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The smallest (and unique up to
rotation and reflection) non-trivial
case of a magic square, order 3

Dürer's Melancholia I (1514)
includes an order 4 square with
magic sum 34

Magic square
In recreational mathematics, a square array of numbers, usually positive integers, is called a magic square if the sums of
the numbers in each row, each column, and both main diagonals are the same.[1][2] The 'order' of the magic square is the
number of integers along one side (n), and the constant sum is called the 'magic constant'. If the array includes just the
positive integers , the magic square is said to be 'normal'. Some authors take magic square to mean normal magic
square.[3]

Magic squares that include repeated entries do not fall under this definition and are referred to as 'trivial'. Some well-known
examples, including the Sagrada Família magic square and the Parker square are trivial in this sense. When all the rows and
columns but not both diagonals sum to the magic constant this gives a semimagic square' (sometimes called orthomagic
square).

The mathematical study of magic squares typically deals with their construction, classification, and enumeration. Although
completely general methods for producing all the magic squares of all orders do not exist, historically three general
techniques have been discovered: by bordering method, by making composite magic squares, and by adding two preliminary
squares. There are also more specific strategies like the continuous enumeration method that reproduces specific patterns. Magic squares are generally classified
according to their order n as: odd if n is odd, evenly even (also referred to as "doubly even") if n is a multiple of 4, oddly even (also known as "singly even") if n is
any other even number. This classification is based on different techniques required to construct odd, evenly even, and oddly even squares. Beside this,
depending on further properties, magic squares are also classified as associative magic squares, pandiagonal magic squares, most-perfect magic squares, and so
on. More challengingly, attempts have also been made to classify all the magic squares of a given order as transformations of a smaller set of squares. Except for
n ≤ 5, the enumeration of higher order magic squares is still an open challenge. The enumeration of most-perfect magic squares of any order was only
accomplished in the late 20th century.

Magic squares have a long history, dating back to at least 190 BCE in China. At various times they have acquired occult or mythical significance, and have
appeared as symbols in works of art. In modern times they have been generalized a number of ways, including using extra or different constraints, multiplying
instead of adding cells, using alternate shapes or more than two dimensions, and replacing numbers with shapes and addition with geometric operations.

The third-order magic square was known to Chinese mathematicians as early as 190 BCE, and explicitly given by the first
century of the common era. The first dateable instance of the fourth-order magic square occurred in 587 CE in India.
Specimens of magic squares of order 3 to 9 appear in an encyclopedia from Baghdad c. 983, the Encyclopedia of the Brethren
of Purity (Rasa'il Ikhwan al-Safa). By the end of 12th century, the general methods for constructing magic squares were well
established. Around this time, some of these squares were increasingly used in conjunction with magic letters, as in Shams
Al-ma'arif, for occult purposes.[4] In India, all the fourth-order pandiagonal magic squares were enumerated by Narayana in
1356. Magic squares were made known to Europe through translation of Arabic sources as occult objects during the
Renaissance, and the general theory had to be re-discovered independent of prior developments in China, India, and Middle
East. Also notable are the ancient cultures with a tradition of mathematics and numerology that did not discover the magic
squares: Greeks, Babylonians, Egyptians, and Pre-Columbian Americans.

While ancient references to the pattern of even and odd numbers in the 3×3 magic square appear in the I Ching, the first
unequivocal instance of this magic square appears in the chapter called Mingtang (Bright Hall) of a 1st-century book Da Dai
Liji (Record of Rites by the Elder Dai), which purported to describe ancient Chinese rites of the Zhou dynasty.[5] [6][7][8]

These numbers also occur in a possibly earlier mathematical text called Shushu jiyi (Memoir on Some Traditions of
Mathematical Art), said to be written in 190 BCE. This is the earliest appearance of a magic square on record; and it was
mainly used for divination and astrology.[5] The 3×3 magic square was referred to as the "Nine Halls" by earlier Chinese
mathematicians.[7] The identification of the 3×3 magic square to the legendary Luoshu chart was only made in the 12th
century, after which it was referred to as the Luoshu square.[5][7] The oldest surviving Chinese treatise that displays magic
squares of order larger than 3 is Yang Hui's Xugu zheqi suanfa (Continuation of Ancient Mathematical Methods for
Elucidating the Strange) written in 1275.[5][7] The contents of Yang Hui's treatise were collected from older works, both
native and foreign; and he only explains the construction of third and fourth-order magic squares, while merely passing on
the finished diagrams of larger squares.[7] He gives a magic square of order 3, two squares for each order of 4 to 8, one of
order nine, and one semi-magic square of order 10. He also gives six magic circles of varying complexity.[9]
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Iron plate with an order-6 magic
square in Eastern Arabic numerals
from China, dating to the Yuan
Dynasty (1271–1368).

A page displaying 9×9 magic square
from Cheng Dawei's Suanfa
tongzong (1593).

4 9 2

3 5 7

8 1 6

2 16 13 3

11 5 8 10

7 9 12 6

14 4 1 15

1 23 16 4 21

15 14 7 18 11

24 17 13 9 2

20 8 19 12 6

5 3 10 22 25

13 22 18 27 11 20

31 4 36 9 29 2

12 21 14 23 16 25

30 3 5 32 34 7

17 26 10 19 15 24

8 35 28 1 6 33

46 8 16 20 29 7 49

3 40 35 36 18 41 2

44 12 33 23 19 38 6

28 26 11 25 39 24 22

5 37 31 27 17 13 45

48 9 15 14 32 10 47

1 43 34 30 21 42 4

61 3 2 64 57 7 6 60

12 54 55 9 16 50 51 13

20 46 47 17 24 42 43 21

37 27 26 40 33 31 30 36

29 35 34 32 25 39 38 28

44 22 23 41 48 18 19 45

52 14 15 49 56 10 11 53

5 59 58 8 1 63 62 4

31 76 13 36 81 18 29 74 11

22 40 58 27 45 63 20 38 56

67 4 49 72 9 54 65 2 47

30 75 12 32 77 14 34 79 16

21 39 57 23 41 59 25 43 61

66 3 48 68 5 50 70 7 52

35 80 17 28 73 10 33 78 15

26 44 62 19 37 55 24 42 60

71 8 53 64 1 46 69 6 51

The above magic squares of orders 3 to 9 are taken from Yang Hui's treatise, in which the Luo Shu principle is clearly
evident.[7][8] The order 5 square is a bordered magic square, with central 3×3 square formed according to Luo Shu principle.
The order 9 square is a composite magic square, in which the nine 3×3 sub squares are also magic.[7] After Yang Hui, magic
squares frequently occur in Chinese mathematics such as in Ding Yidong's Dayan suoyin (c. 1300), Cheng Dawei's Suanfa
tongzong (1593), Fang Zhongtong's Shuduyan (1661) which contains magic circles, cubes and spheres, Zhang Chao's Xinzhai
zazu (c. 1650), who published China's first magic square of order ten, and lastly Bao Qishou's Binaishanfang ji (c. 1880), who
gave various three dimensional magic configurations.[5][8] However, despite being the first to discover the magic squares and
getting a head start by several centuries, the Chinese development of the magic squares are much inferior compared to the
Indian, Middle Eastern, or European developments. The high point of Chinese mathematics that deals with the magic
squares seems to be contained in the work of Yang Hui; but even as a collection of older methods, this work is much more
primitive, lacking general methods for constructing magic squares of any order, compared to a similar collection written
around the same time by the Byzantine scholar Manuel Moschopoulos.[7] This is possibly because of the Chinese scholars'
enthralment with the Lo Shu principle, which they tried to adapt to solve higher squares; and after Yang Hui and the fall of
Yuan dynasty, their systematic purging of the foreign influences in Chinese mathematics.[7]

Japan and China have similar mathematical traditions and have repeatedly influenced each other in the history of magic squares.[10] The Japanese interest in
magic squares began after the dissemination of Chinese works—Yang Hui's Suanfa and Cheng Dawei's Suanfa tongzong—in the 17th century, and as a result,
almost all the wasans devoted their time to its study.

In the 1660 edition of Ketsugi-sho, Isomura Kittoku gave both odd and even ordered bordered magic squares as well as magic circles; while the 1684 edition of
the same book contained a large section on magic squares, demonstrating that he had a general method for constructing bordered magic squares.[11] In Jinko-ki
(1665) by Muramatsu Kudayu Mosei, both magic squares and magic circles are displayed. The largest square Mosei constructs is of 19th order. Various magic
squares and magic circles were also published by Nozawa Teicho in Dokai-sho (1666), Sato Seiko in Kongenki (1666), and Hosino Sanenobu in Ko-ko-gen Sho
(1673).[12] One of Seki Takakazu's Seven Books (Hojin Yensan) (1683) is devoted completely to magic squares and circles. This is the first Japanese book to give
a general treatment of magic squares in which the algorithms for constructing odd, singly even and doubly even bordered magic squares are clearly
described.[13] In 1694 and 1695, Yueki Ando gave different methods to create the magic squares and displayed squares of order 3 to 30. A fourth-order magic
cube was constructed by Yoshizane Tanaka (1651–1719) in Rakusho-kikan (1683). The study of magic squares was continued by Seki's pupils, notably by
Katahiro Takebe, whose squares were displayed in the fourth volume of Ichigen Kappo by Shukei Irie, Yoshisuke Matsunaga in Hojin-Shin-jutsu, Yoshihiro
Kurushima in Kyushi Iko who rediscovered a method to produce the odd squares given by Agrippa,[14] and Naonobu Ajima.[15][16] Thus by the beginning of the
18th century, the Japanese mathematicians were in possession of methods to construct magic squares of arbitrary order. After this, attempts at enumerating the
magic squares was initiated by Nushizumi Yamaji.[16]

The 3×3 magic square first appears in India in Gargasamhita by Garga, who recommends its use to pacify the nine planets (navagraha). The oldest version of
this text dates from 100 CE, but the passage on planets could not have been written earlier than 400 CE. The first dateable instance of 3×3 magic square in India
occur in a medical text Siddhayog (c. 900 CE) by Vrnda, which was prescribed to women in labor in order to have easy delivery.[17]
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The 3×3 magic square in different
orientations forming a non-normal
6×6 magic square, from an
unidentified 19th century Indian
manuscript.

The oldest dateable fourth order magic square in the world is found in an encyclopaedic work written by Varahamihira
around 587 CE called Brhat Samhita. The magic square is constructed for the purpose of making perfumes using 4
substances selected from 16 different substances. Each cell of the square represents a particular ingredient, while the number
in the cell represents the proportion of the associated ingredient, such that the mixture of any four combination of
ingredients along the columns, rows, diagonals, and so on, gives the total volume of the mixture to be 18. Although the book
is mostly about divination, the magic square is given as a matter of combinatorial design, and no magical properties are
attributed to it. The special features of this magic square were commented on by Bhattotpala (c. 966 CE)[18][17]

2 3 5 8

5 8 2 3

4 1 7 6

7 6 4 1

10 3 13 8

5 16 2 11

4 9 7 14

15 6 12 1

The square of Varahamihira as given above has sum of 18. Here the numbers 1 to 8 appear twice in the square. It is a pan-
diagonal magic square. Four different magic squares can be obtained by adding 8 to one of the two sets of 1 to 8 sequence.
The sequence is selected such that the number 8 is added exactly twice in each row, each column and each of the main
diagonals. One of the possible magic squares shown in the right side. This magic square is remarkable in that it is a 90 degree
rotation of a magic square that appears in the 13th century Islamic world as one of the most popular magic squares.[19]

The construction of 4th-order magic square is detailed in a work titled Kaksaputa, composed by the alchemist Nagarjuna
around 10th century CE. All of the squares given by Nagarjuna are 4×4 magic squares, and one of them is called Nagarjuniya
after him. Nagarjuna gave a method of constructing 4×4 magic square using a primary skeleton square, given an odd or even
magic sum.[18] The Nagarjuniya square is given below, and has the sum total of 100.

30 16 18 36

10 44 22 24

32 14 20 34

28 26 40 6

7 1 4 6

2 8 5 3

5 3 2 8

4 6 7 1

The Nagarjuniya square is a pan-diagonal magic square. The Nagarjuniya square is made up of two arithmetic progressions starting from 6 and 16 with eight
terms each, with a common difference between successive terms as 4. When these two progressions are reduced to the normal progression of 1 to 8, the adjacent
square is obtained.

Around 12th-century, a 4×4 magic square was inscribed on the wall of Parshvanath temple in Khajuraho, India. Several Jain hymns teach how to make magic
squares, although they are undateable.[17]

As far as is known, the first systematic study of magic squares in India was conducted by Thakkar Pheru, a Jain scholar, in his Ganitasara Kaumudi (c. 1315).
This work contains a small section on magic squares which consists of nine verses. Here he gives a square of order four, and alludes to its rearrangement;
classifies magic squares into three (odd, evenly even, and oddly even) according to its order; gives a square of order six; and prescribes one method each for
constructing even and odd squares. For the even squares, Pheru divides the square into component squares of order four, and puts the numbers into cells
according to the pattern of a standard square of order four. For odd squares, Pheru gives the method using horse move or knight's move. Although
algorithmically different, it gives the same square as the De la Loubere's method.[17]

The next comprehensive work on magic squares was taken up by Narayana Pandit, who in the fourteenth chapter of his Ganita Kaumudi (1356) gives general
methods for their construction, along with the principles governing such constructions. It consists of 55 verses for rules and 17 verses for examples. Narayana
gives a method to construct all the pan-magic squares of fourth order using knight's move; enumerates the number of pan-diagonal magic squares of order four,
384, including every variation made by rotation and reflection; three general methods for squares having any order and constant sum when a standard square of
the same order is known; two methods each for constructing evenly even, oddly even, and of squares when the sum is given. While Narayana describes one older
method for each species of square, he claims the method of superposition for evenly even and odd squares and a method of interchange for oddly even squares
to be his own invention. The superposition method was later re-discovered by De la Hire in Europe. In the last section, he conceives of other figures, such as
circles, rectangles, and hexagons, in which the numbers may be arranged to possess properties similar to those of magic squares.[18][17] Below are some of the
magic squares constructed by Narayana:[18]
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A 6×6 magic square from Book of
Wonders (from 16th century
manuscript).

