
DRAFT
DO NOT CIRCULATE

.

.
Introduction to

Interactive Web Design

Timothy J. Hickey
Associate Professor of Computer Science

Brandeis University

July 8, 2002

2

Contents

1 The Internet 17
1.1 A brief history of the internet . 17
1.2 Internet Addressing: domain names and IP addresses 18
1.3 Ports, Sockets, and Services . 19

1.3.1 Common Services on the net 19
1.4 Web Browsers and Servers . 19
1.5 URLs and Domain Names . 21
1.6 Scheme Servers . 24

I Static Web Site Design 25

2 HTML 29
2.1 Simple HTML elements . 29
2.2 HTML elements with attributes 31
2.3 Style and class attributes . 31
2.4 Hyperlinks . 32
2.5 Images . 32
2.6 Headings . 34
2.7 Text Separation . 34
2.8 Preformatted text . 35
2.9 Lists . 35
2.10 Tables . 36
2.11 Comments . 37
2.12 Frames . 37

3 CSS 39
3.1 The Style Attribute . 39
3.2 Parent and Children styles . 39
3.3 The font Property . 40
3.4 The color Property . 41
3.5 The background Property . 41
3.6 The border Property . 42
3.7 The width, height Property 42

3

4 CONTENTS

3.8 The margin and padding Properties 42
3.9 The vertical-align and text-align Properties 43
3.10 Other CSS Capabilities . 43
3.11 Using CSS via the Class attribute 43

II Dynamic Web Site Design 47

4 Scheme Servlets 49
4.1 Dynamic Content and Scheme Servlets 49
4.2 Arithmetic Expressions in Scheme 50
4.3 Interacting with HTTP headers 52
4.4 Quasi-strings . 52
4.5 Quasi-strings and string-append 54
4.6 Servlet parameters . 55
4.7 The case expression . 56
4.8 Processing numbers using servlets 57
4.9 Giving names to values using let* 58
4.10 The if form and conditional execution 59
4.11 The cond form and multiple tests 60
4.12 HTML Forms and Servlet Parameters 61
4.13 Summary of Scheme Syntax . 63

5 Examples of Scheme Servlets 67
5.1 Password-protected pages . 67
5.2 Counters and Files . 69
5.3 log files . 71
5.4 Scheme Tables and Lists . 72
5.5 Lists and Quasi-quoted lists . 73
5.6 Automated Email . 74
5.7 Redundancy, Refactoring and Abstraction 76

III Reactive GUI Programming 81

6 Graphical User Interface Design in Scheme 83
6.1 Intro to the JLIB toolkits . 83
6.2 Overview of the JLIB toolkits . 85
6.3 Windows . 86
6.4 Labels . 86
6.5 Fonts . 86
6.6 Colors . 87
6.7 Tabular Layouts . 88
6.8 Buttons . 90
6.9 Actions . 91
6.10 Choice components . 92

CONTENTS 5

6.11 Tags and Naming . 92
6.12 Textfields and Texareas . 94
6.13 A Chat Applet . 95
6.14 Calculator Programs . 97
6.15 Menus . 98
6.16 MoreCalculator Programs . 100
6.17 Quizzes . 102
6.18 Graphics . 104
6.19 Security . 107
6.20 Summary of GUI building procedures 108

IV Recursion and Algorithms 111

7 Overview of Scheme 113
7.1 Scheme expressions and values 113
7.2 Evaluation . 114

7.2.1 Arithmetic . 114
7.2.2 GUI expressions and side-effects 115

7.3 Special Forms . 116
7.4 define and symbol values . 116
7.5 lambda and Anonymous functions 117
7.6 Internal defintions . 118
7.7 set! and changing defined values 118
7.8 if and Conditional Execution . 119
7.9 cond and multiple conditions . 119
7.10 case and constant values . 119
7.11 Grouping for side effects . 120
7.12 let and block structure . 120
7.13 Exception Handling . 121
7.14 Threads . 121

8 Recursion 123
8.1 Teaching Scheme to Count . 123
8.2 Useful computation . 125
8.3 The Halting Problem . 126

V Advanced Topics 129

9 Databases 131
9.1 Database concepts . 131
9.2 Intro to SQL, SQL clients, and SQL servers 131
9.3 A Simple Database-backed Survey 132

9.3.1 Overview of the survey servlet 132
9.3.2 Creating a new database 133

6 CONTENTS

9.3.3 Creating a new table in the database 133
9.3.4 Starting a server for the database 134
9.3.5 The survey servlet . 134

9.4 A Quick Intro to SQL . 137
9.4.1 Creating and removing tables 137
9.4.2 Adding,Modifying, and Removing rows of tables 138
9.4.3 Selecting rows of a table 138

10 Examples of Database Servlets 139
10.0.4 A webpage incorporating database content 139
10.0.5 Extensions . 142
10.0.6 Deleting rows . 142
10.0.7 Adding Password Protection 142

10.1 The database-backed webpage . 143
10.2 A Network Database Front-end 145

11 Peer to Peer programming 147
11.1 Group-servers and Group-clients 147
11.2 Starting a group server . 147
11.3 A Simple Chatroom applet . 148
11.4 A Multiroom Chat applet . 150

12 Examples of P2P Programming 153
12.1 Servents . 153
12.2 Network-aware GUI components 153
12.3 Running a chat registrar . 153
12.4 Whiteboards . 153
12.5 Shared Textareas . 153

VI Appendices 155

A The Tomcat server and Jscheme 157
A.1 Installation instructions for Mac/Linux 157

A.1.1 Installing tomcat . 157
A.1.2 Starting/Stopping the Tomcat Server 157
A.1.3 Adding content to the server 158
A.1.4 Accessing the server . 158

A.2 Installation instructions for the PC 159
A.2.1 Installing tomcat . 159
A.2.2 Starting/Stopping the Tomcat Server 159
A.2.3 Adding content to the server 160
A.2.4 Accessing the server . 160

A.3 Creating a certificate for secure web pages 160
A.4 Configuring for email . 160

CONTENTS 7

B Installing the HSQL Database 161

C Code for the servlet and applet libraries 163
C.1 Files.scm . 164
C.2 mail.scm . 165

8 CONTENTS

List of Figures

1.1 Some of the most common services 20
1.2 Accessing the date service on port 13 20
1.3 Accessing the echo service on port 7 21
1.4 Accessing the HTTP service on port 80 22

2.1 The Main Elements/Attributes of HTML 4.01 33

4.1 Summary of Scheme Syntax . 64
4.2 Scheme procedures seen so far . 65

5.1 A simple Password Protected Page 68
5.2 A simple counter program . 70
5.3 A simple log servlet . 71
5.4 A simple table servlet . 72
5.5 An Email survey servlet . 75
5.6 A Posters Sale site . 77
5.7 A Posters Sale site . 79

6.1 hello.applet . 84
6.2 An IM window with a robot-Doctor 96
6.3 FtoC.applet . 101
6.4 Quiz Game . 103
6.5 Quiz Game . 105
6.6 A simple graphics program . 106

7.1 Mathematical Operators in Scheme 115

9.1 The database-backed survey servlet 135

10.1 The database-frontend servlet 140
10.2 The database-backed webpage 144
10.3 Simple Front End to a Database 146

11.1 A multi-room chat program . 149
11.2 A multi-room chat program . 152

9

10 LIST OF FIGURES

Preface

Currently web programming is viewed as the domain of computer science majors
and out of the reach of most computer users. One of the aims of this book is
to provide a path for putting web programming expertise into the hands of any
motivated computer users.

