genomes CPM, (1996) 162–176
[6] Kececioglu J. and Sankoff D., Exact and approximation algorithms for

the inversion distance between two permutations. Pro. of 4th Ann. Symp. on

Combinatorial Pattern Matching, Lecture Notes in Computer Science 684, (1993)

87–105
[7] Liben-Nowell D., On the Structure of Syntenic Distance, CPM, (1999) 50–65
[8] Lopresti D. and Tomkins A., Block Edit Models for Approximate String

Matching, Theoretical Computer Science, 181, (1997) 159–179
[9] Muthukrishnan S. and Sahinalp S.C., Approximate nearest neighbors and

sequence comparison with block operations, STOC’00, ACM Symposium on The-

ory of Computing, (2000) 416–424
[10] Smith T.F. and Waterman M.S., Identification of common molecular se-

quences, Journal of Molecular Biology, 147, (1981) 195–197
[11] Storer J. A., An Introduction to Data Structures and Algorithms, Birkhauser

- Springer, (2001)
[12] Tichy W.F., The string to string correction problem with block moves, ACM

Transactions on Computer Systems, 2(4), (1984) 309–321