8 1 6

3 5 7

4 9 2

1 14 4 15

8 11 5 10

13 2 16 3

12 7 9 6

16 14 7 30 23

24 17 10 8 31

32 25 18 11 4

5 28 26 19 12

13 6 29 22 20

1 35 4 33 32 6

25 11 9 28 8 30

24 14 18 16 17 22

13 23 19 21 20 15

12 26 27 10 29 7

36 2 34 3 5 31

35 26 17 1 62 53 44

46 37 21 12 3 64 55

57 41 32 23 14 5 66

61 52 43 34 25 16 7

2 63 54 45 36 27 11

13 4 65 56 47 31 22

24 15 6 67 51 42 33

60 53 44 37 4 13 20 29

3 14 19 30 59 54 43 38

58 55 42 39 2 15 18 31

1 16 17 32 57 56 41 40

61 52 45 36 5 12 21 28

6 11 22 27 62 51 46 35

63 50 47 34 7 10 23 26

8 9 24 25 64 49 48 33

The order 8 square is interesting in itself since it is an instance of the most-perfect magic square. Incidentally, Narayana states that the purpose of studying
magic squares is to construct yantra, to destroy the ego of bad mathematicians, and for the pleasure of good mathematicians. The subject of magic squares is
referred to as bhadraganita and Narayana states that it was first taught to men by god Shiva.[17]

Although the early history of magic squares in Persia and Arabia is not known, it has been suggested that they were known in
pre-Islamic times.[20] It is clear, however, that the study of magic squares was common in medieval Islam, and it was thought
to have begun after the introduction of chess into the region.[21][22][23] The first dateable appearance of a magic square of
order 3 occurs in Jābir ibn Hayyān's (fl. c. 721 – c. 815) Kitab al-mawazin al-Saghir (The Small Book of Balances) where the
magic square and its related numerology is associated with alchemy.[8] While it is known that treatises on magic squares
were written in the 9th century, the earliest extant treaties date from the 10th-century: one by Abu'l-Wafa al-Buzjani (c. 998)
and another by Ali b. Ahmad al-Antaki (c. 987).[22][24][25] These early treatises were purely mathematical, and the Arabic
designation for magic squares used is wafq al-a'dad, which translates as harmonious disposition of the numbers.[23] By the
end of 10th century, the two treatises by Buzjani and Antaki makes it clear that the Middle Eastern mathematicians had
understood how to construct bordered squares of any order as well as simple magic squares of small orders (n ≤ 6) which
were used to make composite magic squares.[22][24] A specimen of magic squares of orders 3 to 9 devised by Middle Eastern
mathematicians appear in an encyclopedia from Baghdad c. 983, the Rasa'il Ikhwan al-Safa (the Encyclopedia of the
Brethren of Purity).[26] The squares of order 3 to 7 from Rasa'il are given below:[26]

2 7 6

9 5 1

4 3 8

4 14 15 1

9 7 6 12

5 11 10 8

16 2 3 13

21 3 4 12 25

15 17 6 19 8

10 24 13 2 16

18 7 20 9 11

1 14 22 23 5

11 22 32 5 23 18

25 16 7 30 13 20

27 6 35 36 4 3

10 31 1 2 33 34

14 19 8 29 26 15

24 17 28 9 12 21

47 11 8 9 6 45 49

4 37 20 17 16 35 46

2 18 26 21 28 32 48

43 19 27 25 23 31 7

38 36 22 29 24 14 12

40 15 30 33 34 13 10

1 39 42 41 44 5 3

The 11th century saw the finding of several ways to construct simple magic squares for odd and evenly-even orders; the more difficult case of evenly-odd case (n
= 4k + 2) was solved by Ibn al-Haytham with k even (c. 1040), and completely by the beginning of 12th century, if not already in the latter half of the 11th
century.[22] Around the same time, pandiagonal squares were being constructed. Treaties on magic squares were numerous in the 11th and 12th century. These
later developments tended to be improvements on or simplifications of existing methods. From the 13th century on wards, magic squares were increasingly put
to occult purposes.[22] However, much of these later texts written for occult purposes merely depict certain magic squares and mention their attributes, without
describing their principle of construction, with only some authors keeping the general theory alive.[22] One such occultist was the Algerian Ahmad al-Buni (c.
1225), who gave general methods on constructing bordered magic squares; some others were the 17th century Egyptian Shabramallisi and the 18th century
Nigerian al-Kishnawi.[27]

Middle East, North Africa, Muslim Iberia
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This page from Athanasius Kircher's
Oedipus Aegyptiacus (1653)
belongs to a treatise on magic

squares and shows the Sigillum
Iovis associated with Jupiter

A page from Simon de la Loubère's
Du Royaume de Siam (1691)
showcasing the Indian method of
constructing an odd magic square.

The magic square of order three was described as a child-bearing charm[28][29] since its first literary appearances in the alchemical works of Jābir ibn Hayyān
(fl. c. 721 – c. 815)[29][30] and al-Ghazālī (1058–1111)[31] and it was preserved in the tradition of the planetary tables. The earliest occurrence of the association of
seven magic squares to the virtues of the seven heavenly bodies appear in Andalusian scholar Ibn Zarkali's (known as Azarquiel in Europe) (1029–1087) Kitāb
tadbīrāt al-kawākib (Book on the Influences of the Planets).[32] A century later, the Algerian scholar Ahmad al-Buni attributed mystical properties to magic
squares in his highly influential book Shams al-Ma'arif (The Book of the Sun of Gnosis and the Subtleties of Elevated Things), which also describes their
construction. This tradition about a series of magic squares from order three to nine, which are associated with the seven planets, survives in Greek, Arabic, and
Latin versions.[33] There are also references to the use of magic squares in astrological calculations, a practice that seems to have originated with the
Arabs.[34][35]

Unlike in Persia and Arabia, better documentation exists of how the magic squares were transmitted to Europe. Around 1315,
influenced by Arab sources, the Greek Byzantine scholar Manuel Moschopoulos wrote a mathematical treatise on the subject
of magic squares, leaving out the mysticism of his Middle Eastern predecessors, where he gave two methods for odd squares
and two methods for evenly even squares. Moschopoulos was essentially unknown to the Latin Europe until the late 17th
century, when Philippe de la Hire rediscovered his treatise in the Royal Library of Paris.[36] However, he was not the first
European to have written on magic squares; and the magic squares were disseminated to rest of Europe through Spain and
Italy as occult objects. The early occult treaties that displayed the squares did not describe how they were constructed. Thus
the entire theory had to be rediscovered.

Magic squares had first appeared in Europe in Kitāb tadbīrāt al-kawākib (Book on the Influences of the Planets) written by
Ibn Zarkali of Toledo, Al-Andalus, as planetary squares by 11th century.[32] The magic square of three was discussed in
numerological manner in early 12th century by Jewish scholar Abraham ibn Ezra of Toledo, which influenced later
Kabbalists.[37] Ibn Zarkali's work was translated as Libro de Astromagia in the 1280s,[38] due to Alfonso X of Castille.[39][32]

In the Alfonsine text, magic squares of different orders are assigned to the respective planets, as in the Islamic literature;
unfortunately, of all the squares discussed, the Mars magic square of order five is the only square exhibited in the
manuscript.[40][32]

Magic squares surface again in Florence, Italy in the 14th century. A 6×6 and a 9×9 square are exhibited in a manuscript of
the Trattato d'Abbaco (Treatise of the Abacus) by Paolo Dagomari.[41][42] It is interesting to observe that Paolo Dagomari,
like Pacioli after him, refers to the squares as a useful basis for inventing mathematical questions and games, and does not
mention any magical use. Incidentally, though, he also refers to them as being respectively the Sun's and the Moon's squares,
and mentions that they enter astrological calculations that are not better specified. As said, the same point of view seems to
motivate the fellow Florentine Luca Pacioli, who describes 3×3 to 9×9 squares in his work De Viribus Quantitatis by the end of 15th century.[43][44]

The planetary squares had disseminated into northern Europe by the end of 15th century. For instance, the Cracow
manuscript of Picatrix from Poland displays magic squares of orders 3 to 9. The same set of squares as in the Cracow
manuscript later appears in the writings of Paracelsus in Archidoxa Magica (1567), although in highly garbled form. In 1514
Albrecht Dürer immortalized a 4×4 square in his famous engraving Melencolia I. Paracelsus' contemporary Heinrich
Cornelius Agrippa von Nettesheim published his famous three volume book De occulta philosophia in 1531, where he devoted
Chapter 22 of Book II to the planetary squares shown below.[37] The same set of squares given by Agrippa reappear in 1539 in
Practica Arithmetice by Girolamo Cardano, where he explains the construction of the odd ordered squares using "diamond
method", which was later reproduced by Bachet.[45] The tradition of planetary squares was continued into the 17th century by
Athanasius Kircher in Oedipi Aegyptici (1653). In Germany, mathematical treaties concerning magic squares were written in
1544 by Michael Stifel in Arithmetica Integra, who rediscovered the bordered squares, and Adam Riese, who rediscovered the
continuous numbering method to construct odd ordered squares published by Agrippa. However, due to the religious
upheavals of that time, these work were unknown to the rest of Europe.[37]

Saturn=15

4 9 2

3 5 7

8 1 6

Jupiter=34

4 14 15 1

9 7 6 12

5 11 10 8

16 2 3 13

Mars=65

11 24 7 20 3

4 12 25 8 16

17 5 13 21 9

10 18 1 14 22

23 6 19 2 15

Sol=111

6 32 3 34 35 1

7 11 27 28 8 30

19 14 16 15 23 24

18 20 22 21 17 13

25 29 10 9 26 12

36 5 33 4 2 31

Latin Europe

Europe after 15th century
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Lo Shu from "The Astronomical
Phenomena" (Tien Yuan Fa Wei).
Compiled by Bao Yunlong in 13th
century, published during the Ming
dynasty, 1457–1463.

Venus=175

22 47 16 41 10 35 4

5 23 48 17 42 11 29

30 6 24 49 18 36 12

13 31 7 25 43 19 37

38 14 32 1 26 44 20

21 39 8 33 2 27 45

46 15 40 9 34 3 28

Mercury=260

8 58 59 5 4 62 63 1

49 15 14 52 53 11 10 56

41 23 22 44 45 19 18 48

32 34 35 29 28 38 39 25

40 26 27 37 36 30 31 33

17 47 46 20 21 43 42 24

9 55 54 12 13 51 50 16

64 2 3 61 60 6 7 57

Luna=369

37 78 29 70 21 62 13 54 5

6 38 79 30 71 22 63 14 46

47 7 39 80 31 72 23 55 15

16 48 8 40 81 32 64 24 56

57 17 49 9 41 73 33 65 25

26 58 18 50 1 42 74 34 66

67 27 59 10 51 2 43 75 35

36 68 19 60 11 52 3 44 76

77 28 69 20 61 12 53 4 45

In 1624 France, Claude Gaspard Bachet described the "diamond method" for constructing Agrippa's odd ordered squares in his book Problèmes Plaisants.
During 1640 Bernard Frenicle de Bessy and Pierre Fermat exchanged letters on magic squares and cubes, and in one of the letters Fermat boasts of being able to
construct 1,004,144,995,344 magic squares of order 8 by his method.[45] An early account on the construction of bordered squares was given by Antoine
Arnauld in his Nouveaux éléments de géométrie (1667).[46] In the two treatise Des quarrez ou tables magiques and Table générale des quarrez magiques de
quatre de côté, published posthumously in 1693, twenty years after his death, Bernard Frenicle de Bessy demonstrated that there were exactly 880 distinct
magic squares of order four. Frenicle gave methods to construct magic square of any odd and even order, where the even ordered squares were constructed
using borders. He also showed that interchanging rows and columns of a magic square produced new magic squares.[45] In 1691, Simon de la Loubère described
the Indian continuous method of constructing odd ordered magic squares in his book Du Royaume de Siam, which he had learned while returning from a
diplomatic mission to Siam, which was faster than Bachet's method. In an attempt to explain its working, de la Loubere used the primary numbers and root
numbers, and rediscovered the method of adding two preliminary squares. This method was further investigated by Abbe Poignard in Traité des quarrés
sublimes (1704), by Philippe de La Hire in Mémoires de l'Académie des Sciences for the Royal Academy (1705), and by Joseph Sauveur in Construction des
quarrés magiques (1710). Concentric bordered squares were also studied by De la Hire in 1705, while Sauveur introduced magic cubes and lettered squares,
which was taken up later by Euler in 1776, who is often credited for devising them. In 1750 d'Ons-le-Bray rediscovered the method of constructing doubly even
and singly even squares using bordering technique; while in 1767 Benjamin Franklin published a semi-magic square that had the properties of eponymous
Franklin square.[47] By this time the earlier mysticism attached to the magic squares had completely vanished, and the subject was treated as a part of
recreational mathematics.[37][48]

In the 19th century, Bernard Violle gave a comprehensive treatment of magic squares in his three volume Traité complet des carrés magiques (1837–1838),
which also described magic cubes, parallelograms, parallelopipeds, and circles. Pandiagonal squares were extensively studied by Andrew Hollingworth Frost,
who learned it while in the town of Nasik, India, (thus calling them Nasik squares) in a series of articles: On the knight's path (1877), On the General Properties
of Nasik Squares (1878), On the General Properties of Nasik Cubes (1878), On the construction of Nasik Squares of any order (1896). He showed that it is
impossible to have normal singly-even pandiagonal magic squares. Frederick A.P. Barnard constructed inlaid magic squares and other three dimensional magic
figures like magic spheres and magic cylinders in Theory of magic squares and of magic cubes (1888).[48] In 1897, Emroy McClintock published On the most
perfect form of magic squares, coining the words pandiagonal square and most perfect square, which had previously been referred to as perfect, or diabolic, or
Nasik.

Legends dating from as early as 650 BCE tell the story of the Lo Shu (洛書) or "scroll of the river Lo".[8] According to the
legend, there was at one time in ancient China a huge flood. While the great king Yu was trying to channel the water out to
sea, a turtle emerged from it with a curious pattern on its shell: a 3×3 grid in which circular dots of numbers were arranged,
such that the sum of the numbers in each row, column and diagonal was the same: 15. According to the legend, thereafter
people were able to use this pattern in a certain way to control the river and protect themselves from floods. The Lo Shu
Square, as the magic square on the turtle shell is called, is the unique normal magic square of order three in which 1 is at the
bottom and 2 is in the upper right corner. Every normal magic square of order three is obtained from the Lo Shu by rotation
or reflection.

There is a well-known 12th-century 4×4 normal magic square inscribed on the wall of the Parshvanath temple in Khajuraho,
India.[18][17][49]

7 12 1 14

2 13 8 11

16 3 10 5

9 6 15 4

Some famous magic squares

Luo Shu magic square

Magic square in Parshavnath temple
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Magic Square at the Parshvanatha
temple, in Khajuraho, India

Detail of Melencolia I

A magic square on the Sagrada
Família church façade

This is known as the Chautisa Yantra (Chautisa, 34; Yantra, lit. "device"), since its magic sum is 34. It is one of the three
4×4 pandiagonal magic squares and is also an instance of the most-perfect magic square. The study of this square led to the
appreciation of pandiagonal squares by European mathematicians in the late 19th century. Pandiagonal squares were
referred to as Nasik squares or Jain squares in older English literature.

The order four normal magic square Albrecht Dürer immortalized in his 1514 engraving Melencolia I, referred to above, is
believed to be the first seen in European art. The square associated with Jupiter appears as a talisman used to drive away
melancholy. It is very similar to Yang Hui's square, which was created in China about 250 years before Dürer's time. As with
every order 4 normal magic square, the magic sum is 34. But in the Durer square this sum is also found in each of the
quadrants, in the center four squares, and in the corner squares (of the 4×4 as well as the four contained 3×3 grids). This
sum can also be found in the four outer numbers clockwise from the corners (3+8+14+9) and likewise the four counter-
clockwise (the locations of four queens in the two solutions of the 4 queens puzzle[50]), the two sets of four symmetrical
numbers (2+8+9+15 and 3+5+12+14), the sum of the middle two entries of the two outer columns and rows (5+9+8+12 and
3+2+15+14), and in four kite or cross shaped quartets (3+5+11+15, 2+10+8+14, 3+9+7+15, and 2+6+12+14). The two
numbers in the middle of the bottom row give the date of the engraving: 1514. It has been speculated that the numbers 4,1
bordering the publication date correspond to Durer's initials D,A. But if that had been his intention, he could have inverted
the order of columns 1 and 4 to achieve "A1514D" without compromising the square's properties.

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

Dürer's magic square can also be extended to a magic cube.[51]

The Passion façade of the Sagrada Família church in Barcelona, conceptualized by Antoni Gaudí and designed by sculptor
Josep Subirachs, features a trivial order 4 magic square: The magic constant of the square is 33, the age of Jesus at the time
of the Passion.[52] Structurally, it is very similar to the Melancholia magic square, but it has had the numbers in four of the
cells reduced by 1.