This text has been designed to be accessible to non-programmers assuming
only that they have a strong interest in learning how to build interactive web
sites. The material presented here has evolved over five years of teaching web
programming in an Introduction to Computers class attended primarily by non-
science majors. We have developed a bounty of evidence that bright students
(and others) can easilly learn to develop interesting and sophisticated interactive
web sites within a few short weeks.

In the process of learning to build interactive web sites, you will also have
a general introduction to computer programming and the joys and frustrations
of this enterprise. I wish you a satisfying journey!

11

12 LIST OF FIGURES

Foreword

The web is a rapidly evolving technology that has already changed many aspects
of our lives, from the mundane to the sublime. It is rapidly becoming a kind of
super encyclopedia where we can search for the latest information on movie stars
or cancer treatments. It is also evolving into a new communication medium –
email has saturated the population in developed countries and now, in 2002,
instant messaging is rapidly expanding into the youth culture.

Part of the great success (or at least growth) of the internet is due to the
fact that it is a collaborative enterprise. Every computer that is connected
to the internet can offer web services, such as hosting web pages or running
instant messaging clients or acting as a remote file sharing server for MP3’s
or other data. One does not need a licence from the government to offer such
services, but some internet access providers have been putting restrictions on
home services that can be offered.

During the first five years (1990-1995) of the World Wide Web most of the
web content that had been developed was in the form of web pages. As we will
see in this book, web pages are written in a very simple language called HTML
(HyperText Markup Language) which was designed to be easy learn, which
would in turn encourage non-scientists to develop web content and help build the
web. This design decision has been spectacularly effective. Personal web pages
are becoming increasingly common among college students (and even among
high school students). Most often these pages are a kind of autobiographical
folk art. They provide a glimpse into the author’s life and provide a few links
to sites of personal interest. Occasionally though these web authors find a topic
of deep personal interest and they create an informational web site dedicated
to that topic – favorite bands or movie stars are a common theme, political
or religious causes are also frequently found. Many web authors publish their
photography, poetry, or other creative works. A less common, but perhaps more
influential, class of web authors are those that develop well-designed and useful
informational sites such as web sites listing local bike paths and hiking trails.

During the second five years (1995-2000) we saw the rise of interactive sites.
There have always been search engines, but the late 90’s saw the rise of ecom-
merce and other forms of interactive web pages. For the most part, this type of
web content has remained within the purview of the computer science profes-
sionals.

There are several reasons for interactive web page development to be slow to

13

14 LIST OF FIGURES

spread to the general population. Originally, web pages were only served from
dedicated machines and system administrators were loathe to allow any but the
most trusted of their colleagues to deploy interactive web pages. There are good
reasons for this. A poorly written interactive web page can be a major security
risk. It can also devour system resources and greatly slow down, if not crash, a
server. In the past few years this has become less of a problem as most personal
computers now come with preinstalled web servers; thereby democratizing the
process for all those who have an internet connection.

The more important impediment to the spread of interactive web pages
among general users is that the langauges for developing such pages have just
been too difficult for novices to learn. Originally these pages were written
in primarily in PERL, an interesting but rather bizarre language favored by
hackers both for its power and for its mystique! More recently, Java has become
a popular language for writing these pages, but this still requires authors to
have at least one semester’s worth of programming experience before they can
even start to build interactive web pages.

Goals of this book

In this book, we return to the original ideals of the World Wide Web and present
a simple language, Scheme, for developing interactive web pages and other web
programs. Scheme is similar to HTML in that it is easy for non-experts to learn
the basic language and to build build fairly sophisticated interactive web pages.
Scheme is a dialect of Lisp (a language which was first developed in 1957 at the
dawn of the computer era).

We begin with an introduction to HTML and CSS for developing static web
pages.

Next we give an introduction to writing Scheme servlets, the most basic form
of interactive web page. These pages are written in a mixture of Scheme and
HTML.

We then introduce the JLIB windowing library and show how to write and
deploy programs that use Graphical User Interfaces. These programs are en-
tirely written in Scheme.

In the second part of the text we move on to more sophisticated topics such
as developing web programs that access databases and writing programs that
involve communication among multiple users.

Hardware and Software Requirements

The software that is used in this text is all free and open source. It can be
easily downloaded and installed on almost all platforms (Windows, Mac, Linux,
Unix). If this text is being used in a course, we also provide instructions for
setting up a central server which removes the requirement for all students to

LIST OF FIGURES 15

set up their own server. On the other hand, it is relatively easy to do and a lot
more fun to run your own web server.

16 LIST OF FIGURES

Chapter 1

The Internet

The internet is a worldwide network of computers with the property that each
computer can send data to and receive data from any other computer on the
internet.

1.1 A brief history of the internet

The idea of connecting computers via phone lines or some other long distance
network was first tested in 1965 when two university researchers, Larry Roberts
and Thomas Merrill, connected a computer in Massachusetts with one in Cali-
fornia using a phone line and demonstrated that they coould run programs and
receive data on the remote machines. A key idea behind this research was that
the computers would communicate by breaking up their data into many small
packets and sending these packets individually. If any packets were lost (due to
background noise on the line), they could easily be resent.

This experiment led directly to a DARPA (Defense Advanced Research
Projects Agency) proposal in 1967 to build the ARPANET, which is a mili-
tary precursor of the internet. In 1968 a group led by Frank Heart at BBN in
Boston won the government contract to build the initial ARPANET hardware.
In 1969, the initial ARPANET was constructed and consisted of four comput-
ers: three in California and one in Utah. In 1972, Roberts wrote the first email
program, and email quickly became the most frequently used network applica-
tion. In 1973, Vint Cerf and Robert Kahn proposed a new set of communication
rules for the computer networks called TCP/IP (Tranmission Control Protocol/
Internet Protocol) which allowed users to implement a wide range of network
applications including network telephony, email, and network disk sharing. The
ARPANET was converted to a TCP/IP net in 1983 at which point it was split
into two nets: the MILNET for military applications and the ARPANET for
civilian applications. Throughout the 70’s several other networks were devel-
oped. These included CSNET (connecting Computer Science Departments),
USENET (connecting UNIX computers), and BITNET (connecting academic

17

18 CHAPTER 1. THE INTERNET

mainframe computers).
The 80s saw the rapid prolifieration of PC’s and workstations combined

into small local area networks (LANs) and these LANs came to be added to the
ARPANET in greater numbers, resulting in a rapid growth of the internet. Also,
in 1985, the NSFNET was formed by the National Science Foundation with the
stipulation that a university could connect to this network only if it provided ac-
cess to all scholars at the institution, not just the science departments. Another
important development during the 1980’s was the connection of networks into a
single internet all using the TCP/IP protocol for communication. The 90’s saw
the birth of the World Wide Web and the rapid expansion of the internet both
in terms of size and in terms of its use by the general population.

1.2 Internet Addressing: domain names and IP
addresses

The internet currently consists of about 100 million servers although this number
grows every month (and actually oscillates minute by minute for reasons that
will become clear). Each computer on the internet has a unique identification
number called its IP address (for Internet Protocol). An IP number consists
of a sequence of four numbers in the range 0-255. For example, a typical IP
address at Brandeis in 2002 is 129.64.2.10, where the numbers in the IP address
are separated by periods by convention. This is the dotted decimal form of an
IP address.

IP addresses are actually stored on the computer and transmitted as 32 bit
long binary numbers. Please read the appendix on binary numbers to learn
about binary numbers and how they are used to represent decimal numbers.

Most computers on the internet also have an identifying name known as a
domain name. For example, the domain name for the main Brandeis web server
is www.brandeis.edu and its IP address is 129.64.99.138. The relationship
between domain names and IP addresses is available on the net from computers
known as domain name servers.

