## H-Slider



Designed and made by Diniar Namdarian, 2016; sleeve by J. A. Storer. (plastic, $5+1 / 8^{\prime \prime}$ high by $5+1 / 8^{\prime \prime}$ wide $\mathrm{x} 3 / 8^{\prime \prime}$ thick; H arms are $1 / 3$ the width of a square)
The H piece can slide carrying one or two pieces with it. Starting with red 1-2-3 on the left and orange 1-2-3 on the right, "Problem 1" is exchange them:


One can place a finger on the $H$ itself or on one of the pieces it contains to push, which can move two pieces with the $H$, or only one, where another may be left behind. The directions show 9 other problems, all with the same end position as the start position for Problem 1:


The next page shows a solution of 57 moves for Problem 1; moves to solve the others are:
$\mathbf{2}=35$ moves, $\mathbf{3}=49$ moves, $\mathbf{4}=31$ moves, $\mathbf{5}=54$ moves, $\mathbf{6}=40$ moves,
$\mathbf{7}=36$ moves, $\mathbf{8}=46$ moves, $\mathbf{9}=29$ moves, $\mathbf{1 0}=47$ moves.
Copyright J. A. Storer

## H-Slider Solution

Here is a solution of 57 rectilinear moves ( 60 straight-line moves):

|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{lllllllll} \hline 16 & -19 & \text { Move } & \text { B, } \mathrm{C}, & 3, & \mathrm{H}: \\ \hline & \$ & \$ & & & & & & \$ \\ \hline \end{array}$ |  |
|  |  |  | $\begin{array}{lllllllll} \hline 29 & -32 & \text { Move } & \text { A, } & \mathrm{X}, \mathrm{C}, \mathrm{H} & \\ \$ & \$ & \$ & \mathrm{H} & \mathrm{~A} & \mathrm{~A} & \mathrm{~A} & \mathrm{H} & \$ \\ \hline \end{array}$ |
|  |  | $\left.\begin{array}{llllllllll}39 & \text { Move } & 2: & & & & & \\ \$ & \$ & \$ & & & & & & \$ & \$ \\ & & & & & & & & 2 & 2 \\ 2 & 2 \\ & & & & & & & & 2 & 2 \\ 2\end{array}\right)$ |  |
|  |  |  |  |
|  | $\begin{array}{lllllllllll} 53 & \text { Move } & 3 & : & & & & & \\ \mathrm{S} & \mathrm{~S} & \mathrm{~S} & \mathrm{H} & \mathrm{~A} & \mathrm{~A} & \mathrm{~A} & \mathrm{H} & \$ & \$ & \$ \\ \mathrm{~B} & \mathrm{~B} & \mathrm{~B} & \mathrm{H} & \mathrm{~A} & \mathrm{~A} & \mathrm{~A} & \mathrm{H} & 1 & 1 & 1 \\ \mathrm{~B} & \mathrm{~B} & \mathrm{~B} & \mathrm{H} & \mathrm{~A} & \mathrm{~A} & \mathrm{~A} & \mathrm{H} & 1 & 1 & 1 \\ \mathrm{~B} & \mathrm{~B} & \mathrm{~B} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & 1 & 1 & 1 \\ \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{H} & \mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{H} & 2 & 2 & 2 \\ \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{H} & \mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{H} & 2 & 2 & 2 \\ \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{H} & \mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{H} & 2 & 2 & 2 \\ & & & & & & & & 3 & 3 & 3 \\ & & & & & & & 3 & 3 & 3 \\ \mathrm{~S} & \mathbf{S} & \mathrm{~S} & & & & & & & 3 & 3 \\ \hline \end{array}$ |  |  |