1 14 14 4

11 7 6 9

8 10 10 5

13 2 3 15

Trivial squares such as this one are not generally mathematically interesting and only have historical significance. Lee
Sallows has pointed out that, due to Subirachs's ignorance of magic square theory, the renowned sculptor made a needless
blunder, and supports this assertion by giving several examples of non-trivial 4×4 magic squares showing the desired magic
constant of 33.[53]

Similarly to Dürer's magic square, the Sagrada Familia's magic square can also be extended to a magic cube.[54]

The Parker Square, named after recreational mathematician Matt Parker,[55] is an attempt to create a 3 × 3 magic square
of squares — a prized unsolved problem since Euler.[56] The Parker Square is a trivial semimagic square since it uses some
numbers more than once, and the diagonal 232 + 372 + 472 sums to 4107, not 3051 as for all the other rows, columns, or
diagonal. The Parker Square became popular in mathematical culture.[55][57]

292 12 472

412 372 12

232 412 292

The Gardner Square, named after recreational mathematician Martin Gardner, similar to the Parker square, is given as a problem to determine a, b, c and d;

Albrecht Dürer's magic square

Sagrada Família magic square

Parker square

Gardner square
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1272 462 582

22 b2 c2

a2 822 d2

This solution for a=74, b=113, c=94 and d=97 gives a semimagic square; the diagonal 1272 + b2 + d2 sums to 38 307, not 21 609 as for all the other rows,
columns and diagonal;

1272 462 582 21609

22 1132 942 21609

742 822 972 21609

21609 21609 21609 38307

The constant that is the sum of any row, or column, or diagonal is called the magic constant or magic sum, M. Every normal magic square has a constant
dependent on the order n, calculated by the formula . This can be demonstrated by noting that the sum of  is . Since
the sum of each row is , the sum of  rows is , which when divided by the order n yields the magic constant. For normal magic squares of
orders n = 3, 4, 5, 6, 7, and 8, the magic constants are, respectively: 15, 34, 65, 111, 175, and 260 (sequence A006003 in the OEIS).

The 1×1 magic square, with only one cell containing the number 1, is called trivial, because it is typically not under consideration when discussing magic
squares; but it is indeed a magic square by definition, if a single cell is regarded as a square of order one.

Normal magic squares of all sizes can be constructed except 2×2 (that is, where order n = 2).[58]

If the numbers in the magic square are seen as masses located in various cells, then the center of mass of a magic square coincides with its geometric center.

The moment of inertia of a magic square has been defined as the sum over all cells of the number in the cell times the squared distance from the center of the
cell to the center of the square; here the unit of measurement is the width of one cell.[59] (Thus for example a corner cell of a 3×3 square has a distance of  a
non-corner edge cell has a distance of 1, and the center cell has a distance of 0.) Then all magic squares of a given order have the same moment of inertia as each
other. For the order-3 case the moment of inertia is always 60, while for the order-4 case the moment of inertia is always 340. In general, for the n×n case the
moment of inertia is [59]

Dividing each number of the magic square by the magic constant will yield a doubly stochastic matrix, whose row sums and column sums equal to unity.
However, unlike the doubly stochastic matrix, the diagonal sums of such matrices will also equal to unity. Thus, such matrices constitute a subset of doubly
stochastic matrix. The Birkhoff–von Neumann theorem states that for any doubly stochastic matrix , there exists real numbers , where 

 and permutation matrices  such that

This representation may not be unique in general. By Marcus-Ree theorem, however, there need not be more than  terms in any
decomposition.[60] Clearly, this decomposition carries over to magic squares as well, since a magic square can be recovered from a doubly stochastic matrix by
multiplying it by the magic constant.

Properties of magic squares

Magic constant

Magic square of order 1 is trivial

Magic square of order 2 cannot be constructed

Center of mass

Moment of inertia

Birkhoff–von Neumann decomposition

Classification of magic squares
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Euler diagram of the
requirements of some types
of 4×4 magic squares. Cells
of the same colour sum to
the magic constant. * In 4×4
most-perfect magic
squares, any 2 cells that are
2 cells diagonally apart
(including wraparound) sum
to half the magic constant,
hence any 2 such pairs also
sum to the magic constant.

Unsolved problem in
mathematics:
How many magic tori and magic
squares of order n are there for 

 and , respectively?
(more unsolved problems in mathematics)

Semi-log plot of Pn, the probability of
magic squares of dimension n

While the classification of magic squares can be done in many ways, some useful categories are given below. An n×n square array of
integers 1, 2, ..., n2 is called:

Semi-magic square when its rows and columns sum to give the magic constant.
Simple magic square when its rows, columns, and two diagonals sum to give magic constant and no more. They are also known
as ordinary magic squares or normal magic squares.
Self-complementary magic square when it is a magic square which when complemented (i.e. each number subtracted from n2 +
1) will give a rotated or reflected version of the original magic square.
Associative magic square when it is a magic square with a further property that every number added to the number equidistant,
in a straight line, from the center gives n2 + 1. They are also called symmetric magic squares. Associative magic squares do not
exist for squares of singly even order. All associative magic square are self-complementary magic squares as well.
Pandiagonal magic square when it is a magic square with a further property that the broken diagonals sum to the magic
constant. They are also called panmagic squares, perfect squares, diabolic squares, Jain squares, or Nasik squares. Panmagic
squares do not exist for singly even orders. However, singly even non-normal squares can be panmagic.
Ultra magic square when it is both associative and pandiagonal magic square. Ultra magic square exist only for orders n ≥ 5.
Bordered magic square when it is a magic square and it remains magic when the rows and columns on the outer edge are
removed. They are also called concentric bordered magic squares if removing a border of a square successively gives another
smaller bordered magic square. Bordered magic square do not exist for order 4.
Composite magic square when it is a magic square that is created by "multiplying" (in some sense) smaller magic squares, such
that the order of the composite magic square is a multiple of the order of the smaller squares. Such squares can usually be
partitioned into smaller non-overlapping magic sub-squares.
Inlaid magic square when it is a magic square inside which a magic sub-square is embedded, regardless of construction
technique. The embedded magic sub-squares are themselves referred to as inlays.
Most-perfect magic square when it is a pandiagonal magic square with two further properties (i) each 2×2 subsquare add to 1/k
of the magic constant where n = 4k, and (ii) all pairs of integers distant n/2 along any diagonal (major or broken) are
complementary (i.e. they sum to n2 + 1). The first property is referred to as compactness, while the second property is referred
to as completeness. Most-perfect magic squares exist only for squares of doubly even order. All the pandiagonal squares of
order 4 are also most perfect.
Franklin magic square when it is a doubly even magic square with three further properties (i) every bent diagonal adds to the
magic constant, (ii) every half row and half column starting at an outside edge adds to half the magic constant, and (iii) the
square is compact.
Multimagic square when it is a magic square that remains magic even if all its numbers are replaced by their k-th power for 1 ≤ k ≤ P. They are also known
as P-multimagic square or satanic squares. They are also referred to as bimagic squares, trimagic squares, tetramagic squares, and pentamagic squares
when the value of P is 2, 3, 4, and 5 respectively.

Low order squares

There is only one (trivial) magic square of order 1 and no magic square of order 2. As mentioned above, the set
of normal squares of order three constitutes a single equivalence class-all equivalent to the Lo Shu square. Thus
there is basically just one normal magic square of order 3.

The number of different n × n magic squares for n from 1 to 6, not counting rotations and reflections is:

1, 0, 1, 880, 275305224, 17753889189701384304. (sequence A006052 in the OEIS)

The number for n = 6 had previously been estimated to be (1.7745 ± 0.0016) × 1019.[61][62][59]

Magic tori

Cross-referenced to the above sequence, a new classification enumerates the magic tori that display these magic squares. The number of magic tori of order n
from 1 to 5, is:

1, 0, 1, 255, 251449712 (sequence A270876 in the OEIS).

Higher order squares and tori

The number of distinct normal magic squares rapidly increases for higher orders.[63]

The 880 magic squares of order 4 are displayed on 255 magic tori of order 4 and the 275,305,224 squares of order 5 are
displayed on 251,449,712 magic tori of order 5. The numbers of magic tori and distinct normal squares are not yet known for
orders beyond 5 and 6, respectively.[64]

Algorithms tend to only generate magic squares of a certain type or classification, making counting all possible magic squares
quite difficult. Since traditional counting methods have proven unsuccessful, statistical analysis using the Monte Carlo
method has been applied. The basic principle applied to magic squares is to randomly generate n × n matrices of elements 1
to n2 and check if the result is a magic square. The probability that a randomly generated matrix of numbers is a magic
square is then used to approximate the number of magic squares.[65]

Enumeration of magic squares
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More intricate versions of the Monte Carlo method, such as the exchange Monte Carlo, and Monte Carlo backtracking have produced even more accurate
estimations. Using these methods it has been shown that the probability of magic squares decreases rapidly as n increases. Using fitting functions give the
curves seen to the right.

The sum of any two magic squares of the same order by matrix addition is a magic square.
A magic square remains magic when all of its numbers undergo the same linear transformation (i.e., a function of the form f(x) = m x + b). For example, a
magic square remains magic when its numbers are multiplied by any constant.[66] Moreover, a magic square remains magic when a constant is added or
subtracted to its numbers, or if its numbers are subtracted from a constant. In particular, if every element in a normal magic square of order  is subtracted
from , the complement of the original square is obtained.[66] In the example below, each element of the magic square on the left is subtracted from 17
to obtain the complement magic square on the right.

10 3 13 8

5 16 2 11

4 9 7 14

15 6 12 1

7 14 4 9

12 1 15 6

13 8 10 3

2 11 5 16

A magic square remains magic when transformed by any element of D4, the symmetry group of a square (see Dihedral group of order 8 § The symmetry
group of a square: dihedral group of order 8). Every combination of one or more rotations of 90 degrees, reflections, or both produce eight trivially distinct
squares which are generally considered equivalent. The eight such squares are said to make up a single equivalence class.[67][66] The eight equivalent
magic squares for the 3×3 magic square are shown below:

8 1 6

3 5 7

4 9 2

6 1 8

7 5 3

2 9 4

2 7 6

9 5 1

4 3 8

4 3 8

9 5 1

2 7 6

2 9 4

7 5 3

6 1 8

4 9 2

3 5 7

8 1 6

8 3 4

1 5 9

6 7 2

6 7 2

1 5 9

8 3 4

A magic square of order  remains magic when both its rows and columns are symmetrically permuted by  such that  for 
. Every permutation of the rows or columns preserves all row and column sums, but generally not the two diagonal sums. If the same permutation 

 is applied to both the rows and columns, then diagonal element in row  and column  is mapped to row  and column  which is on the same
diagonal; therefore, applying the same permutation to rows and columns preserves the main (upper left to lower right) diagonal sum. If the permutation is
symmetric as described, then the diagonal element in row  and column  is mapped to row  and column  which is
on the same diagonal; therefore, applying the same symmetric permutation to both rows and columns preserves both diagonal sums. For even , there are 

 such symmetric permutations, and  for  odd. In the example below, the original magic square on the left has its rows and

columns symmetrically permuted by  resulting in the magic square on the right.

1 32 33 4 35 6

30 8 27 28 11 7

13 23 22 21 14 18

24 17 16 15 20 19

12 26 10 9 29 25

31 5 3 34 2 36

29 9 25 12 10 26

20 15 19 24 16 17

2 34 36 31 3 5

35 4 6 1 33 32

14 21 18 13 22 23

11 28 7 30 27 8

A magic square of order  remains magic when rows  and  are exchanged and columns  and  are exchanged because this is a
symmetric permutation of the form described above.[66][48] In the example below, the square on the right is obtained by interchanging the 1st and 4th rows
and columns of the original square on the left.

Transformations that preserve the magic property

For any magic square
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1 15 14 4

12 6 7 9

8 10 11 5

13 3 2 16

16 3 2 13

9 6 7 12

5 10 11 8

4 15 14 1

A magic square of order  remains magic when rows  and  are exchanged, rows  and  are exchanged, columns  and  are

exchanged, and columns  and  are exchanged where  because this is another symmetric permutation of the form
described above. In the example below, the left square is the original square, while the right square is the new square obtained by this transformation. In the
middle square, rows 1 and 2 and rows 3 and 4 have been swapped. The final square on the right is obtained by interchanging columns 1 and 2 and columns
3 and 4 of the middle square. In this particular example, this transform rotates the quadrants 180 degrees. The middle square is also magic because the
original square is associative.

1 15 14 4

12 6 7 9

8 10 11 5

13 3 2 16

12 6 7 9

1 15 14 4

13 3 2 16

8 10 11 5

6 12 9 7

15 1 4 14

3 13 16 2

10 8 5 11

A magic square remains magic when its quadrants are diagonally interchanged because this is another symmetric permutation of the form described above.
For even-order , permute the rows and columns by permutation  where  for , and  for . For odd-order , permute

rows and columns by permutation  where  for , and  for . For odd ordered square, the halves of

the central row and column are also interchanged.[66] Examples for order 4 and 5 magic squares are given below:

1 15 14 4

12 6 7 9

8 10 11 5

13 3 2 16

11 5 8 10

2 16 13 3

14 4 1 15

7 9 12 6

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

21 3 19 10 12

2 9 25 11 18

20 22 13 4 6

8 15 1 17 24

14 16 7 23 5

An associative magic square remains associative when two rows or columns equidistant from the center are interchanged.[68][69] For an even square, there
are n/2 pairs of rows or columns that can be interchanged; thus 2n/2 × 2n/2 = 2n equivalent magic squares by combining such interchanges can be obtained.
For odd square, there are (n - 1)/2 pairs of rows or columns that can be interchanged; and 2n-1 equivalent magic squares obtained by combining such
interchanges. Interchanging all the rows flips the square vertically (i.e. reflected along the horizontal axis), while interchanging all the columns flips the
square horizontally (i.e. reflected along the vertical axis). In the example below, a 4×4 associative magic square on the left is transformed into a square on
the right by interchanging the second and third row, yielding the famous Durer's magic square.

16 3 2 13

9 6 7 12

5 10 11 8

4 15 14 1

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

An associative magic square remains associative when two same sided rows (or columns) are interchanged along with corresponding other sided rows (or
columns).[68][69] For an even square, since there are n/2 same sided rows (or columns), there are n(n - 2)/8 pairs of such rows (or columns) that can be
interchanged. Thus, 2n(n-2)/8 × 2n(n-2)/8 = 2n(n-2)/4 equivalent magic squares can be obtained by combining such interchanges. For odd square, since there
are (n - 1)/2 same sided rows or columns, there are (n - 1)(n - 3)/8 pairs of such rows or columns that can be interchanged. Thus, there are 2(n - 1)(n - 3)/8 ×
2(n - 1)(n - 3)/8 = 2(n - 1)(n - 3)/4 equivalent magic squares obtained by combining such interchanges. Interchanging all the same sided rows flips each quadrants
of the square vertically, while interchanging all the same sided columns flips each quadrant of the square horizontally. In the example below, the original
square is on the left, whose rows 1 and 2 are interchanged with each other, along with rows 3 and 4, to obtain the transformed square on the right.