The internet actually consists of a large number of networks which are seam-
lessly interconnected. For example, the Local Area Network (LAN) at Brandeis
University consists of a few thousand computers. These computers are all di-
rectly connected to the internet and have IP addresses of the form

129.64.xxx.yyy

where xxx and yyy are numbers in the range 0-255. Conversely, any IP address
of this form refers to the Brandeis LAN. Thus, the Brandeis LAN can expand
to include up to 256 x 256 = 65536 computers which can all be simultaneously
directly connected to the internet. This method of allocating IP addresses in
blocks is widely used today.

1.3. PORTS, SOCKETS, AND SERVICES 19

1.3 Ports, Sockets, and Services

The computers on the internet interact in a wide variety of ways, but their
interaction is nonetheless restricted. It would not be wise to allow any computer
on the internet to have full access to every other computer on the net because
an unscrupulous user might decide to delete all of your disk files or to otherwise
use your computer without permission.

To get around this problem, the internet is modelled on an abstract view of
the net in which each computer specifies exactly what kinds of interactions it
will allow. These types of interactions are called services and each computer
on the net can offer up to 65536 services.

These services are specified by a number from 0 to 65535 called a port.
Typically, the ports with numbers under 1024 are reserved for system services
(such as email and web page serving), but anyone is free to offer any service
they please on ports numbered greater than 1024.

A computer that offers a service to another computer is called a server
and a computer that requests a service is called a client. It is typical for
computers on the internet to be both clients and servers and the same time. The
communication between client and server is initiated by the client by specifying
the IP address of the server computer and the port number of the service to
be provided. If the specified computer is offering that service, then a special
connection called a socket is created. The socket allows the two computers to
send data back and forth between themselves.

1.3.1 Common Services on the net

Some of the more common system services are listed in Figure 1.1. Each service
has a set of rules governing how the client and server interact. These rules
are called protocols and they simply represent the conventions that the two
computers will use when communicating on that port.

You can access some of these ports from Linux using the telnet command.
For example, Figures 1.2 and 1.3 give examples of accessing the date and echo
services respectively: The date service returns the local time on the server being
queried. The echo service is used for testing whether a connection is active and
just echo back each line of text that it receives.

1.4 Web Browsers and Servers

The HTTP service is perhaps the most revolutionary service that has been de-
veloped for use on the internet. It provides a mechanism for clients to access
files on the server by giving the name of the file in the webserver folder. The
HTTP server then responds to such a request by returning several lines of in-
formation about the file (e.g. what kind of data it contains, text, image, movie,
sound, etc.) when it was last modified, how large the file is, etc. HTTP services
are generally provided on port 80.

20 CHAPTER 1. THE INTERNET

• Echo (port 7) an echo service, simply echos back what it receives

• Daytime (port 13) this returns the date and local time and ignores client
input

• FTP (ports 20,21) allows the client to transfer files of data to and from
the server.

• Telnet (port 23) allows the client to interact with the servers operating
system remotely

• SMTP (port 25) offers an email service for delivering email to a user on
the server

• DNS (port 53) domain name serving, returns IP addresses for domain
names

• WWW (port 80) uses the HTTP protocol and sends specified web pages
to the client.

• POP3 (port 110) offers another email service

Figure 1.1: Some of the most common services

USER % telnet www.cs.brandeis.edu 13
Trying 129.64.2.3...
Connected to diamond.cs.brandeis.edu.
Escape character is ’^]’.
Thu Aug 31 15:55:41 2000
Connection closed by foreign host.

Figure 1.2: Accessing the date service on port 13

1.5. URLS AND DOMAIN NAMES 21

USER % telnet www.cs.brandeis.edu 7
Trying 129.64.2.3...
Connected to diamond.cs.brandeis.edu.
Escape character is ’^]’.

USER This is the echo port
This is the echo port

USER bye bye
bye bye

USER ^]
telnet>

USER quit
Connection closed.

Figure 1.3: Accessing the echo service on port 7

The HTTP service is one half of the technological foundation of the World
Wide Web. The other half is the HTML language. HTML is an acronym for
Hypertext Markup Language. HTML specifies the layout of webpages and pro-
vides mechanisms for including links to other webpages and to images, sounds,
movies, and other content. In the next Chapter we will provide an introduction
to HTML and some related technology (CSS and XML).

Figure 1.4 gives an example of the use of this service to request the web page
”/ cs2a/index.html” from the server ”www.cs.brandeis.edu”. Observe that the
request specifies the page to access and the response provides quite a bit of
information about the file including its size, its last modification date, its size,
what type of information is in the file, the kind of server that is providing the
service, the locate time at which the page is being served, and some more arcane
information as well.

There are many web browsers that are currently available. The most com-
mon browsers at the moment are Internet Explorer and Netscape, but some of
the lesser known browsers such as Opera and Amaya, provide additional fea-
tures which are not currently supported by the mainstream browsers such as
mathematical and graphical markup processing.

1.5 URLs and Domain Names

As you probably know, all of the content on the World Wide Web can be accessed
by providing its address to a browser. The formal name for a web address is
URL which stands for Universal Resource Locator1 URLs are our first example
of a formal language. Each URL has several parts, some of which are optional.
Some examples of URLs are:

http://www.brandeis.edu

1Some people also use URI for Universal Resource Identifier.

22 CHAPTER 1. THE INTERNET

USER % telnet www.cs.brandeis.edu 80
Trying 129.64.2.3...
Connected to diamond.cs.brandeis.edu.
Escape character is ’^]’.

USER GET /~cs2a/index.html HTTP/1.0

HTTP/1.1 200 OK
Date: Thu, 31 Aug 2000 20:21:23 GMT
Server: Apache/1.3.4 (Unix)
Last-Modified: Wed, 23 Aug 2000 21:32:40 GMT
ETag: "4962a3-217-39a442f8"
Accept-Ranges: bytes
Content-Length: 535
Connection: close
Content-Type: text/html

<HTML>
<TITLE>Brandeis University, Intro to Computers,

CoSci 2a, Aut 99</TITLE>
<BODY bgcolor="#ffffff">
<META HTTP-EQUIV="Refresh" CONTENT="1;
URL=http://www.cs.brandeis.edu/~tim/Classes/Aut00/CS2a/">

The Home page for CS2a has moved to
<A HREF=
"http://www.cs.brandeis.edu/~tim/Classes/Aut00/CS2a/">

http://www.cs.brandeis.edu/~tim/Classes/Aut00/CS2a

<p>
You can click

here

to get to that page.
<p>
Sorry for the inconvenience.
<p>
Tim Hickey

</BODY>
</HTML>
Connection closed by foreign host.

Figure 1.4: Accessing the HTTP service on port 80

1.5. URLS AND DOMAIN NAMES 23

http://www.brandeis.edu:80
http://www.brandeis.edu:80/index.html
http://www.brandeis.edu:80/go/index.php?go=cosi
http://129.64.2.3/~tim
http://jscheme.cs.brandeis.edu:8080
ftp://ftp.cc.gatech.edu/pub/linux/

The simplest form of a URL is just:

http://DOMAINNAME

where ”http” , and ”DOMAINNAME” .
The general form for a URL is

PROTOCOL://DOMAINNAME:PORT/PATH/FILE.EXT#P?N=V&N2=V2 ...

Lets break this apart.

• ”PROTOCOL” specifies the protocol that the web browser must use to
communicate with the web server. There are many other protocols besides
http. The most common is ”ftp” which is the ”file transfer protocol.” The
”mailto:” protocol is also common and is used to allow the user to send
email from a browser.

• DOMAINNAME is the symbolic name of the web server. All web servers
have a unique IP address (as described above). The conversion between
domain names and IP addresses is performed using special servers on the
net called ”Domain Name Servers.” These servers accept domain names
and send back the corresponding IP address. They are the equivalent of
the ”411” service on phone networks and every browser must have the
address of at least one Domain Name Server if it is going to use domain
names. You can use IP addresses directly in the URL instead of a domain
name, but this is rarely done as IP addresses can be hard to remember.

• ”PORT” is a number between 0 and 65535 which specifes the port used
by the server, the default value is 80 for http protocols

• ”PATH” specifies the location of the file on the server

• ”FILE.EXT” is the name of the file to be returned

• ”#POS” specifies a location in the file. POSITION is a symbolic name
(containing no blank spaces). The browser will scroll the window down to
that position when first viewing the file.

• ”?N=V&...” This is a mechanism for passing values to the server which
it can use to generate the web page it will send back to you. You often
seen this kind of an address after filling out a search form for a search
engine. When you bookmark this page and return to it, the URL contains
a precise description of everything you entered on the form.

These more complex URLs will be come easier to understand after we have
discussed servlets in a later chapter.

24 CHAPTER 1. THE INTERNET

1.6 Scheme Servers

In this course you will need to have access to a web server in order to publish
your HTML pages, your servlets, and you applets. Appendix A explains how to
download and setup a web server on your PC, Mac, or Linux platform. When
you install the server, a folder scheme will be created.

This folder represents the public web services that you will offer to the world.
The types of service that you can currently offer using this server are listed below
and are determined by the suffix of the filename. Each different suffix refers to
a different web programming language that is handled by the server:

html Files ending in .html are simply sent directly to the client as text/html
files.

css These are cascading style sheet files and are used to define extensions of
the basic HTML language.

servlet These are scheme XML files which provide a mechanism for reading in-
formation from HTML forms and using that information to generate web
pages which are then sent to the client. (There are two other variants of
this type of file with the extensions sssp and sxml. They are essentially
the same language, but have slightly different grammars).

applet These are programs that run on the browser that downloads the page.
These programs usually pop up windows with menus, buttons, textfields,
choices, and all the usual facets of graphical user interfaces that you have
become accustomed to.

snlp These are programs that also run on the client machine, but they require
the Java Web Start plugin and, once downloaded, they can be run without
the browser. One particular interesting type of snlp program that we
will consider is the class of peer-to-peer programs. The Napster and IM
programs are a well-known examples of this type of application. But there
are many others possible uses for peer-to-peer computing.

Part I

Static Web Site Design

25

27

In the next two chapters we provide an introduction to the core languages
used for writing web pages: HTML and CSS. The HTML language is used for
specifying the structure of a document. It is used to divide the content into
paragraphs, headers, tables, images, movies, hyperlinks in such a way that the
browser can then present the page content to the user either visually (the usual
way), or aurally (using webpage readers), or even tactilely (using braille readers).
The CSS language is used for specifying visual, auditory, and/or tactile style. It
allows one to change the appearance, sound, or feeling of any paragraph, header,
table or other web component.

28

Chapter 2

HTML

A fundamental component of the original conception of the World Wide Web
is that it should be a collaborative enterprise. The web was designed so that
everyone would be able to add content. To make this feasible, the language for
constructing web pages (HTML) was designed to be simple, powerful, and easy
for non-computer specialist to master.

In this chapter we give an introduction to the design of static webpages
using HyperText Markup Language (HTML), Cascading Style Sheets (CSS),
and eXtensible Markup Language (XML). As you will see, these languages are
quite easy to master as they are each based on a few simple ideas.

We begin with HyperText Markup Language (HTML). In this section we
provide a sufficient introduction so that you will be able to design static web
pages using the most common markup elements. For more information you can
visit the official HTML website at http://www.w3c.org or peruse any of the
many HTML texts.

HTML is build upon one fundamental idea which is the notion of expressing
the layout for a web page using HTML elements. As we will see below there
are a few dozen basic elements which are used to express the basic layout of the
page including line breaks, headings, layout of images, tables, and lists.

2.1 Simple HTML elements

Simple HTML elements have the form

<TAGNAME>
.....

</TAGNAME>

where TAGNAME is the name of the tag. A complete list of the HTML 4.01
elements is available at the URL of the official source for HTML, the World
Wide Web Consortium:

http://www.w3.org/TR/html4/index/elements.html

29

30 CHAPTER 2. HTML

There are 90 different standard tag names, but we will only discuss the most
common of these.

Thus a web page consists of an html element that contains a head and body
element. The head element in turn contains a title element.

For example, the following text defines a simple “Hello World” webpage

<html>
<head>
<title>My first web page

</title>
</head>
<body>
Hello World

</body>
</html>

If you put this in a file called first.html and then view the webpage with
your browser (using the Open... menu item). You will see a simple web page
consisting only of the words “Hello World” whose title bar contains the phrase
“My first web page.” If you bookmark this page, then the title “My first web
page” is what will appear in the bookmark.

Exercise 1 Creating your first web page. Use your favorite editor to create
a file containing the ”Hello World” web page shown above. Store your file as
”text” with the name ”first.html” on your disk. You can view your page by
starting up a browser (e.g. Netscape, Internet Explorer, Amaya, Opera, etc.)
and selecting ”Open File” from the ”File” menu. Select the ”first.html” file that
you just created and you should see a simple page with the words ”Hello World”
in black on a white or gray background. Beware: this simple exercise has many
pitfalls and it may take you a while to complete it. This is the kind of task
that is best done with someone helping you in person as the details vary from
computer to computer. Some of the problems that may arise are:

• Some operating systems hide the extensions (.html, .txt, .jpg, .mov) that
specify what type of data is in the file. These operating systems also will
automatically add extensions (e.g. .txt) to files. So you may think you
have a file named ”first.html” when it is actually called ”first.html.txt”
Ouch!

• You may have difficulty saving the file as text. Many word processors
store the document you create with a lot of extra information besides the
characters that you have typed. For example, they might store the font you
have used and the margins and tab setting, etc. The ”first.html” file needs
to be stored in a simpler format which contains only the characters you
typed. This is called ”text format” and is usually listed as a choice on the
”save as” window.

2.2. HTML ELEMENTS WITH ATTRIBUTES 31

2.2 HTML elements with attributes

The most general form of HTML tags is as follows:

<TAGNAME A1=V1 A2=V2 ... An=Vn>
.....

</TAGNAME}

where A1,A2,...,An are the names of attributes that are allowed for that tag,
and V1,V2,...,Vn are values that those attributes can accept. In general,
the attributes should always be enclosed in double quotes as this will simplify
migration to XHTML which is poised to become the successor to HTML4.0 as
the next interational standard.

For example, to include an image in a webpage you use the img tag as follows:

The src attribute of the image tag specifies the name of the image file to
display, the alt attribute specifies the closed-captioned reading of the image,
and the width specifies the size to make the picture (in pixels). In this case,
the attributes are used to provide information needed to properly display the
element.

For another example, the <body> tag allows one to specify the background
color of the page using the bgcolor attribute and to specify the color of the
text on the page using the text attribute. It also has attributes for specifying
the color of unvisited links link, already visited links vlink, and links that are
being clicked alink.

For example, the following HTML specifies a page with red letters on a black
background and also specifies the link colors:

<body bgcolor=black text=red link=yellow alink=blue vlink=red>
....