For associative magic squares
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1 15 14 4

12 6 7 9

8 10 11 5

13 3 2 16

12 6 7 9

1 15 14 4

13 3 2 16

8 10 11 5

An associative magic square remains associative when its entries are replaced with corresponding numbers from a set of s arithmetic progressions with the
same common difference among r terms, such that r × s = n2, and whose initial terms are also in arithmetic progression, to obtain a non-normal magic
square. Here either s or r should be a multiple of n. Let us have s arithmetic progressions given by

where a is the initial term, c is the common difference of the arithmetic progressions, and d is the common difference among the initial terms of each
progression. The new magic constant will be

If s = r = n, then follows the simplification

With a = c = 1 and d = n, the usual M = n(n2+1)/2 is obtained. For given M the required a, c, and d can be found by solving the linear Diophantine
equation. In the examples below, there are order 4 normal magic squares on the left most side. The second square is a corresponding non-normal magic
square with r = 8, s = 2, a = 1, c = 1, and d = 10 such that the new magic constant is M = 38. The third square is an order 5 normal magic square, which is
a 90 degree clockwise rotated version of the square generated by De la Loubere method. On the right most side is a corresponding non-normal magic
square with a = 4, c = 1, and d = 6 such that the new magic constant is M = 90.

1 15 14 4

12 6 7 9

8 10 11 5

13 3 2 16

1 17 16 4

14 6 7 11

8 12 13 5

15 3 2 18

11 10 4 23 17

18 12 6 5 24

25 19 13 7 1

2 21 20 14 8

9 3 22 16 15

16 14 7 30 23

24 17 10 8 31

32 25 18 11 4

5 28 26 19 12

13 6 29 22 20

A pan-diagonal magic square remains a pan-diagonal magic square under cyclic shifting of rows or of columns or both.[66] This allows us to position a given
number in any one of the n2 cells of an n order square. Thus, for a given pan-magic square, there are n2 equivalent pan-magic squares. In the example
below, the original square on the left is transformed by shifting the first row to the bottom to obtain a new pan-magic square in the middle. Next, the 1st and
2nd column of the middle pan-magic square is circularly shifted to the right to obtain a new pan-magic square on the right.

10 3 13 8

5 16 2 11

4 9 7 14

15 6 12 1

5 16 2 11

4 9 7 14

15 6 12 1

10 3 13 8

2 11 5 16

7 14 4 9

12 1 15 6

13 8 10 3

A bordered magic square remains a bordered magic square after permuting the border cells in the rows or columns, together with their corresponding
complementary terms, keeping the corner cells fixed. Since the cells in each row and column of every concentric border can be permuted independently,
when the order n ≥ 5 is odd, there are ((n-2)! × (n-4)! × ··· × 3!)2 equivalent bordered squares. When n ≥ 6 is even, there are ((n-2)! × (n-4)! × ··· × 4!)2
equivalent bordered squares. In the example below, a square of order 5 is given whose border row has been permuted and (3!)2 = 36 such equivalent
squares can be obtained.

For pan-diagonal magic squares

For bordered magic squares

https://en.wikipedia.org/wiki/Linear_Diophantine_equation
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1 23 16 4 21

15 14 7 18 11

24 17 13 9 2

20 8 19 12 6

5 3 10 22 25

1 16 23 4 21

15 14 7 18 11

24 17 13 9 2

20 8 19 12 6

5 10 3 22 25

A bordered magic square remains a bordered magic square after each of its concentric borders are independently rotated or reflected with respect to the
central core magic square. If there are b borders, then this transform will yield 8b equivalent squares. In the example below of the 5×5 magic square, the
border has been rotated 90 degrees anti-clockwise.

1 23 16 4 21

15 14 7 18 11

24 17 13 9 2

20 8 19 12 6

5 3 10 22 25

21 11 2 6 25

4 14 7 18 22

16 17 13 9 10

23 8 19 12 3

1 15 24 20 5

A composite magic square remains a composite magic square when the embedded magic squares undergo transformations that do not disturb the magic
property (e.g. rotation, reflection, shifting of rows and columns, and so on).

Over the millennium, many ways to construct magic squares have been discovered. These methods can be classified as general methods and special methods, in
the sense that general methods allow us to construct more than a single magic square of a given order, whereas special methods allow us to construct just one
magic square of a given order. Special methods are specific algorithms whereas general methods may require some trial-and-error.

Special methods are standard and most simple ways to construct a magic square. It follows certain configurations / formulas / algorithm which generates
regular patterns of numbers in a square. The correctness of these special methods can be proved using one of the general methods given in later sections. After a
magic square has been constructed using a special method, the transformations described in the previous section can be applied to yield further magic squares.
Special methods are usually referred to using the name of the author(s) (if known) who described the method, for e.g. De la Loubere's method, Starchey's
method, Bachet's method, etc.

Magic squares exist for all values of n, except for order 2. Magic squares can be classified according to their order as odd, doubly even (n divisible by four), and
singly even (n even, but not divisible by four). This classification is based on the fact that entirely different techniques need to be employed to construct these
different species of squares. Odd and doubly even magic squares are easy to generate; the construction of singly even magic squares is more difficult but several
methods exist, including the LUX method for magic squares (due to John Horton Conway) and the Strachey method for magic squares.

In the 19th century, Édouard Lucas devised the general formula for order 3 magic squares. Consider the following table made up of positive integers a, b and c:

c − b c + (a + b) c − a

c − (a − b) c c + (a − b)

c + a c − (a + b) c + b

These nine numbers will be distinct positive integers forming a magic square with the magic constant 3c so long as 0 < a < b < c − a and b ≠ 2a. Moreover, every
3×3 magic square of distinct positive integers is of this form.

In 1997 Lee Sallows discovered that leaving aside rotations and reflections, then every distinct parallelogram drawn on the Argand diagram defines a unique 3×3
magic square, and vice versa, a result that had never previously been noted.[67]

A method for constructing magic squares of odd order was published by the French diplomat de la Loubère in his book, A new historical relation of the kingdom
of Siam (Du Royaume de Siam, 1693), in the chapter entitled The problem of the magical square according to the Indians.[70] The method operates as follows:

The method prescribes starting in the central column of the first row with the number 1. After that, the fundamental movement for filling the squares is
diagonally up and right, one step at a time. If a square is filled with a multiple of the order n, one moves vertically down one square instead, then continues as
before. When an "up and to the right" move would leave the square, it is wrapped around to the last row or first column, respectively.

For composite magic squares

Special methods of construction

A method for constructing a magic square of order 3

A method for constructing a magic square of odd order

https://en.wikipedia.org/wiki/LUX_method_for_magic_squares
https://en.wikipedia.org/wiki/John_Horton_Conway
https://en.wikipedia.org/wiki/Strachey_method_for_magic_squares
https://en.wikipedia.org/wiki/%C3%89douard_Lucas
https://en.wikipedia.org/wiki/Lee_Sallows
https://en.wikipedia.org/wiki/Parallelogram
https://en.wikipedia.org/wiki/Argand_diagram
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Yang Hui's construction method

step 1

1

 

 

step 2

1

 

2

step 3

1

3

2

step 4

1

3

4 2

step 5

1

3 5

4 2

step 6

1 6

3 5

4 2

step 7

1 6

3 5 7

4 2

step 8

8 1 6

3 5 7

4 2

step 9

8 1 6

3 5 7

4 9 2

Starting from other squares rather than the central column of the first row is possible, but then only the row and
column sums will be identical and result in a magic sum, whereas the diagonal sums will differ. The result will
thus be a semimagic square and not a true magic square. Moving in directions other than north east can also
result in magic squares.

Order 3

8 1 6

3 5 7

4 9 2

Order 5

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

Order 9

47 58 69 80 1 12 23 34 45

57 68 79 9 11 22 33 44 46

67 78 8 10 21 32 43 54 56

77 7 18 20 31 42 53 55 66

6 17 19 30 41 52 63 65 76

16 27 29 40 51 62 64 75 5

26 28 39 50 61 72 74 4 15

36 38 49 60 71 73 3 14 25

37 48 59 70 81 2 13 24 35

Doubly even means that n is an even multiple of an even integer; or 4p (e.g. 4, 8, 12), where p is an integer.

Generic pattern All the numbers are written in order from left to right across each row in turn, starting from the top left hand corner. Numbers are then either
retained in the same place or interchanged with their diametrically opposite numbers in a certain regular pattern. In the magic square of order four, the
numbers in the four central squares and one square at each corner are retained in the same place and the others are interchanged with their diametrically
opposite numbers.

A construction of a magic square of order 4 Starting from top left, go left to right through each row of the square, counting each cell from 1 to 16 and
filling the cells along the diagonals with its corresponding number. Once the bottom right cell is reached, continue by going right to left, starting from the
bottom right of the table through each row, and fill in the non-diagonal cells counting up from 1 to 16 with its corresponding number. As shown below:

M = Order 4

1 4

6 7

10 11

13 16

M = Order 4

1 15 14 4

12 6 7 9

8 10 11 5

13 3 2 16

An extension of the above example for Orders 8 and 12 First generate a pattern table, where a '1' indicates selecting from the square where the numbers
are written in order 1 to n2 (left-to-right, top-to-bottom), and a '0' indicates selecting from the square where the numbers are written in reverse order n2 to 1. For
M = 4, the pattern table is as shown below (third matrix from left). With the unaltered cells (cells with '1') shaded, a criss-cross pattern is obtained.

A method of constructing a magic square of doubly even order

https://en.wikipedia.org/wiki/File:Yanghui_magic_square.GIF
https://en.wikipedia.org/wiki/Yang_Hui
https://en.wikipedia.org/wiki/Doubly_even


8/12/23, 12:16 PMMagic square - Wikipedia

Page 15 of 36https://en.wikipedia.org/wiki/Magic_square

M = Order 4

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

M = Order 4

16 15 14 13

12 11 10 9

8 7 6 5

4 3 2 1

M = Order 4

1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

M = Order 4

1 15 14 4

12 6 7 9

8 10 11 5

13 3 2 16

The patterns are a) there are equal number of '1's and '0's in each row and column; b) each row and each column are "palindromic"; c) the left- and right-halves
are mirror images; and d) the top- and bottom-halves are mirror images (c and d imply b). The pattern table can be denoted using hexadecimals as (9, 6, 6, 9)
for simplicity (1-nibble per row, 4 rows). The simplest method of generating the required pattern for higher ordered doubly even squares is to copy the generic
pattern for the fourth-order square in each four-by-four sub-squares.

For M = 8, possible choices for the pattern are (99, 66, 66, 99, 99, 66, 66, 99); (3C, 3C, C3, C3, C3, C3, 3C, 3C); (A5, 5A, A5, 5A, 5A, A5, 5A, A5) (2-nibbles per
row, 8 rows).

M = Order 8

1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 0

0 1 1 0 0 1 1 0

1 0 0 1 1 0 0 1

1 0 0 1 1 0 0 1

0 1 1 0 0 1 1 0

0 1 1 0 0 1 1 0

1 0 0 1 1 0 0 1

M = Order 8

1 4 5 8

10 11 14 15

18 19 22 23

25 28 29 32

33 36 37 40

42 43 46 47

50 51 54 55

57 60 61 64

M = Order 8

1 63 62 4 5 59 58 8

56 10 11 53 52 14 15 49

48 18 19 45 44 22 23 41

25 39 38 28 29 35 34 32

33 31 30 36 37 27 26 40

24 42 43 21 20 46 47 17

16 50 51 13 12 54 55 9

57 7 6 60 61 3 2 64

For M = 12, the pattern table (E07, E07, E07, 1F8, 1F8, 1F8, 1F8, 1F8, 1F8, E07, E07, E07) yields a magic square (3-nibbles per row, 12 rows.) It is possible to
count the number of choices one has based on the pattern table, taking rotational symmetries into account.

The earliest discovery of the superposition method was made by the Indian mathematician Narayana in the 14th century. The same method was later re-
discovered and studied in early 18th century Europe by de la Loubere, Poignard, de La Hire, and Sauveur; and the method is usually referred to as de la Hire's
method. Although Euler's work on magic square was unoriginal, he famously conjectured the impossibility of constructing the evenly odd ordered mutually
orthogonal Graeco-Latin squares. This conjecture was disproved in the mid 20th century. For clarity of exposition, two important variations of this method can
be distinguished.

This method consists in constructing two preliminary squares, which when added together gives the magic square. As a running example, a 3×3 magic square is
considered. Each number of the 3×3 natural square by a pair of numbers can be labeled as

1 2 3

4 5 6

7 8 9

αa αb αc

βa βb βc

γa γb γc

where every pair of Greek and Latin alphabets, e.g. αa, are meant to be added together, i.e. αa = α + a. Here, (α, β, γ) = (0, 3, 6) and (a, b, c) = (1, 2, 3). The
numbers 0, 3, and 6 are referred to as the root numbers while the numbers 1, 2, and 3 are referred to as the primary numbers. An important general constraint
here is

a Greek letter is paired with a Latin letter only once.

Thus, the original square can now be split into two simpler squares:

α α α

β β β

γ γ γ

a b c

a b c

a b c

Method of superposition

Euler's method

https://en.wikipedia.org/wiki/Hexadecimals
https://en.wikipedia.org/wiki/Graeco-Latin_square
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The lettered squares are referred to as Greek square or Latin square if they are filled with Greek or Latin letters, respectively. A magic square can be constructed
by ensuring that the Greek and Latin squares are magic squares too. The converse of this statement is also often, but not always (e.g. bordered magic squares),
true: A magic square can be decomposed into a Greek and a Latin square, which are themselves magic squares. Thus the method is useful for both synthesis as
well as analysis of a magic square. Lastly, by examining the pattern in which the numbers are laid out in the finished square, it is often possible to come up with
a faster algorithm to construct higher order squares that replicate the given pattern, without the necessity of creating the preliminary Greek and Latin squares.

During the construction of the 3×3 magic square, the Greek and Latin squares with just three unique terms are much easier to deal with than the original square
with nine different terms. The row sum and the column sum of the Greek square will be the same, α + β + γ, if

each letter appears exactly once in a given column or a row.

This can be achieved by cyclic permutation of α, β, and γ. Satisfaction of these two conditions ensures that the resulting square is a semi-magic square; and such
Greek and Latin squares are said to be mutually orthogonal to each other. For a given order n, there are at most n - 1 squares in a set of mutually orthogonal
squares, not counting the variations due to permutation of the symbols. This upper bound is exact when n is a prime number.

In order to construct a magic square, we should also ensure that the diagonals sum to magic constant. For this, we have a third condition:

either all the letters should appear exactly once in both the diagonals; or in case of odd ordered squares, one of the diagonals should consist entirely of the
middle term, while the other diagonal should have all the letters exactly once.

The mutually orthogonal Greek and Latin squares that satisfy the first part of the third condition (that all letters appear in both the diagonals) are said to be
mutually orthogonal doubly diagonal Graeco-Latin squares.

Odd squares: For the 3×3 odd square, since α, β, and γ are in arithmetic progression, their sum is equal to the product of the square's order and the middle
term, i.e. α + β + γ = 3 β. Thus, the diagonal sums will be equal if we have βs in the main diagonal and α, β, γ in the skew diagonal. Similarly, for the Latin
square. The resulting Greek and Latin squares and their combination will be as below. The Latin square is just a 90 degree anti-clockwise rotation of the Greek
square (or equivalently, flipping about the vertical axis) with the corresponding letters interchanged. Substituting the values of the Greek and Latin letters will
give the 3×3 magic square.

β α γ

γ β α

α γ β

c a b

a b c

b c a

βc αa γb

γa βb αc

αb γc βa

6 1 8

7 5 3

2 9 4

For the odd squares, this method explains why the Siamese method (method of De la Loubere) and its variants work. This basic method can be used to construct
odd ordered magic squares of higher orders. To summarise:

For odd ordered squares, to construct Greek square, place the middle term along the main diagonal, and place the rest of the terms along the skew
diagonal. The remaining empty cells are filled by diagonal moves. The Latin square can be constructed by rotating or flipping the Greek square, and
replacing the corresponding alphabets. The magic square is obtained by adding the Greek and Latin squares.