</body>

2.3 Style and class attributes

One of the most common problems encountered when writing HTML pages is
that each tag has its own set of attributes, and one must know which attributes
are allowed for which tags. For example, almost all tags have a bgcolor at-
tribute, but body is the only tag with a text attribute. The CSS language,
discussed in detail in the next section, was developed partly in response to this
problem. It provides a uniform method of specifying the “style” (e.g. color, font,
border, etc.) of any HTML tag. For example, the CSS-method for specifying
the red-on-black body tag shown above is the following:

<html><head><title>test</title></head>
<body style="background:black; color:red">
....

32 CHAPTER 2. HTML

</body>
</html>

The CSS language can be used to specify four kinds of properties: fonts, colors,
borders, and text spacing.

To simplify the presentation of HTML and CSS in this text, we will only
use the CSS-method for specifying style and will ignore all other methods (e.g.
style-based attributes of HTML tags). This allows us to ignore many HTML
tags (e.g. the ones that change the font type or font color) and many HTML
attributes. Indeed, Figure 2.1 show the 28 tags that we will consider and also
shows their main attributes.

The tags are divided into groups that we consider one at a time. We have
already seen the first four tags.

2.4 Hyperlinks

The hyperlink element has the form:

 CONTENTS

The CONTENTS is typically some text or an image. The WEBADDRESS is a
URL that specifies the location of some web content online. The most commonly
used URLs are

• names of files on the server,e.g. report.html or doc/manual.html

• addresses of other pages on the web, e.g. http://www.whitehouse.gov

• mailto URLs which allow the user to use the browser to send email to a
prespecified address, e.g. mailto:gwb@whitehouse.gov.

• a link to some other form of media, e.g. a movie or document home.mov
or whitepaper.pdf.

2.5 Images

The image element has the form:

This is one of the few tags that does not have a matching “close” tag. The only
required attribute is the src, but it is a good idea to include a description of the
image for the vision-impaired in the alt attribute. This may even be mandatory
if you want the page to meet minimum Federal Accessibility Standards.

The width, height attributes are optional and they can be used to rescale
the size of your image. Giving only the width will cause the height to scale
proportionately. Giving height and width may result in a picture that looks
stretched or flattened.

2.5. IMAGES 33

Structural Elements
HTML
HEAD
TITLE
BODY link=COLOR vlink=COLOR alink=COLOR

Links
A href=URL name=STRING

Images
IMG src=URL alt="TEXT" ...NO-CLOSE-TAG

Headings, text separation
H1,H2,H3,
H4,H5,H6
HR ...NO-CLOSE-TAG
P
DIV
BR ...NO-CLOSE-TAG
SPAN

Preformated text
PRE

Lists
OL
UL
LI

Tables
TABLE cellspacing=DISTANCE cellpadding=DISTANCE
TR
TD
TH

Frames
FRAME name=STRING src=URL ...NO-CLOSE-TAG
FRAMESET rows=LENGTHS cols=LENGTHS
NOFRAMES

Forms
FORM method=POST action=URL
INPUT type=TYPE name=STRING ...NO-CLOSE-TAG
TEXTAREA name=STRING
SELECT name=STRING size=NUMBER multiple

Figure 2.1: The Main Elements/Attributes of HTML 4.01
/hrule

34 CHAPTER 2. HTML

2.6 Headings

There are six levels of headings; from the largest h1, to the smallest h6. Their
general form is

<h1> CONTENT </h1>

where CONTENT is typically text and/or images. The style attribute can be
used to specify the font size, background color, and text color.

2.7 Text Separation

HTML offers several elements that can be used to separate text on a page.
When these elements are combined with CSS, they allow the web page designer
to specify the style of different sections of the webpage.

The span element is used to group together some part of a line (or lines) of
text. It has the form:

 CONTENT

where the CONTENT is typically text and/or images. The span element does
absolutely nothing by itself. It only becomes useful when combined with CSS,
as it allows one to apply a style attribute to a short inline segment of words
and/or images as in

See the blue box
around a single word.

The span element was introduced as a hook on which to attach CSS to small
segments of text.

The br elemeent is used to insert line breaks into the page. It has the form:

and observe that it does not have a close tag. Another way to break lines is to
insert a horizontal rule, which is a line which stretches all or part way across the
page and is used to visually separate parts of a page. These ”rules” are inserted
using the

<hr>

tag which also does not have a close tag.
Paragraphs are inserted into a page using the

<p>
CONTENT
</p>

2.8. PREFORMATTED TEXT 35

tag, where CONTENT is typically text and other markup with some restrictions
(e.g. it can not contain any block-level elements, e.g. p, table, div, or h1.
elements).

Finally, the most general way to separate the content in a page is to use the
div element, which has the form:

<div>
CONTENT

</div>

where CONTENT can be any of the HTML elements that can appear in the
body, including p and div elements. The div tag is similar to the p tag except
that a div element can contain a wider variety of tags. The p element should
only be used for paragraphs containing text and images.

2.8 Preformatted text

Browsers, by default, will reformat any text that you provide so that it fits
the page nicely. Thus, if you type a paragraph as one long line, the browsers
will generally add appropriate line breaks. Sometimes however, one wants the
browser to respect the formatting and not to insert any line breaks or remove
any spaces or tabs. This effect is provided using the pre element which has the
form

<pre>
Pre
Formatted

Content
</pre>

The preformatted content inside the pre element typically contains images and
text.

2.9 Lists

HTML offers several different types of lists. We consider only two types here:
ul and ol The ul element is used for “unnumbered lists” and has the form:

 Content
....
 Content

Observe that the ul element must contain a sequence of li elements, and each
li element can contain any of the HTML elements that can appear in the body.
These lists are rendered with asterisks or bullets or some other non-alphanumeric

36 CHAPTER 2. HTML

list item markers. CSS can be used to specify the type of list item maker used,
e.g.

<ul style="list-style-type:square>
 Content
....
 Content

will create square boxes instead of the usual round bullets, for each list element.
The ol lists are used for “ordered lists” and have the same format:

 Content
....
 Content

but they render their list item markers using numbers. CSS can be used to
specify that letters or roman numerals be used instead (e.g. using ”lower-roman”
or ”upper-alpha” for the list-style-type).

2.10 Tables

Tables are a very useful formatting tool for web pages. They provide a mech-
anism for presenting tabular data and specifying how the table should appear
on the page. The general form of the table element is:

<table cellspacing=DISTANCE cellpadding=DIST>
<tr>

<th>Content</th> <th>Content</th>
</tr>

<tr>
<td>Content</td> <td>Content</td>

</tr>

....

<tr>
<td>Content</td> <td>Content</td>

</tr>
</table>

The contents of the table must consist of a sequence of tr elements representing
the rows of the table. Each row consists of a sequence of td elements corre-
sponding to the data stored in each cell of the table. Optionally, the first row

2.11. COMMENTS 37

can contain th elements which correspond to heading data. The cellspacing
attribute is used to specify how much space should appear between the cells of
each table. The cellpadding attribute specifies how much space should appear
within a cell around the content of that cell.

2.11 Comments

Comments are pieces of text that are, for the most part1, ignored by the browser.
They are used to provide information to the person maintaining the web page,
not the person viewing it. You add comments to an HTML page using the
following syntax:

<!-- comment goes here
can include any text, except
cannot have two consecutive dashes (-)
as that indicates the end of the comment

-->

Note that the “–” dashes delimit the comment part of the tag. The tag’s name
is “!” and it has not close tag. Also, spaces are forbidden between the ! and
the –.

2.12 Frames

Frames provide a mechanism for combining several webpages into a single web-
page.

1The only exception is in the <style> tag which appears in the head, the CSS style is
enclosed in a comment so that older browsers will ignore it. This was needed because older
browsers would treat the CSS specification as text and show it on the screen.