A peculiarity of the construction method given above for the odd magic squares is that the middle number (n2 + 1)/2 will always appear at the center cell of the
magic square. Since there are (n - 1)! ways to arrange the skew diagonal terms, we can obtain (n - 1)! Greek squares this way; same with the Latin squares. Also,
since each Greek square can be paired with (n - 1)! Latin squares, and since for each of Greek square the middle term may be arbitrarily placed in the main
diagonal or the skew diagonal (and correspondingly along the skew diagonal or the main diagonal for the Latin squares), we can construct a total of 2 × (n - 1)! ×
(n - 1)! magic squares using this method. For n = 3, 5, and 7, this will give 8, 1152, and 1,036,800 different magic squares, respectively. Dividing by 8 to neglect
equivalent squares due to rotation and reflections, we obtain 1, 144, and 129,600 essentially different magic squares, respectively.

As another example, the construction of 5×5 magic square is given. Numbers are directly written in place of alphabets. The numbered squares are referred to as
primary square or root square if they are filled with primary numbers or root numbers, respectively. The numbers are placed about the skew diagonal in the
root square such that the middle column of the resulting root square has 0, 5, 10, 15, 20 (from bottom to top). The primary square is obtained by rotating the
root square counter-clockwise by 90 degrees, and replacing the numbers. The resulting square is an associative magic square, in which every pair of numbers
symmetrically opposite to the center sum up to the same value, 26. For e.g., 16+10, 3+23, 6+20, etc. In the finished square, 1 is placed at center cell of bottom
row, and successive numbers are placed via elongated knight's move (two cells right, two cells down), or equivalently, bishop's move (two cells diagonally down
right). When a collision occurs, the break move is to move one cell up. All the odd numbers occur inside the central diamond formed by 1, 5, 25 and 21, while the
even numbers are placed at the corners. The occurrence of the even numbers can be deduced by copying the square to the adjacent sides. The even numbers
from four adjacent squares will form a cross.

10 5

10 20

10

0 10

15 10

10 0 5

10 20 0

0 10

0 10

15 0 10

10 15 20 0 5

5 10 15 20 0

0 5 10 15 20

20 0 5 10 15

15 20 0 5 10

2 1 5 4 3

1 5 4 3 2

5 4 3 2 1

4 3 2 1 5

3 2 1 5 4

12 16 25 4 8

6 15 19 23 2

5 9 13 17 21

24 3 7 11 20 24

18 22 1 10 14 18 22

4 8 12 16

2 6

https://en.wikipedia.org/wiki/Cyclic_permutation
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A variation of the above example, where the skew diagonal sequence is taken in different order, is given below. The resulting magic square is the flipped version
of the famous Agrippa's Mars magic square. It is an associative magic square and is the same as that produced by Moschopoulos's method. Here the resulting
square starts with 1 placed in the cell which is to the right of the centre cell, and proceeds as De la Loubere's method, with downwards-right move. When a
collision occurs, the break move is to shift two cells to the right.

10 20

10 15

10

5 10

0 10

10 0 15 5 20

20 10 0 15 5

5 20 10 0 15

15 5 20 10 0

0 15 5 20 10

1 4 2 5 3

4 2 5 3 1

2 5 3 1 4

5 3 1 4 2

3 1 4 2 5

11 4 17 10 23

24 12 5 18 6

7 25 13 1 19

20 8 21 14 2

3 16 9 22 15

In the previous examples, for the Greek square, the second row can be obtained from the first row by circularly shifting it to the right by one cell. Similarly, the
third row is a circularly shifted version of the second row by one cell to the right; and so on. Likewise, the rows of the Latin square is circularly shifted to the left
by one cell. The row shifts for the Greek and Latin squares are in mutually opposite direction. It is possible to circularly shift the rows by more than one cell to
create the Greek and Latin square.

For odd ordered squares, whose order is not divisible by three, we can create the Greek squares by shifting a row by two places to the left or to the right to
form the next row. The Latin square is made by flipping the Greek square along the main diagonal and interchanging the corresponding letters. This gives us
a Latin square whose rows are created by shifting the row in the direction opposite to that of the Greek square. A Greek square and a Latin square should
be paired such that their row shifts are in mutually opposite direction. The magic square is obtained by adding the Greek and Latin squares. When the order
also happens to be a prime number, this method always creates pandiagonal magic square.

This essentially re-creates the knight's move. All the letters will appear in both the diagonals, ensuring correct diagonal sum. Since there are n! permutations of
the Greek letters by which we can create the first row of the Greek square, there are thus n! Greek squares that can be created by shifting the first row in one
direction. Likewise, there are n! such Latin squares created by shifting the first row in the opposite direction. Since a Greek square can be combined with any
Latin square with opposite row shifts, there are n! × n! such combinations. Lastly, since the Greek square can be created by shifting the rows either to the left or
to the right, there are a total of 2 × n! × n! magic squares that can be formed by this method. For n = 5 and 7, since they are prime numbers, this method creates
28,800 and 50,803,200 pandiagonal magic squares. Dividing by 8 to neglect equivalent squares due to rotation and reflections, we obtain 3,600 and 6,350,400
equivalent squares. Further dividing by n2 to neglect equivalent panmagic squares due to cyclic shifting of rows or columns, we obtain 144 and 129,600
essentially different panmagic squares. For order 5 squares, these are the only panmagic square there are. The condition that the square's order not be divisible
by 3 means that we cannot construct squares of orders 9, 15, 21, 27, and so on, by this method.

In the example below, the square has been constructed such that 1 is at the center cell. In the finished square, the numbers can be continuously enumerated by
the knight's move (two cells up, one cell right). When collision occurs, the break move is to move one cell up, one cell left. The resulting square is a pandiagonal
magic square. This square also has a further diabolical property that any five cells in quincunx pattern formed by any odd sub-square, including wrap around,
sum to the magic constant, 65. For e.g., 13+7+1+20+24, 23+1+9+15+17, 13+21+10+19+2 etc. Also the four corners of any 5×5 square and the central cell, as well
as the middle cells of each side together with the central cell, including wrap around, give the magic sum: 13+10+19+22+1 and 20+24+12+8+1. Lastly the four
rhomboids that form elongated crosses also give the magic sum: 23+1+9+24+8, 15+1+17+20+12, 14+1+18+13+19, 7+1+25+22+10.

10 15 20 0 5

0 5 10 15 20

15 20 0 5 10

5 10 15 20 0

20 0 5 10 15

3 1 4 2 5

4 2 5 3 1

5 3 1 4 2

1 4 2 5 3

2 5 3 1 4

13 16 24 2 10

4 7 15 18 21

20 23 1 9 12

6 14 17 25 3

22 5 8 11 19

We can also combine the Greek and Latin squares constructed by different methods. In the example below, the primary square is made using knight's move. We
have re-created the magic square obtained by De la Loubere's method. As before, we can form 8 × (n - 1)! × n! magic squares by this combination. For n = 5 and
7, this will create 23,040 and 29,030,400 magic squares. After dividing by 8 in order to neglect equivalent squares due to rotation and reflection, we get 2,880
and 3,628,800 squares.

15 20 0 5 10

20 0 5 10 15

0 5 10 15 20

5 10 15 20 0

10 15 20 0 5

2 4 1 3 5

3 5 2 4 1

4 1 3 5 2

5 2 4 1 3

1 3 5 2 4

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

For order 5 squares, these three methods give a complete census of the number of magic squares that can be constructed by the method of superposition.
Neglecting the rotation and reflections, the total number of magic squares of order 5 produced by the superposition method is 144 + 3,600 + 2,880 = 6,624.

https://en.wikipedia.org/wiki/Quincunx
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Even squares: We can also construct even ordered squares in this fashion. Since there is no middle term among the Greek and Latin alphabets for even
ordered squares, in addition to the first two constraint, for the diagonal sums to yield the magic constant, all the letters in the alphabet should appear in the
main diagonal and in the skew diagonal.

An example of a 4×4 square is given below. For the given diagonal and skew diagonal in the Greek square, the rest of the cells can be filled using the condition
that each letter appear only once in a row and a column.

α δ

δ α

γ β

β γ

α β γ δ

γ δ α β

δ γ β α

β α δ γ

a b c d

d c b a

b a d c

c d a b

αa βb γc δd

γd δc αb βa

δb γa βd αc

βc αd δa γb

1 6 11 16

12 15 2 5

14 9 8 3

7 4 13 10

Using these two Graeco-Latin squares, we can construct 2 × 4! × 4! = 1,152 magic squares. Dividing by 8 to eliminate equivalent squares due to rotation and
reflections, we get 144 essentially different magic squares of order 4. These are the only magic squares constructible by the Euler method, since there are only
two mutually orthogonal doubly diagonal Graeco-Latin squares of order 4.

Similarly, an 8×8 magic square can be constructed as below. Here the order of appearance of the numbers is not important; however the quadrants imitate the
layout pattern of the 4×4 Graeco-Latin squares.

0 8 16 24 32 40 48 56

24 16 8 0 56 48 40 32

48 56 32 40 16 24 0 8

40 32 56 48 8 0 24 16

56 48 40 32 24 16 8 0

32 40 48 56 0 8 16 24

8 0 24 16 40 32 56 48

16 24 0 8 48 56 32 40

1 2 3 4 5 6 7 8

3 4 1 2 7 8 5 6

5 6 7 8 1 2 3 4

7 8 5 6 3 4 1 2

4 3 2 1 8 7 6 5

2 1 4 3 6 5 8 7

8 7 6 5 4 3 2 1

6 5 8 7 2 1 4 3

1 10 19 28 37 46 55 64

27 20 9 2 63 56 45 38

53 62 39 48 17 26 3 12

47 40 61 54 11 4 25 18

60 51 42 33 32 23 14 5

34 41 52 59 6 13 24 31

16 7 30 21 44 35 58 49

22 29 8 15 50 57 36 43

Euler's method has given rise to the study of Graeco-Latin squares. Euler's method for constructing magic squares is valid for any order except 2 and 6.

Variations: Magic squares constructed from mutually orthogonal doubly diagonal Graeco-Latin squares are interesting in themselves since the magic property
emerges from the relative position of the alphabets in the square, and not due to any arithmetic property of the value assigned to them. This means that we can
assign any value to the alphabets of such squares and still obtain a magic square. This is the basis for constructing squares that display some information (e.g.
birthdays, years, etc.) in the square and for creating "reversible squares". For example, we can display the number π ≈ 3.141 592 at the bottom row of a 4×4
magic square using the Graeco-Latin square given above by assigning (α, β, γ, δ) = (10, 0, 90, 15) and (a, b, c, d) = (0, 2, 3, 4). We will obtain the following non-
normal magic square with the magic sum 124:

10 2 93 19

94 18 12 0

17 90 4 13

3 14 15 92

Narayana-De la Hire's method for odd square is the same as that of Euler's. However, for even squares, we drop the second requirement that each Greek and
Latin letter appear only once in a given row or column. This allows us to take advantage of the fact that the sum of an arithmetic progression with an even
number of terms is equal to the sum of two opposite symmetric terms multiplied by half the total number of terms. Thus, when constructing the Greek or Latin
squares,

for even ordered squares, a letter can appear n/2 times in a column but only once in a row, or vice versa.

As a running example, if we take a 4×4 square, where the Greek and Latin terms have the values (α, β, γ, δ) = (0, 4, 8, 12) and (a, b, c, d) = (1, 2, 3, 4),
respectively, then we have α + β + γ + δ = 2 (α + δ) = 2 (β + γ). Similarly, a + b + c + d = 2 (a + d) = 2 (b + c). This means that the complementary pair α and δ
(or β and γ) can appear twice in a column (or a row) and still give the desired magic sum. Thus, we can construct:

For even ordered squares, the Greek magic square is made by first placing the Greek alphabets along the main diagonal in some order. The skew diagonal
is then filled in the same order or by picking the terms that are complementary to the terms in the main diagonal. Finally, the remaining cells are filled column
wise. Given a column, we use the complementary terms in the diagonal cells intersected by that column, making sure that they appear only once in a given
row but n/2 times in the given column. The Latin square is obtained by flipping or rotating the Greek square and interchanging the corresponding alphabets.
The final magic square is obtained by adding the Greek and Latin squares.

Narayana-De la Hire's method for even orders

https://en.wikipedia.org/wiki/Graeco-Latin_square
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In the example given below, the main diagonal (from top left to bottom right) is filled with sequence ordered as α, β, γ, δ, while the skew diagonal (from bottom
left to top right) filled in the same order. The remaining cells are then filled column wise such that the complementary letters appears only once within a row,
but twice within a column. In the first column, since α appears on the 1st and 4th row, the remaining cells are filled with its complementary term δ. Similarly,
the empty cells in the 2nd column are filled with γ; in 3rd column β; and 4th column α. Each Greek letter appears only once along the rows, but twice along the
columns. As such, the row sums are α + β + γ + δ while the column sums are either 2 (α + δ) or 2 (β + γ). Likewise for the Latin square, which is obtained by
flipping the Greek square along the main diagonal and interchanging the corresponding letters.

α δ

β γ

β γ

α δ

α γ β δ

δ β γ α

δ β γ α

α γ β δ

a d d a

c b b c

b c c b

d a a d

αa γd βd δa

δc βb γb αc

δb βc γc αb

αd γa βa δd

1 12 8 13

15 6 10 3

14 7 11 2

4 9 5 16

The above example explains why the "criss-cross" method for doubly even magic square works. Another possible 4×4 magic square, which is also pan-diagonal
as well as most-perfect, is constructed below using the same rule. However, the diagonal sequence is chosen such that all four letters α, β, γ, δ appear inside the
central 2×2 sub-square. Remaining cells are filled column wise such that each letter appears only once within a row. In the 1st column, the empty cells need to
be filled with one of the letters selected from the complementary pair α and δ. Given the 1st column, the entry in the 2nd row can only be δ since α is already
there in the 2nd row; while, in the 3rd row the entry can only be α since δ is already present in the 3rd row. We proceed similarly until all cells are filled. The
Latin square given below has been obtained by flipping the Greek square along the main diagonal and replacing the Greek alphabets with corresponding Latin
alphabets.

α γ

γ α

β δ

δ β

α β δ γ

δ γ α β

α β δ γ

δ γ α β

a d a d

b c b c

d a d a

c b c b

αa βd δa γd

δb γc αb βc

αd βa δd γa

δc γb αc βb

1 8 13 12

14 11 2 7

4 5 16 9

15 10 3 6

We can use this approach to construct singly even magic squares as well. However, we have to be more careful in this case since the criteria of pairing the Greek
and Latin alphabets uniquely is not automatically satisfied. Violation of this condition leads to some missing numbers in the final square, while duplicating
others. Thus, here is an important proviso:

For singly even squares, in the Greek square, check the cells of the columns which is vertically paired to its complement. In such a case, the corresponding
cell of the Latin square must contain the same letter as its horizontally paired cell.

Below is a construction of a 6×6 magic square, where the numbers are directly given, rather than the alphabets. The second square is constructed by flipping the
first square along the main diagonal. Here in the first column of the root square the 3rd cell is paired with its complement in the 4th cells. Thus, in the primary
square, the numbers in the 1st and 6th cell of the 3rd row are same. Likewise, with other columns and rows. In this example the flipped version of the root
square satisfies this proviso.

0 24 18 12 6 30

30 6 12 18 24 0

0 24 12 18 6 30

30 24 12 18 6 0

30 6 18 12 24 0

0 6 18 12 24 30

1 6 1 6 6 1

5 2 5 5 2 2

4 3 3 3 4 4

3 4 4 4 3 3

2 5 2 2 5 5

6 1 6 1 1 6

1 30 19 18 12 31

35 8 17 23 26 2

4 27 15 21 10 34

33 28 16 22 9 3

32 11 20 14 29 5

6 7 24 13 25 36

As another example of a 6×6 magic square constructed this way is given below. Here the diagonal entries are arranged differently. The primary square is
constructed by flipping the root square about the main diagonal. In the second square the proviso for singly even square is not satisfied, leading to a non-normal
magic square (third square) where the numbers 3, 13, 24, and 34 are duplicated while missing the numbers 4, 18, 19, and 33.

6 30 12 18 0 24

24 0 12 18 30 6

24 0 18 12 30 6

6 30 18 12 0 24

24 0 18 12 30 6

6 30 12 18 0 24

2 5 5 2 5 2

6 1 1 6 1 6

3 3 4 4 4 3

4 4 3 3 3 4

1 6 6 1 6 1

5 2 2 5 2 5

8 35 17 20 5 26

30 1 13 24 31 12

27 3 22 16 34 9

10 34 21 15 3 28

25 6 24 13 36 7

11 32 14 23 2 29
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The last condition is a bit arbitrary and may not always need to be invoked, as in this example, where in the root square each cell is vertically paired with its
complement:

6 30 12 24 18 0

6 0 18 24 12 30

24 0 12 6 18 30

6 30 18 24 12 0

24 30 12 6 18 0

24 0 18 6 12 30

2 2 5 2 5 5

6 1 1 6 6 1

3 4 3 4 3 4

5 5 2 5 2 2

4 3 4 3 4 3

1 6 6 1 1 6

8 32 17 26 23 5

12 1 19 30 18 31

27 4 15 10 21 34

11 35 20 29 14 2

28 33 16 9 22 3

25 6 24 7 13 36

As one more example, we have generated an 8×8 magic square. Unlike the criss-cross pattern of the earlier section for evenly even square, here we have a
checkered pattern for the altered and unaltered cells. Also, in each quadrant the odd and even numbers appear in alternating columns.

0 48 16 32 24 40 8 56

56 8 40 24 32 16 48 0

0 48 16 32 24 40 8 56

56 8 40 24 32 16 48 0

56 8 40 24 32 16 48 0

0 48 16 32 24 40 8 56

56 8 40 24 32 16 48 0

0 48 16 32 24 40 8 56

1 8 1 8 8 1 8 1

7 2 7 2 2 7 2 7

3 6 3 6 6 3 6 3

5 4 5 4 4 5 4 5

4 5 4 5 5 4 5 4

6 3 6 3 3 6 3 6

2 7 2 7 7 2 7 2

8 1 8 1 1 8 1 8

1 56 17 40 32 41 16 57

63 10 47 26 34 23 50 7

3 54 19 38 30 43 14 59

61 12 45 28 36 21 42 5

60 13 44 29 37 20 53 4

6 51 22 35 27 46 11 62

58 15 42 31 39 18 55 2

8 47 24 33 25 48 9 64

Variations: A number of variations of the basic idea are possible: a complementary pair can appear n/2 times or less in a column. That is, a column of a
Greek square can be constructed using more than one complementary pair. This method allows us to imbue the magic square with far richer properties. The idea
can also be extended to the diagonals too. An example of an 8×8 magic square is given below. In the finished square each of four quadrants are pan-magic
squares as well, each quadrant with same magic constant 130.

0 48 56 8 16 32 40 24

56 8 0 48 40 24 16 32

0 48 56 8 16 32 40 24

56 8 0 48 40 24 16 32

48 0 8 56 32 16 24 40

8 56 48 0 24 40 32 16

48 0 8 56 32 16 24 40

8 56 48 0 24 40 32 16

1 8 1 8 7 2 7 2

7 2 7 2 1 8 1 8

8 1 8 1 2 7 2 7

2 7 2 7 8 1 8 1

3 6 3 6 5 4 5 4

5 4 5 4 3 6 3 6

6 3 6 3 4 5 4 5

4 5 4 5 6 3 6 3

1 56 57 16 23 34 47 26

63 10 7 50 41 32 17 40

8 49 64 9 18 39 42 31

58 15 2 55 48 25 24 33

51 6 11 62 37 20 29 44

13 60 53 4 27 46 35 22

54 3 14 59 36 21 28 45

12 61 52 5 30 43 38 19

In this method, the objective is to wrap a border around a smaller magic square which serves as a core. Consider the 3×3 square for example. Subtracting the
middle number 5 from each number 1, 2, ..., 9, we obtain 0, ± 1, ± 2, ± 3, and ± 4, which we will, for lack of better words, following S. Harry White, refer to as
bone numbers. The magic constant of a magic square, which we will refer to as the skeleton square, made by these bone numbers will be zero since adding all the
rows of a magic square will give nM = Σ k = 0; thus M = 0.

It is not difficult to argue that the middle number should be placed at the center cell: let x be the number placed in the middle cell, then the sum of the middle
column, middle row, and the two diagonals give Σ k + 3 x = 4 M. Since Σ k = 3 M, we have x = M / 3. Here M = 0, so x = 0.

Putting the middle number 0 in the center cell, we want to construct a border such that the resulting square is magic. Let the border be given by:

u a v

b* 0 b

v* a* u*

Method of borders

Bordering method for order 3
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Since the sum of each row, column, and diagonals must be a constant (which is zero), we have

a + a* = 0,
b + b* = 0,
u + u* = 0,
v + v* = 0.

Now, if we have chosen a, b, u, and v, then we have a* = - a, b* = - b, u* = - u, and v* = - v. This means that if we assign a given number to a variable, say a = 1,
then its complement will be assigned to a*, i.e. a* = - 1. Thus out of eight unknown variables, it is sufficient to specify the value of only four variables. We will
consider a, b, u, and v as independent variables, while a*, b*, u*, and v* as dependent variables. This allows us to consider a bone number ± x as a single
number regardless of sign because (1) its assignment to a given variable, say a, will automatically imply that the same number of opposite sign will be shared
with its complement a*, and (2) two independent variables, say a and b, cannot be assigned the same bone number. But how should we choose a, b, u, and v?
We have the sum of the top row and the sum of the right column as

u + a + v = 0,
v + b + u* = 0.

Since 0 is an even number, there are only two ways that the sum of three integers will yield an even number: 1) if all three were even, or 2) if two were odd and
one was even. Since in our choice of numbers we only have two even non-zero number (± 2 and ± 4), the first statement is false. Hence, it must be the case that
the second statement is true: that two of the numbers are odd and one even.

The only way that both the above two equations can satisfy this parity condition simultaneously, and still be consistent with the set of numbers we have, is when
u and v are odd. For on the contrary, if we had assumed u and a to be odd and v to be even in the first equation, then u* = - u will be odd in the second equation,
making b odd as well, in order to satisfy the parity condition. But this requires three odd numbers (u, a, and b), contradicting the fact that we only have two odd
numbers (± 1 and ± 3) which we can use. This proves that the odd bone numbers occupy the corners cells. When converted to normal numbers by adding 5, this
implies that the corners of a 3×3 magic square are all occupied by even numbers.

Thus, taking u = 1 and v = 3, we have a = - 4 and b = - 2. Hence, the finished skeleton square will be as in the left. Adding 5 to each number, we get the finished
magic square.

1 -4 3

2 0 -2

-3 4 -1

6 1 8

7 5 3

2 9 4

Similar argument can be used to construct larger squares. Since there does not exist a 2×2 magic square around which we can wrap a border to construct a 4×4
magic square, the next smallest order for which we can construct bordered square is the order 5.

Consider the fifth-order square. For this, we have a 3×3 magic core, around which we will wrap a magic border. The bone numbers to be used will be ± 5, ± 6, ±
7, ± 8, ± 9, ± 10, ± 11, and ± 12. Disregarding the signs, we have 8 bone numbers, 4 of which are even and 4 of which are odd. In general, for a square of any
order n, there will be 4(n - 1) border cells, which are to be filled using 2(n - 1) bone numbers. Let the magic border be given as

u a b c v

d* d

e* e

f* f

v* a* b* c* u*

As before, we should

place a bone number and its complement opposite to each other, so that the magic sum will be zero.

It is sufficient to determine the numbers u, v, a, b, c, d, e, f to describe the magic border. As before, we have the two constraint equations for the top row and
right column:

u + a + b + c + v = 0
v + d + e + f + u* = 0.

Multiple solutions are possible. The standard procedure is to

first try to determine the corner cells, after which we will try to determine the rest of the border.

There are 28 ways of choosing two numbers from the set of 8 bone numbers for the corner cells u and v. However, not all pairs are admissible. Among the 28
pairs, 16 pairs are made of an even and an odd number, 6 pairs have both as even numbers, while 6 pairs have them both as odd numbers.

Bordering method for order 5
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We can prove that the corner cells u and v cannot have an even and an odd number. This is because if this were so, then the sums u + v and v + u* will be odd,
and since 0 is an even number, the sums a + b + c and d + e + f should be odd as well. The only way that the sum of three integers will result in an odd number is
when 1) two of them are even and one is odd, or 2) when all three are odd. Since the corner cells are assumed to be odd and even, neither of these two statements
are compatible with the fact that we only have 3 even and 3 odd bone numbers at our disposal. This proves that u and v cannot have different parity. This
eliminates 16 possibilities.

Using similar type reasoning we can also draw some conclusions about the sets {a, b, c} and {d, e, f}. If u and v are both even, then both the sets should have two
odd numbers and one even number. If u and v are both odd, then one of the sets should have three even numbers while the other set should have one even
number and two odd numbers.

As a running example, consider the case when both u and v are even. The 6 possible pairs are: (6, 8), (6, 10), (6, 12), (8, 10), (8, 12), and (10, 12). Since the sums
u + v and v + u* are even, the sums a + b + c and d + e + f should be even as well. The only way that the sum of three integers will result in an even number is
when 1) two of them are odd and one is even, or 2) when all three are even. The fact that the two corner cells are even means that we have only 2 even numbers
at our disposal. Thus, the second statement is not compatible with this fact. Hence, it must be the case that the first statement is true: two of the three numbers
should be odd, while one be even.

Now let a, b, d, e be odd numbers while c and f be even numbers. Given the odd bone numbers at our disposal: ± 5, ± 7, ± 9, and ± 11, their differences range
from D = { ± 2, ± 4, ± 6} while their sums range from S = {± 12, ± 14, ± 16, ± 18, ± 20}. It is also useful to have a table of their sum and differences for later
reference. Now, given the corner cells (u, v), we can check its admissibility by checking if the sums u + v + c and v + u* + f fall within the set D or S. The
admissibility of the corner numbers is a necessary but not a sufficient condition for the solution to exist.

For example, if we consider the pair (u, v) = (8, 12), then u + v = 20 and v + u* = 6; and we will have ± 6 and ± 10 even bone numbers at our disposal. Taking c =
± 6, we have the sum u + v + c to be 26 and 14, depending on the sign of ± 6 taken, both of which do not fall within the sets D or S. Likewise, taking c = ± 10, we
have the sum u + v + c to be 30 and 10, both of which again do not fall within the sets D or S. Thus, the pair (8, 12) is not admissible. By similar process of
reasoning, we can also rule out the pair (6, 12).

As another example, if we consider the pair (u, v) = (10, 12), then u + v = 22 and v + u* = 2; and we will have ± 6 and ± 8 even bone numbers at our disposal.
Taking c = ± 6, we have the sum u + v + c to be 28 and 16. While 28 does not fall within the sets D or S, 16 falls in set S. By inspection, we find that if (a, b) = (-7,
-9), then a + b = -16; and it will satisfy the first constraint equation. Also, taking f = ± 8, we have the sum v + u* + f to be 10 and -6. While 10 does not fall within
the sets D or S, -6 falls in set D. Since -7 and -9 have already been assigned to a and b, clearly (d, e) = (-5, 11) so that d + e = 6; and it will satisfy the second
constraint equation.

Likewise, taking c = ± 8, we have the sum u + v + c to be 30 and 14. While 30 does not fall within the sets D or S, 14 falls in set S. By inspection, we find that if (a,
b) = (-5, -9), then a + b = -14. Also, taking f = ± 6, we have the sum v + u* + f to be 8 and -4. While 8 does not fall within the sets D or S, -4 falls in set D. Clearly,
(d, e) = (-7, 11) so that d + e = 4, and the second constraint equation will be satisfied.

Hence the corner pair (u, v) = (10, 12) is admissible; and it admits two solutions: (a, b, c, d, e, f) = (-7, -9, -6, -5, 11, -8) and (a, b, c, d, e, f) = ( -5, -9, -8, -7, 11, -6).
The finished skeleton squares are given below. The magic square is obtained by adding 13 to each cells.

10 -7 -9 -6 12

5 -5

-11 11

8 -8

-12 7 9 6 -10

23 6 4 7 25

18 8

2 24

21 5

1 20 22 19 3

10 -5 -9 -8 12

7 -7

-11 11

6 -6

-12 5 9 8 -10

23 8 4 5 25

20 6

2 24

19 7

1 18 22 21 3

Using similar process of reasoning, we can construct the following table for the values of u, v, a, b, c, d, e, f expressed as bone numbers as given below. There are
only 6 possible choices for the corner cells, which leads to 10 possible border solutions.

u, v a, b, c d, e, f

12, 10 -6, -7, -9 -11, 5, 8

12, 10 -5, -8, -9 -11, 6, 7

11, 5 6, -10, -12 -9, 7, 8

10, 6 5, -9, -12 -11, 7, 8

10, 6 7, -11, -12 -9, 5, 8

9, 7 5, -10, -11 -12, 6, 8

9, 7 6, -10, -12 -11, 5, 8

8, 6 7, -10, -11 -12, 5, 9

8, 6 9, -11, -12 -10, 5, 7

7, 5 9, -10, -11 -12, 6, 8

Given this group of 10 borders, we can construct 10×8×(3!)2 = 2880 essentially different bordered magic squares. Here the bone numbers ± 5, ..., ± 12 were
consecutive. More bordered squares can be constructed if the numbers are not consecutive. If non-consecutive bone numbers were also used, then there are a
total of 605 magic borders. Thus, the total number of order 5 essentially different bordered magic squares (with consecutive and non-consecutive numbers) is
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174,240.[71][72] See history.[73] The number of fifth-order magic squares constructible via the bordering method is about 26 times larger than via the
superposition method.

Exhaustive enumeration of all the borders of a magic square of a given order, as done previously, is very tedious. As such a structured solution is often desirable,
which allows us to construct a border for a square of any order. Below we give three algorithms for constructing border for odd, doubly even, and singly even
squares. These continuous enumeration algorithms were discovered in 10th century by Arab scholars; and their earliest surviving exposition comes from the two
treatises by al-Buzjani and al-Antaki, although they themselves were not the discoverers.[24] Since then many more such algorithms have been discovered.

Odd ordered squares: The following is the algorithm given by al-Buzjani to construct a border for odd squares. A peculiarity of this method is that for order n
square, the two adjacent corners are numbers n - 1 and n + 1.

Starting from the cell above the lower left corner, we put the numbers alternately in left column and bottom row until we arrive at the middle cell. The next
number is written in the middle cell of the bottom row just reached, after which we fill the cell in the upper left corner, then the middle cell of the right column,
then the upper right corner. After this, starting from the cell above middle cell of the right column already filled, we resume the alternate placement of the
numbers in the right column and the top row. Once half of the border cells are filled, the other half are filled by numbers complementary to opposite cells. The
subsequent inner borders is filled in the same manner, until the square of order 3 is filled.[24]

Below is an example for 9th-order square.