38 CHAPTER 2. HTML

Chapter 3

CSS

Cascading Style Sheets (CSS) is a language for specifying various aspects of the
style of HTML elements. In this section we will provide only an overivew of
the most common uses of CSS. The reader who want to go into more depth can
visit the official source for CSS, the World Wide Web Consortium site at

http://www.w3.org/Style/CSS

There are several ways of adding style to HTML. We will focus on the “inline”
method and discuss the other methods briefly at the end.

3.1 The Style Attribute

The key idea behind CSS is that it provides uniform methods for defining the
style of HTML elements. The style attribute is one such method.

Every HTML element in the body of an web page can have a style attribute.
The style attribute has the form:

style="Prop1:Value1; Prop2: Value2; ... ; PropN: ValueN"

Observe that the style specification is enclosed in double quotes and consists of
a sequence of Prop:Value specifiers, separated by semicolons.

There are eight basic properties: font, color, background, margin, padding,
border, width, height. These are applied to an HTML element by imagining
that the element is contained in an invisible box. The element can be as small
as a single charater,chapter like word. At the other extreme, the
box for the body tag is the entire web page.

3.2 Parent and Children styles

As you have noticed, many HTML elements can contain other HTML elements.
For example, the body element can contain heading, paragraphs, tables, etc. We

39

40 CHAPTER 3. CSS

say that the outer element (in this case the body element) is the parent and the
inner elements are the children. Many CSS styles are inherited by children.
For example, if you set the background color of the body to yellow, then all
elements in the body will also be yellow (unless explicitly specified otherwise).

3.3 The font Property

The font property accepts values that specify how the text that appears within
the element should be rendered. The minimal form of the font propery specifier
is

style="font: STYLE SIZE FAMILY ; "

where STYLE is typically ”bold”, ”italic” or simply omitted, SIZE is typically
expressed in points, e.g. 12pt, and FAMILY is one of the following standard font
families: serif, sans-serif, cursive, fantasy, monospace. Thus, one could
create a heading with large sans-serif letters as follows:

<h1 style="font: 60pt sans-serif">Intro to CSS</h1>

One can also specify that the font should be italic or bold and one can specify
the spacing between the lines along with the font size. For example, the follow-
ing element defines a paragraph with a bold italic 12 point serif font, and the
paragraph is doubled spaced as the spacing between every two lines is 24 point.

<p style=
"font: bold italic 12pt/24pt serif">

This is bold, italic font in a 12 point serif font
with 24 point interline spacing

</p>

The five font families listed above are supported on all CSS-capable browsers,
but CSS allows the web designer to specify less common font families as well
(e.g. ’Helvetica’). One problem that may arise with this freedom is that there is
no guarantee that the browser that views your web page will have the font you
have specified. CSS compensates for this by allowing the designer to specify a
sequence of font families, separated by commas, ending with one of the standard
font families. A CSS-capable browser will use the first font on that list which
is currently available, and in the worst case will just use one of the five generic
families. For example, the following heading specifies that the Irish Ultra font
should be used if possible, otherwise the browser should use ariel, or helvetica,
or if all else fails, sans-serif.

<h1 style=
"font: 60pt ’Irish Ultra’,ariel,helvetica,sans-serif">

CSS Fonts
</h1>

Note that the single quotes around ’Irish Ultra’ are needed because the font
name contains a space.

3.4. THE COLOR PROPERTY 41

3.4 The color Property

The color property of a style attribute specifies the text color of an HTML
element. The particular color itself can be specified in several ways:

• Using one of the sixteen standard HTML colors: aqua, black, blue, fuchsia,
gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white, and
yellow.

• As a hexadecimal number in the form #rrggbb where r,g,b are hexadec-
imal digits: 0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f.

• As a 3 digit hexadecimal number #rgb

• As a term of the form rgb(R,G,B), where R,G,B are numbers between 0
and 255

• As a term of the form rgb(R%,G%,B%), where R,G,B are decimal numbers
between 0.0 and 1.0.

In each case but the first, the color is specified as a combination of red, green,
and blue light, and the R,G,B parameters specify how much of each of the
primary colors to use in the desired color.

For example, the following html segment shows how to specify the color of
individual words in a sentence:

Here are a few colors:
 red,
 yellow,
 green,
 blue,
brown

3.5 The background Property

The background property can be used to specify the color of the background
using the same syntax as the color property. For example, to make a heading
with red letters on a black background you could use:

<h1 style="font: 48pt serif; color:red; background: black">
Warning!</h1>

This property is more versatile however, in that it can also be used to specify
a background image rather than a color. In this case, the value of the property
is a webaddress of the form

url(page.gif) or url(http://x.com/page.gif) or

For example, the following body tag specifies that the“sincos.gif” image should
be used as the background for the page:

42 CHAPTER 3. CSS

<body style="background: url(sincos.gif)">
...

</body>

3.6 The border Property

CSS allows you to put borders around the box enclosing any HTML element.
The general form is

style="border: WIDTH STYLE COLOR"

where

• WIDTH is one of thin, medium, thick, or is a distance measured in pixels
(e.g. 10px,) or absolute units, e.g. 0.1in, 1cm, 8.2mm, 2pt, 0.3pc.

• STYLE is one of none, dotted, dashed, solid, double, groove, ridge,
inset, outset

• COLOR is a color as specified in the color property discussed above.

For example, we can specify a heading with a thin, solid, blue border as follows:

<h1 style=
"border: thin solid blue; font: 24 sans-serif">

Greetings
</h1>

Observe that the order of the width, style, and color parameters is not impor-
tant.

3.7 The width, height Property

These two properties refer to the size of the box that contains the element. These
can be expressed in distance units (as with the WIDTH property of borders
above). The width can also be exrpessed as a percentage (being interpreted as
a percentage of the width of the parent element.) For example, the following
code creates a 1x2 inch blue box:

<div style="width:1in; height:2in;
background: blue; color:black">

</div>

3.8 The margin and padding Properties

The padding is the distance between the border of an element and the content.
The margin specifies the distance between the parent and the border of an

3.9. THE VERTICAL-ALIGN AND TEXT-ALIGN PROPERTIES 43

element. These can be expressed as lengths or as percentages of the parent
elements width. You can express a single distance for the padding of all four
sides (top, right, bottom, left) as

<li style="padding:0.5in">first example

Or you can specify a separate padding for each, in the order top, right, bottom,
left.

<li style="padding:0.1in,0.2cm,0.3in,10px">second example

The margins are specified in the same way:

<li style="margin:0.5in">first example
<li style="margin:0.1in,0.2cm,0.3in,10px">second example

3.9 The vertical-align and text-align Proper-
ties

The horizontal alignment can be specified to be one of the following left,
right, center, justify. For example, a centered heading is specifed by

<h1 style="text-align:center;
font: bold 24pt sans-serif">Greetings

Finally, the vertical alignment of an HTML element can be specified to be one
of baseline, sub, super, top, text-top, middle, bottom, text-bottom or a
percentage (which is relative to the interline width and can be negative for
lowering an element). For example, you can lower an image by

3.10 Other CSS Capabilities

There are several more CSS properties (especially having to do with text, para-
graph indenting, etc.), but these are the most common ones.

3.11 Using CSS via the Class attribute

In this section we show how to give names to styles in the “head” element of a
webpage. This allows you to define the style once and then use it many places.