8 80 78 76 75 12 14 16 10

67 22 64 62 61 26 28 24 15

69 55 32 52 51 36 34 27 13

71 57 47 38 45 40 35 25 11

73 59 49 43 41 39 33 23 9

5 19 29 42 37 44 53 63 77

3 17 48 30 31 46 50 65 79

1 58 18 20 21 56 54 60 81

72 2 4 6 7 70 68 66 74

Doubly even order: The following is the method given by al-Antaki. Consider an empty border of order n = 4k with k ≥ 3. The peculiarity of this algorithm is
that the adjacent corner cells are occupied by numbers n and n - 1.

Starting at the upper left corner cell, we put the successive numbers by groups of four, the first one next to the corner, the second and the third on the bottom,
and the fourth at the top, and so on until there remains in the top row (excluding the corners) six empty cells. We then write the next two numbers above and
the next four below. We then fill the upper corners, first left then right. We place the next number below the upper right corner in the right column, the next
number on the other side in the left column. We then resume placing groups of four consecutive numbers in the two columns as before. Once half of the border
cells are filled, the other half are filled by numbers complementary to opposite cells.[24]

The example below gives the border for order 16 square.

Continuous enumeration methods
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15 1 255 254 4 5 251 250 8 9 10 246 245 244 243 16

240 17

18 239

19 238

237 20

236 21

22 235

23 234

233 24

232 25

26 231

27 230

229 28

228 29

30 227

241 256 2 3 253 252 6 7 249 248 247 11 12 13 14 242

For order 8 square, we just begin directly with the six cells.

7 1 2 62 61 60 59 8

56 9

10 55

11 54

53 12

52 13

14 51

57 64 63 3 4 5 6 58

Singly even order: For singly even order, we have the algorithm given by al-Antaki. Here the corner cells are occupied by n and n - 1. Below is an example of
10th-order square.

Start by placing 1 at the bottom row next to the left corner cell, then place 2 in the top row. After this, place 3 at the bottom row and turn around the border in
anti-clockwise direction placing the next numbers, until n - 2 is reached on the right column. The next two numbers are placed in the upper corners (n - 1 in
upper left corner and n in upper right corner). Then, the next two numbers are placed on the left column, then we resume the cyclic placement of the numbers
until half of all the border cells are filled. Once half of the border cells are filled, the other half are filled by numbers complementary to opposite cells.[24]

9 100 2 98 5 94 88 15 84 10

83 18

16 85

87 14

12 89

11 90

93 8

6 95

97 4

91 1 99 3 96 7 13 86 17 92

Method of composition

For squares of order m × n where m, n > 2
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This is a method reminiscent of the Kronecker product of two matrices, that builds an nm × nm magic square from an n × n magic square and an m × m magic
square.[74] The "product" of two magic squares creates a magic square of higher order than the two multiplicands. Let the two magic squares be of orders m and
n. The final square will be of order m × n. Divide the square of order m × n into m × m sub-squares, such that there are a total of n2 such sub-squares. In the
square of order n, reduce by 1 the value of all the numbers. Multiply these reduced values by m2, and place the results in the corresponding sub-squares of the m
× n whole square. The squares of order m are added n2 times to the sub-squares of the final square. The peculiarity of this construction method is that each
magic subsquare will have different magic sums. The square made of such magic sums from each magic subsquare will again be a magic square. The smallest
composite magic square of order 9, composed of two order 3 squares is given below.

Order 3

8 1 6

3 5 7

4 9 2

Order 3×3

63 63 63 0 0 0 45 45 45

63 63 63 0 0 0 45 45 45

63 63 63 0 0 0 45 45 45

18 18 18 36 36 36 54 54 54

18 18 18 36 36 36 54 54 54

18 18 18 36 36 36 54 54 54

27 27 27 72 72 72 9 9 9

27 27 27 72 72 72 9 9 9

27 27 27 72 72 72 9 9 9

Order 3×3

71 64 69 8 1 6 53 46 51

66 68 70 3 5 7 48 50 52

67 72 65 4 9 2 49 54 47

26 19 24 44 37 42 62 55 60

21 23 25 39 41 43 57 59 61

22 27 20 40 45 38 58 63 56

35 28 33 80 73 78 17 10 15

30 32 34 75 77 79 12 14 16

31 36 29 76 81 74 13 18 11

Since each of the 3×3 sub-squares can be independently rotated and reflected into 8 different squares, from this single 9×9 composite square we can derive 89 =
134,217,728 essentially different 9×9 composite squares. Plenty more composite magic squares can also be derived if we select non-consecutive numbers in the
magic sub-squares, like in Yang Hui's version of the 9×9 composite magic square. The next smallest composite magic squares of order 12, composed of magic
squares of order 3 and 4 are given below.

Order 3

2 9 4

7 5 3

6 1 8

Order 4

1 14 11 8

12 7 2 13

6 9 16 3

15 4 5 10

Order 3 × 4

2 9 4 119 126 121 92 99 94 65 72 67

7 5 3 124 122 120 97 95 93 70 68 66

6 1 8 123 118 125 96 91 98 69 64 71

101 108 103 56 63 58 11 18 13 110 117 112

106 104 102 61 59 57 16 14 12 115 113 111

105 100 107 60 55 62 15 10 17 114 109 116

47 54 49 74 81 76 137 144 139 20 27 22

52 50 48 79 77 75 142 140 138 25 23 21

51 46 53 78 73 80 141 136 143 24 19 26

128 135 130 29 36 31 38 45 40 83 90 85

133 131 129 34 32 30 43 41 39 88 86 84

132 127 134 33 28 35 42 37 44 87 82 89

Order 4 × 3

17 30 27 24 129 142 139 136 49 62 59

28 23 18 29 140 135 130 141 60 55 50

22 25 32 19 134 137 144 131 54 57 64

31 20 21 26 143 132 133 138 63 52 53

97 110 107 104 65 78 75 72 33 46 43

108 103 98 109 76 71 66 77 44 39 34

102 105 112 99 70 73 80 67 38 41 48

111 100 101 106 79 68 69 74 47 36 37

81 94 91 88 1 14 11 8 113 126 123

92 87 82 93 12 7 2 13 124 119 114

86 89 96 83 6 9 16 3 118 121 128

95 84 85 90 15 4 5 10 127 116 117

For the base squares, there is only one essentially different 3rd order square, while there 880 essentially different 4th-order squares that we can choose from.
Each pairing can produce two different composite squares. Since each magic sub-squares in each composite square can be expressed in 8 different forms due to
rotations and reflections, there can be 1×880×89 + 880×1×816 ≈ 2.476×1017 essentially different 12×12 composite magic squares created this way, with
consecutive numbers in each sub-square. In general, if there are cm and cn essentially different magic squares of order m and n, then we can form cm × cn × (
8m2

 + 8n2
) composite squares of order mn, provided m ≠ n. If m = n, then we can form (cm)2 × 8m2

 composite squares of order m2.

When the squares are of doubly even order, we can construct a composite magic square in a manner more elegant than the above process, in the sense that every
magic subsquare will have the same magic constant. Let n be the order of the main square and m the order of the equal subsquares. The subsquares are filled
one by one, in any order, with a continuous sequence of m2/2 smaller numbers (i.e. numbers less than or equal to n2/2) together with their complements to n2 +
1. Each subsquare as a whole will yield the same magic sum. The advantage of this type of composite square is that each subsquare is filled in the same way and

For squares of doubly even order

https://en.wikipedia.org/wiki/Kronecker_product
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their arrangement is arbitrary. Thus, the knowledge of a single construction of even order will suffice to fill the whole square. Furthermore, if the subsquares are
filled in the natural sequence, then the resulting square will be pandiagonal. The magic sum of the subsquares is related to the magic sum of the whole square by

 where n = km.[24]

In the examples below, we have divided the order 12 square into nine subsquares of order 4 filled each with eight smaller numbers and, in the corresponding
bishop's cells (two cells diagonally across, including wrap arounds, in the 4×4 subsquare), their complements to n2 + 1 = 145. Each subsquare is pandiagonal
with magic constant 290; while the whole square on the left is also pandiagonal with magic constant 870.

1 142 139 8 9 134 131 16 17 126 123 24

140 7 2 141 132 15 10 133 124 23 18 125

6 137 144 3 14 129 136 11 22 121 128 19

143 4 5 138 135 12 13 130 127 20 21 122

25 118 115 32 33 110 107 40 41 102 99 48

116 31 26 117 108 39 34 109 100 47 42 101

30 113 120 27 38 105 112 35 46 97 104 43

119 28 29 114 111 36 37 106 103 44 45 98

49 94 91 56 57 86 83 64 65 78 75 72

92 55 50 93 84 63 58 85 76 71 66 77

54 89 96 51 62 81 88 59 70 73 80 67

95 52 53 90 87 60 61 82 79 68 69 74

69 74 79 68 29 114 119 28 61 82 87 60

75 72 65 78 115 32 25 118 83 64 57 86

66 77 76 71 26 117 116 31 58 85 84 63

80 67 70 73 120 27 30 113 88 59 62 81

21 122 127 20 53 90 95 52 13 130 135 12

123 24 17 126 91 56 49 94 131 16 9 134

18 125 124 23 50 93 92 55 10 133 132 15

128 19 22 121 96 51 54 89 136 11 14 129

45 98 103 44 5 138 143 4 37 106 111 36

99 48 41 102 139 8 1 142 107 40 33 110

42 101 100 47 2 141 140 7 34 109 108 39

104 43 46 97 144 3 6 137 112 35 38 105

In another example below, we have divided the order 12 square into four order 6 squares. Each of the order 6 squares are filled with eighteen small numbers and
their complements using bordering technique given by al-Antaki. If we remove the shaded borders of the order 6 subsquares and form an order 8 square, then
this order 8 square is again a magic square. In its full generality, we can take any m2/2 smaller numbers together with their complements to n2 + 1 to fill the
subsquares, not necessarily in continuous sequence.

60 82 88 56 90 59 24 118 124 20 126 23

64 69 74 79 68 81 28 33 110 115 32 117

83 75 72 65 78 62 119 111 36 29 114 26

84 66 77 76 71 61 120 30 113 112 35 25

58 80 67 70 73 87 22 116 31 34 109 123

86 63 57 89 55 85 122 27 21 125 19 121

6 136 142 2 144 5 42 100 106 38 108 41

10 15 128 133 14 135 46 51 92 97 50 99

137 129 18 11 132 8 101 93 54 47 96 44

138 12 131 130 17 7 102 48 95 94 53 43

4 134 13 16 127 141 40 98 49 52 91 105

140 9 3 143 1 139 104 45 39 107 37 103

In this method a magic square is "multiplied" with a medjig square to create a larger magic square. The namesake of this method derives from mathematical
game called medjig created by Willem Barink in 2006, although the method itself is much older. An early instance of a magic square constructed using this
method occurs in Yang Hui's text for order 6 magic square. The LUX method to construct singly even magic squares is a special case of the medjig method,
where only 3 out of 24 patterns are used to construct the medjig square.

The pieces of the medjig puzzle are 2×2 squares on which the numbers 0, 1, 2 and 3 are placed. There are three basic patterns by which the numbers 0, 1, 2 and 3
can be placed in a 2×2 square, where 0 is at the top left corner:

Medjig-method for squares of even order 2n, where n > 2

https://en.wikipedia.org/wiki/LUX_method
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0 1

2 3

0 1

3 2

0 2

3 1

Each pattern can be reflected and rotated to obtain 8 equivalent patterns, giving us a total of 3×8 = 24 patterns. The aim of the puzzle is to take n2 medjig pieces
and arrange them in an n × n medjig square in such a way that each row, column, along with the two long diagonals, formed by the medjig square sums to 3n,
the magic constant of the medjig square. An n × n medjig square can create a 2n × 2n magic square where n > 2.

Given an n×n medjig square and an n×n magic square base, a magic square of order 2n×2n can be constructed as follows:

Each cell of an n×n magic square is associated with a corresponding 2×2 subsquare of the medjig square
Fill each 2×2 subsquares of the medjig square with the four numbers from 1 to 4n2 that equal the original number modulo n2, i.e. x+n2y where x is the
corresponding number from the magic square and y is a number from 0 to 3 in the 2×2 subsquares.

Assuming that we have an initial magic square base, the challenge lies in constructing a medjig square. For reference, the sums of each medjig piece along the
rows, columns and diagonals, denoted in italics, are:

1 0 1

5 2 3

3 2 4 3

1 0 1

5 3 2

4 3 3 2

2 0 2

4 3 1

5 3 3 1

Doubly even squares: The smallest even ordered medjig square is of order 2 with magic constant 6. While it is possible to construct a 2×2 medjig square, we
cannot construct a 4×4 magic square from it since 2×2 magic squares required to "multiply" it does not exist. Nevertheless, it is worth constructing these 2×2
medjig squares. The magic constant 6 can be partitioned into two parts in three ways as 6 = 5 + 1 = 4 + 2 = 3 + 3. There exist 96 such 2×2 medjig squares. In the
examples below, each 2×2 medjig square is made by combining different orientations of a single medjig piece.

Medjig 2×2

0 1 3 2

2 3 1 0

3 2 0 1

1 0 2 3

Medjig 2×2

0 1 2 3

3 2 1 0

1 0 3 2

2 3 0 1

Medjig 2×2

0 2 3 1

3 1 0 2

0 2 3 1

3 1 0 2

We can use the 2×2 medjig squares to construct larger even ordered medjig squares. One possible approach is to simply combine the 2×2 medjig squares
together. Another possibility is to wrap a smaller medjig square core with a medjig border. The pieces of a 2×2 medjig square can form the corner pieces of the
border. Yet another possibility is to append a row and a column to an odd ordered medjig square. An example of an 8×8 magic square is constructed below by
combining four copies of the left most 2×2 medjig square given above:

Order 4

1 14 4 15

8 11 5 10

13 2 16 3

12 7 9 6

Medjig 4 × 4

0 1 3 2 0 1 3 2

2 3 1 0 2 3 1 0

3 2 0 1 3 2 0 1

1 0 2 3 1 0 2 3

0 1 3 2 0 1 3 2

2 3 1 0 2 3 1 0

3 2 0 1 3 2 0 1

1 0 2 3 1 0 2 3

Order 8

1 17 62 46 4 20 63 47

33 49 30 14 36 52 31 15

56 40 11 27 53 37 10 26

24 8 43 59 21 5 42 58

13 29 50 34 16 32 51 35

45 61 18 2 48 64 19 3

60 44 7 23 57 41 6 22

28 12 39 55 25 9 38 54

The next example is constructed by bordering a 2×2 medjig square core.
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Order 4

1 14 4 15

8 11 5 10

13 2 16 3

12 7 9 6

Medjig 4 × 4

0 1 0 1 2 3 3 2

2 3 3 2 1 0 1 0

0 3 0 2 3 1 0 3

1 2 3 1 0 2 1 2

2 1 0 2 3 1 2 1

3 0 3 1 0 2 3 0

3 2 0 1 2 3 0 1

1 0 3 2 1 0 2 3

Order 8

1 17 14 30 36 52 63 47

33 49 62 46 20 4 31 15

8 56 11 43 53 21 10 58

24 40 59 27 5 37 26 42

45 29 2 34 64 32 35 19

61 13 50 18 16 48 51 3

60 44 7 23 41 57 6 22

28 12 55 39 25 9 38 54

Singly even squares: Medjig square of order 1 does not exist. As such, the smallest odd ordered medjig square is of order 3, with magic constant 9. There are
only 7 ways of partitioning the integer 9, our magic constant, into three parts. If these three parts correspond to three of the medjig pieces in a row, column or
diagonal, then the relevant partitions for us are:

9 = 1 + 3 + 5 = 1 + 4 + 4 = 2 + 3 + 4 = 2 + 2 + 5 = 3 + 3 + 3.