There are three ways of naming a style. You can either assign the style to an
entire html tag (e.g. p) in which case it is applied whenever that tag appears.
Or you can can give it a class name that can be used with any tag. The NAME in
this case should start with a period (.) as in .toocool. Finally, you can name
the style with both an HTML tag and a class name, as in p.toocool. In case

44 CHAPTER 3. CSS

of conflicts, the most specific specification is used, e.g. p.toocool style will be
used in a paragraph with the toocool attribute. Likewise, the bland style will
be used in a bland paragraph. Finally, note that the style names can be any
name you wish to create. The names must begin with a letter and contain only
letters, digits, and dashes (-).

The style definitions can go into the head element of the html tag for exam-
ple, the following code defines a “toocool” class and uses it for a heading and a
sentence:

<html>
<head><title>test</title>
<style type="text/css" media="screen">
<!--
.toocool {background:black; color:red}
p {background:white; color:red}
p.toocoll {background:black; color:white}
.bland {background:white; color:black}

-->
</style>

</head>
<body>
<h1 class="toocool">Cool page
This is neat and
this is too cool!
<p> This is a normal paragraph with CSS style</p>
<p class="toocool">This uses the special toocool-paragraph
style</p> and
<p class="bland">This is a bland paragraph</p>

</body>
</html>

The style file has the form:

NAME {STYLE-SPEC}
NAME {STYLE-SPEC}
NAME {STYLE-SPEC}

where the STYLE-SPEC is a specification of the style as we have seen for inline
CSS.

The ”media” specification in the style tag allows you to specify different
styles for different media. Current media include ”screen” for usual webpage
browsing, ”print” for printing, and ”aural” for screen readers.

You can also store the CSS in a separate file and link it to the current page
using a “link” tag in the head:

<html>
<head><title>test</title>
<link rel="stylesheet" href="demo.css" media="screen">

3.11. USING CSS VIA THE CLASS ATTRIBUTE 45

</head>
<body>
<h1 class="toocool">Cool page</h1>
This is neat and
this is too cool!

</body>
</html>

The final interesting use of CSS is that one style sheet can import one or more
style sheets, creating a cascading effect. This is done with the @import directive
in the style file or style definition, e.g.

<html>
<head><title>test</title>
<style type="text/css" media="screen">
<!--
@import url(http://www.whitehouse.gov/css);
.toocool {background:black; color:red}

-->
</style>

</head>
<body>
<h1 class="toocool">Cool page</a\h1>
This is neat and
this is too cool!

</body>
</html>

46 CHAPTER 3. CSS

Part II

Dynamic Web Site Design

47

Chapter 4

Scheme Servlets

In this chapter we explain how to develop interactive web pages. These pages
will typically prompt the user for some information (using a web form or a
hyperlink) and then will generate a new web page, based on the user input.
They may also perform other actions such as read/writing information on the
servers disk, sending email, or accssing a database.

The language we use to specify these interactive web pages is a simple com-
bination of Scheme, HTML, and CSS. For most of the examples in this section,
the scheme will be used in relatively simple ways and hence you will not need to
know much about the language itself beyond the few examples we demonstrate
below. In Chapter ??, we will give a full introduction to Scheme and you can
then use that to build even more complex servlets.

4.1 Dynamic Content and Scheme Servlets

The key idea behind servlets is that they provide a way to generate dynamic
webpages, that is webpages in which the HTML is different each time someone
visits it. Servlets can be specified in many different languages. In this book, we
will look closely at servlets specified in Scheme.

To run these servlets you will need to have access to a server which has a
Scheme webapp. The appendix explains how to download and install such a
server. If someone can provide you access to a Scheme server then you will not
need to download and install the server yourself.

Once you have access to a server, you create a scheme servlet simply by
creating a file in the ”webapp” folder and adding the suffix ”.servlet” to the file
name. When someone tries to view that file, the server will read the code that
you have written in the ”.servlet” file and will use that code to generate a new
webpage which is then sent back to the user.

Let us now consider a few simple examples of Scheme servlets. These exam-
ples are not very useful by themselves but they allow us to explore the ”idea”
of Scheme servlets in a simpler context. The first example is the following pro-

49

50 CHAPTER 4. SCHEME SERVLETS

gram which simply returns the date. We assume this is stored in a file named
”date.servlet” stored in the ”scheme” folder of the server directory. This file
contains the following lines:

; date.servlet -- returns the current time and date
; lines beginning with a semicolon are comments
(Date.)

The first two lines are comments (as they begin with a semicolon) and so are
ignored by Scheme. The second line is a Scheme expression which returns the
current local date and time1. To view this servlet, one must visit the URL:

http://MY.DOMAIN.EDU:8080/scheme/date.servlet

where MY.DOMAIN.EDU is the domain name of the scheme server you are using.
If you have installed a Scheme server on your home computer, then you can use
the IP address of your home computer in place of MY.DOMAIN.EDU or you can
use the ”self-loop” IP address

127.0.0.1

which always refers to the computer itself. Visiting this address with a standard
browser will bring you to page that contains the current time and date:

Sun Jan 20 07:46:44 EST 2002

The expression (Date.) is an example of a Scheme expression. It is an invoca-
tion of the Date. procedure with no arguments.

4.2 Arithmetic Expressions in Scheme

Another simple example of a servlet is the following which we assume is stored
in a file named sumToTen.servlet:

; sumToTen.servlet -- this returns the sum of 1 to 10
(+ 1 2 3 4 5 6 7 8 9 10)

When one visits this servlet with a browser, the server evaluates this expres-
sion and applies the addition operator + to the arguments that follow it in the
parenthesized list. The result that is return to the browser is the number

55

In a way the scheme server can be viewed as a calculator, where you put the
expression you want to compute into a file and when you view the file with a
browser it will evaluate that expression and return your answer. A slightly more
complex example is the following:

1Actually, (Date.) returns a ”Date” object representing the current time and date. This
Date object is turned into a string representing the date in the local dialect.

4.2. ARITHMETIC EXPRESSIONS IN SCHEME 51

; hypotenuse34.servlet -- this returns the length
; of the hypotenuse of a right triangle who other sides
; have length 3 and 4
(sqrt (+ (* 3 3) (* 4 4)))

This servlet contains a more complex scheme expression with four operators (two
multiplication operators ”*”, one addition ”+”, and one square root ”sqrt”).
The Scheme server evaluates such an expression by first evaluating the innermost
expressions (* 3 3) and (* 4 4) to get 9 and 16 respectively. These values
are subsituted back into the expression to yield the simpler expression:

(sqrt (+ 9 16))

Next the sum is evaluated to yield 25 which is substituted back into the expres-
sion to get:

(sqrt 25)

which evaluates to

5.0

and this is sent back to the browser.
Scheme provides a large set of arithmetic operators including the following

(+ a b ... c) addition
(- a b) subtraction
(* a b ... c) multiplication
(/ a b) division
(sqrt a) square root
(exp a) exponential function
(log a) natural logarithm
(sin a) sine (in radians)
(cos a) cosine (in radians)
(tan a) tangent (in radians)
(asin a) arcsin
(acos a) arccosine
(atan a) arctangent
(round a) rounds to the nearest integer
(expt a b) raise a to the b power

Exercise 2 What is the result of evaluating the following Scheme expressions:

(* 1 2 3 4 5)
(+ 5 (* 3 (+ 6 (* 7 2))))
(+ (* 1 1) (* 2 2) (* 3 3) (* 4 4) (* 5 5))

52 CHAPTER 4. SCHEME SERVLETS

4.3 Interacting with HTTP headers

Another example of a servlet is the following which sends back a message to the
browser (using the HTTP protocol) telling it to visit another page instead:

(.sendRedirect response "http://www.nsf.gov")

Visiting this page in a browser will bring you directly to the web page of the
National Science Foundation. In this example, the scheme expression that is
evaluated has an operator .sendRedirect and two operands: response and
"http://www.nsf.gov". The first operand is a special one that refers to the
page that is sent back to the browser. The second operator is a string of char-
acters which is indicated by the enclosing double quotes. There are two other
”special” symbols used by the scheme server: request and httpservlet. The
request symbol can be used to get information about the current request. For
example, the IP address of the browser that is visiting the current page can be
returned using the following servlet:

; yourURL.servlet
(.getRemoteAddr request)

Visiting this page with your browser will return your current IP address. If you
are running the server on your own machine, it will probably return the ”loop
back” IP address:

127.0.0.1

You should try the examples in this section with your own server and browser.