A 3×3 medjig square can be constructed with some trial-and-error, as in the left most square below. Another approach is to add a row and a column to a 2×2
medjig square. In the middle square below, a left column and bottom row has been added, creating an L-shaped medjig border, to a 2×2 medjig square given
previously. The right most square below is essentially same as the middle square, except that the row and column has been added in the middle to form a cross
while the pieces of 2×2 medjig square are placed at the corners.

Medjig 3 × 3

2 3 0 2 0 2

1 0 3 1 3 1

3 1 1 2 2 0

0 2 0 3 3 1

3 2 2 0 0 2

0 1 3 1 1 3

Medjig 3 × 3

0 3 0 1 3 2

2 1 2 3 1 0

3 0 3 2 0 1

2 1 1 0 2 3

0 1 3 1 3 1

2 3 0 2 0 2

Medjig 3 × 3

0 1 0 3 3 2

2 3 2 1 1 0

3 1 0 1 3 1

0 2 2 3 0 2

3 2 3 0 0 1

1 0 2 1 2 3

Once a 3×3 medjig square has been constructed, it can be converted into a 6×6 magic square. For example, using the left most 3×3 medjig square given above:

Order 3

8 1 6

3 5 7

4 9 2

Medjig 3 × 3

2 3 0 2 0 2

1 0 3 1 3 1

3 1 1 2 2 0

0 2 0 3 3 1

3 2 2 0 0 2

0 1 3 1 1 3

Order 6

26 35 1 19 6 24

17 8 28 10 33 15

30 12 14 23 25 7

3 21 5 32 34 16

31 22 27 9 2 20

4 13 36 18 11 29

There are 1,740,800 such 3×3 medjig squares.[75] An easy approach to construct higher order odd medjig square is by wrapping a smaller odd ordered medjig
square with a medjig border, just as with even ordered medjig squares. Another approach is to append a row and a column to an even ordered medjig square.
Approaches such as the LUX method can also be used. In the example below, a 5×5 medjig square is created by wrapping a medjig border around a 3×3 medjig
square given previously:
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Order 5

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

Medjig 5 × 5

0 1 3 1 0 1 3 1 3 2

2 3 0 2 2 3 0 2 1 0

3 0 2 3 0 2 0 2 1 2

1 2 1 0 3 1 3 1 3 0

0 2 3 1 1 2 2 0 1 3

1 3 0 2 0 3 3 1 0 2

3 0 3 2 2 0 0 2 1 2

1 2 0 1 3 1 1 3 3 0

3 2 1 3 1 0 1 3 0 1

1 0 2 0 3 2 2 0 2 3

Order 10

17 42 99 49 1 26 83 33 90 65

67 92 24 74 51 76 8 58 40 15

98 23 55 80 7 57 14 64 41 66

48 73 30 5 82 32 89 39 91 16

4 54 81 31 38 63 70 20 47 97

29 79 6 56 13 88 95 45 22 72

85 10 87 62 69 19 21 71 28 53

35 60 12 37 94 44 46 96 78 3

86 61 43 93 100 25 27 77 9 34

36 11 68 18 95 75 52 2 59 84

Solving partially completed magic squares is a popular mathematical pastime. The techniques needed are similar to those used in Sudoku or KenKen puzzles,
and involve deducing the values of unfilled squares using logic and permutation group theory (Sudoku grids are not magic squares but are based on a related
idea called Graeco-Latin squares).[64]

Certain extra restrictions can be imposed on magic squares.

If raising each number to the nth power yields another magic square, the result is a bimagic (n = 2), a trimagic (n = 3), or, in general, a multimagic square.

A magic square in which the number of letters in the name of each number in the square generates another magic square is called an alphamagic square.

There are magic squares consisting entirely of primes. Rudolf Ondrejka (1928–2001) discovered the following 3×3 magic square of primes, in this case nine
Chen primes:

17 89 71

113 59 5

47 29 101

The Green–Tao theorem implies that there are arbitrarily large magic squares consisting of primes.

The following "reversible magic square" has a magic constant of 264 both upside down and right way up:[76]

96 11 89 68

88 69 91 16

61 86 18 99

19 98 66 81

When the extra constraint is to display some date, especially a birth date, then such magic squares are called birthday magic square. An early instance of such
birthday magic square was created by Srinivasa Ramanujan. He created a 4×4 square in which he entered his date of birth in D–M–C-Y format in the top row
and the magic happened with additions and subtractions of numbers in squares. Not only do the rows, columns, and diagonals add up to the same number, but
the four corners, the four middle squares (17, 9, 24, 89), the first and last rows two middle numbers (12, 18, 86, 23), and the first and last columns two middle
numbers (88, 10, 25, 16) all add up to the sum of 139.

Instead of adding the numbers in each row, column and diagonal, one can apply some other operation. For example, a multiplicative magic square has a
constant product of numbers. A multiplicative magic square can be derived from an additive magic square by raising 2 (or any other integer) to the power of
each element, because the logarithm of the product of 2 numbers is the sum of logarithm of each. Alternatively, if any 3 numbers in a line are 2a, 2b and 2c, their
product is 2a+b+c, which is constant if a+b+c is constant, as they would be if a, b and c were taken from ordinary (additive) magic square.[77] For example, the
original Lo-Shu magic square becomes:

Solving partially completed magic squares

Variations of the magic square

Extra constraints

Multiplicative magic squares

https://en.wikipedia.org/wiki/Sudoku
https://en.wikipedia.org/wiki/KenKen
https://en.wikipedia.org/wiki/Permutation_group
https://en.wikipedia.org/wiki/Graeco-Latin_square
https://en.wikipedia.org/wiki/Multimagic_square
https://en.wikipedia.org/wiki/Alphamagic_square
https://en.wikipedia.org/w/index.php?title=Prime_magic_square&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Rudolf_Ondrejka&action=edit&redlink=1
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Chen_prime
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Construction of Ramanujan's magic
square from a Latin square with
distinct diagonals and day (D),
month (M), century (C) and year (Y)
values, and Ramanujan's birthday
example

M = 32768

16 512 4

8 32 128

256 2 64

Other examples of multiplicative magic squares include:

M = 216

2 9 12

36 6 1

3 4 18

M = 6720

1 6 20 56

40 28 2 3

14 5 24 4

12 8 7 10

M = 6,227,020,800

27 50 66 84 13 2 32

24 52 3 40 54 70 11

56 9 20 44 36 65 6

55 72 91 1 16 36 30

4 24 45 60 77 12 26

10 22 48 39 5 48 63

78 7 8 18 40 33 60

Still using Ali Skalli's non iterative method, it is possible to produce an infinity of multiplicative magic squares of complex numbers[78] belonging to  set. On
the example below, the real and imaginary parts are integer numbers, but they can also belong to the entire set of real numbers . The product is:
−352,507,340,640 − 400,599,719,520 i.

Skalli multiplicative 7×7 of complex numbers

21+14i −70+30i −93−9i −105−217i 16+50i 4−14i 14−8i

63−35i 28+114i −14i 2+6i 3−11i 211+357i −123−87i

31−15i 13−13i −103+69i −261−213i 49−49i −46+2i −6+2i

102−84i −28−14i 43+247i −10−2i 5+9i 31−27i −77+91i

−22−6i 7+7i 8+14i 50+20i −525−492i −28−42i −73+17i

54+68i 138−165i −56−98i −63+35i 4−8i 2−4i 70−53i

24+22i −46−16i 6−4i 17+20i 110+160i 84−189i 42−14i

Additive-multiplicative magic squares and semimagic squares satisfy properties of both ordinary and multiplicative magic squares and semimagic squares,
respectively.[79]

First known
additive-multiplicative magic square
8×8 found by W. W. Horner in 1955

Sum = 840
Product = 2 058 068 231 856 000

162 207 51 26 133 120 116 25

105 152 100 29 138 243 39 34

92 27 91 136 45 38 150 261

57 30 174 225 108 23 119 104

58 75 171 90 17 52 216 161

13 68 184 189 50 87 135 114

200 203 15 76 117 102 46 81

153 78 54 69 232 175 19 60

Smallest known additive-
multiplicative semimagic

square
4×4 found by L.

Morgenstern in 2007
Sum = 247

Product = 3 369 600

156 18 48 25

30 144 60 13

16 20 130 81

45 65 9 128

It is unknown if any additive-multiplicative magic squares smaller than 8×8 exist, but it has been proven that no 3×3 or 4×4 additive-multiplicative magic
squares and no 3×3 additive-multiplicative semimagic squares exist.[80]

Multiplicative magic squares of complex numbers

Additive-multiplicative magic and semimagic squares

https://en.wikipedia.org/wiki/File:Ramanujan_magic_square_construction.svg
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A geometric magic square.

The first linear area magic
square

A semimagic square (its diagonals
do not sum to its magic constant,
260) also forming a knight's tour – no
fully magic tours exist.[85]

The derivation of the sigil of Hagiel,
the planetary intelligence of Venus,
drawn on the magic square of
Venus. Each Hebrew letter provides
a numerical value, giving the vertices
of the sigil.

Magic squares may be constructed which contain geometric shapes instead of numbers. Such squares, known as geometric magic
squares, were invented and named by Lee Sallows in 2001.[81]

In the example shown the shapes appearing are two dimensional. It was Sallows' discovery that all magic squares are geometric, the
numbers that appear in numerical magic squares can be interpreted as a shorthand notation which indicates the lengths of straight
line segments that are the geometric 'shapes' occurring in the square. That is, numerical magic squares are that special case of a
geometric magic square using one dimensional shapes.[82]

In 2017, following initial ideas of William Walkington (http://oeis.org/search?q=william%20walkington&sort=created) and Inder
Taneja (https://www.researchgate.net/profile/Inder_Taneja), the first linear area magic square (L-AMS) was constructed by Walter
Trump.[83]

Other two dimensional shapes than squares can be considered. The general case is to consider a design with N parts to be magic if the
N parts are labeled with the numbers 1 through N and a number of identical sub-designs give the same sum. Examples include magic
circles, magic rectangles, magic triangles[84] magic stars, magic hexagons, magic diamonds. Going up in dimension results in magic
spheres, magic cylinders, magic cubes, magic parallelepiped, magic solids, and other magic hypercubes.

Possible magic shapes are constrained by the number of equal-sized, equal-sum subsets of the chosen set of labels. For example, if
one proposes to form a magic shape labeling the parts with {1, 2, 3, 4}, the sub-designs will have to be labeled with {1,4} and {2,3}.[84]

In 1992, Demirörs, Rafraf, and Tanik published a method for converting some magic squares into n-queens solutions, and
vice versa.[86]

Magic squares of order 3 through 9, assigned to the seven planets, and described as means to attract the influence of planets
and their angels (or demons) during magical practices, can be found in several manuscripts all around Europe starting at
least since the 15th century. Among the best known, the Liber de Angelis, a magical handbook written around 1440, is
included in Cambridge Univ. Lib. MS Dd.xi.45.[87] The text of the Liber de Angelis is very close to that of De septem
quadraturis planetarum seu quadrati magici, another handbook of planetary image magic contained in the Codex 793 of the
Biblioteka Jagiellońska (Ms BJ 793).[88] The magical operations involve engraving the appropriate square on a plate made
with the metal assigned to the corresponding planet,[89] as well as performing a variety of rituals. For instance, the 3×3
square, that belongs to Saturn, has to be inscribed on a lead plate. It will, in particular, help women during a difficult
childbirth.

In about 1510 Heinrich Cornelius Agrippa wrote De Occulta Philosophia, drawing on the Hermetic and magical works of Marsilio Ficino and Pico della
Mirandola. In its 1531 edition, he expounded on the magical virtues of the seven magical squares of orders 3 to 9, each associated with one of the astrological
planets, much in the same way as the older texts did. This book was very influential throughout Europe until the counter-reformation, and Agrippa's magic
squares, sometimes called kameas, continue to be used within modern ceremonial magic in much the same way as he first prescribed.[90]

The most common use for these kameas is to provide a pattern upon which to construct the sigils of spirits, angels or
demons; the letters of the entity's name are converted into numbers, and lines are traced through the pattern that these
successive numbers make on the kamea. In a magical context, the term magic square is also applied to a variety of word
squares or number squares found in magical grimoires, including some that do not follow any obvious pattern, and even
those with differing numbers of rows and columns. They are generally intended for use as talismans. For instance the
following squares are: The Sator square, one of the most famous magic squares found in a number of grimoires including the
Key of Solomon; a square "to overcome envy", from The Book of Power;[91] and two squares from The Book of the Sacred
Magic of Abramelin the Mage, the first to cause the illusion of a superb palace to appear, and the second to be worn on the
head of a child during an angelic invocation:
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Area magic squares

Other magic shapes

Related problems

n-Queens problem

Magic squares in occultism
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Macau stamp featuring geometric
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In Goethe's Faust, the witch's spell used to make a youth elixir for Faust, the Hexen-Einmal-Eins, has been interpreted
as a construction of a magic square.[92][93]

The English composer Peter Maxwell Davies has used magic squares to structure many of his compositions. For
example, his 1975 Ave Maris Stella uses the 9×9 magic square of Moon while his 1977 A Mirror of Whitening Light uses
the 8×8 magic square of Mercury to create the entire set of notes and durations for the piece. His other works that
employ magic squares include The Lighthouse (1979), Resurrection (1987), Strathclyde Concerto No. 3 for Horn and
Trumpet (1989), as well as many of his symphonies.[94][95] According to Davies' own account:

A magic square in a musical composition is not a block of numbers – it is a generating principle, to be learned and
known intimately, perceived inwardly as a multi-dimensional projection into that vast (chaotic!) area of the
internal ear – the space/time crucible – where music is conceived. ... Projected onto the page, a magic square is a
dead, black conglomeration of digits; tune in, and one hears a powerful, orbiting dynamo of musical images,
glowing with numen and lumen.[95]

Magic squares, including Benjamin Franklin's, appear as clues to the mystery in Katherine Neville's novels The Eight and
The Fire.
Magic squares play a role in Steve Martin's 2003 novel The Pleasure of My Company.
Dürer's magic square and his Melencolia I both also played large roles in Dan Brown's 2009 novel, The Lost Symbol.
In the 2011 Korean television drama Deep Rooted Tree, King Sejong is shown attempting to construct a 33×33 magic square using lunch boxes. He
ultimately discovers the "pyramid method" and completes the magic square with the help of an army of court attendants. This inspires him to create a more
just form of government ruled by reason and words rather than military might.
On October 9, 2014 the post office of Macao in the People's Republic of China issued a series of stamps based on magic squares.[96] The figure below
shows the stamps featuring the nine magic squares chosen to be in this collection.[97]

The metallic artifact at the center of The X-Files episode "Biogenesis" is alleged by Chuck Burks to be a magic square.[98][99]

Mathematician Matt Parker attempted to create a 3×3 magic square using square numbers in a YouTube video on the Numberphile channel. His failed
attempt is known as the Parker Square.
The first season Stargate Atlantis episode "Brotherhood" involves completing a magic square as part of a puzzle guarding a powerful Ancient artefact.
Magic Squares are also featured in the 2019 Spanish film Vivir dos veces.
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