Exercise 3 Try out servlets that report on the client’s CPU and operating sys-
tem using the Scheme calls

(.getHeader request "ua-os")
and

(.getHeader request "ua-cpu")

4.4 Quasi-strings

The simplest type of useful servlet is one which just returns the same HTML
each time to the user. These servlets are written as standard HTML files except
that the file name must end in ”.servlet” and the HTML ust be enclosed in a
pair of curly braces.

{<html><head><title>Simple servlet</title></head>
<body>
<h1> This is a simple servlet</h1>
it has no dynamic content!

</body>
</html>

}

4.4. QUASI-STRINGS 53

Note that if you want to include any curly braces in your webpage you have to
put backslashes in front of them2.

{
<html><head><title>Simple servlet</title></head>
<body>
Like this \{ and this \}

</body>
</html

}

A slightly more interesting servlet is one that display the current local time.
This is done by including the text

[(Date.)]

at the point in the web page where you want the current time and date to
appear.

; date.servlet -- this returns a page with the date/time
{
<html>
<head><title>Current Time and Date</title></head>
<body>

The current local time and date is

[(Date.)]

(This page is powered by Scheme servlets!)
</body>

</html>
}

The square braces “[“ and “]” in the date.servlet servlet tell the server that
the element they enclose is a Scheme expression that should be run to get its
value. That value is then inserted directly into the page. Returning to the
date.servlet example, if you then visit the URL

http://SERVER.DOMAIN:8080/scheme/date.servlet

you will get a web page that contains the following text:

The current local time and date is
Sun Jan 20 07:46:44 EST 2002
(This page is powered by Scheme servlets!)

Clearly, one can create a more interesting page by using CSS and more HTML
markup.

2The backslash indicates that the following character is to be viewed as just a character.

54 CHAPTER 4. SCHEME SERVLETS

Exercise 4 Modify the date.servlet example above to include more sophisticated
HTML and CSS, then visit the page and hit the refresh button several times. You
should notice that the time changes each time you hit the refresh button.

Exercise 5 Write a servlet that displays a random number using

[(Math.random)]

This scheme expression generates a random decimal number between 0.0 and
1.0. If you want a whole number between say 0 and 100, then you can use the
following expression instead:

[(round (* 100 (Math.random)))]

By multiplying the random number by 100, we get a decimal number between 0.0
and 100.0. The round operator then rounds that number to the nearest whole
number in the range 0 to 100.

Exercise 6 What is the result of evaluating the following Scheme expressions:

{ 3 + 4 = [(+ 3 4)] }
{ [(* 3 3)] - [(+ 2 5)] = [(/ 4 2)] }
{ A day contains [(* 24 60 60)] seconds!}

As mentioned above, the curly braces in a servlet {} indicate that the en-
closed text is to be sent verbatim to the client, except that text enclosed in
square braces

is first evaluated to get some ”interesting” value which is then inserted into the
text. This curly brace/square brace notation is called quasi-string notation. It
is another example of a Scheme expression.

4.5 Quasi-strings and string-append

The general form of a quasi-string expression is as follows:

{...text...[A].....
...text...[B].....
....
...text...[C].....}

The rule for evaluating such an expression is to first evaluate the embedded
Scheme expressions A, B, ..., C, and then to insert the values one obtains in the
corresponding places in the string. There is a Scheme function string-append
which can be used to achieve a similar effect, e.g. instead of writing:

{the sum of 5 and 7 is [(+ 5 7)] the difference is [(- 5 7)]}

one could write

4.6. SERVLET PARAMETERS 55

(string-append
{the sum of 5 and 7 is }
(+ 5 7)
{ the difference is }
(- 5 7))

both of these return the string

"the sum of 5 and 7 is 12 the difference is -2"

Thus, the quasi-string notation is just a short-hand for the string-append
expression.

4.6 Servlet parameters

Next we show how to create a simple kind of interactive web page in which you
can pass values to the servlet which will then be used to generate the webpage
returned to the browser.

Our first example is the following simple echo servlet

; echo.servlet -- this returns the value of the
; servlet parameter "a"
(servlet (a)
a)

If we visit the URL

http://SERVER.DOMAIN:8080/scheme/echo.servlet?a=HELLO!

Then the server will call the echo.servlet and will pass it the parameter string
?a=HELLO!. The expression

(servlet (a) EXPR)

will extract the string HELLO! and bind it to the variable a. It will then evaluate
the body (in this case a itself, which it returns to the browser. Thus, if we visit
this URL, we will get a page containing

HELLO!

Note that we would get the same result if we visited the following URL:

http://SERVER.DOMAIN:8080/scheme/echo.servlet?b=zz&a=HELLO!&c=7

This URL shows how to pass three values to a servlet. Our servlet is only
interested in the value for the parameter a so it ignores the other two parameters.

56 CHAPTER 4. SCHEME SERVLETS

4.7 The case expression

The echo servlet will behave poorly however if you don’t give it any parameter.
It will usually just cause the browser to hang. To rectify this problem, we can
use the following nicer echo servlet:

; niceEcho.servlet
(servlet (a)
(case a
((#null){Please add "?a=Hi" to the URL and hit return})
(("Hi") {Good job. Now try "?a=Hello"})
(("Hello") {Great. Now try "?a=ANYTHING"})
(("ANYTHING") {OK, OK. Now try something more original})
(("original" "something") {Are you trying to be funny?})
(else {You just typed [a]})))

If one visits this page without an ”a” parameter, then the value assigned to ”a”
by the servlet will be the special value ”#null” and it will return some instruc-
tions about how it should be called. Otherwise, it will look at the value passed
in for ”a” and if it matches one of the quoted expressions ”Hi”, ”Hello” etc. it
will return the corresponding expression. Note that ”original” and ”something”
both trigger the same response ”Are you trying to be funny?”. If no match is
found, then the servlet just echoes back what the user entered.

The case expression in general has the form

(case a
((value1) result1)
((value2 value3) result2)
...
(else lastresult))

When the case expression is evaluated, the Scheme system tries to find the first
match of a with one of the values. When a match is found, the corresponding
result expression is evaluated. If no match is found then the else clause
applies and the lastresult expression is evaluated. The niceEcho.servlet
shows how to use the case to support an interaction between the user and the
servlet.

Exercise 7 What is the result of evaluating the following Scheme expressions:

(case "b"
(("a" "c") "hello")
(("b" "d") "goodbye")
(("a" "b") "wow")
(else "darn"))

(case (* 2 2)
((1 3 5 7 9) "odd digit")

4.8. PROCESSING NUMBERS USING SERVLETS 57

((0 2 4 6 8) "even digit"))

Next we give an example of a servlet that handles many parameters:

;multiEcho.servlet
(servlet (color name age)
{
<html><head><title>multiEcho</title></head>
<body style="background:[color]">
<h1> Hi [name], so you are [age] years old!</h1>

</body>
</html>
}

)

If this servlet is accessed by visiting the ”multiEcho.servlet” URL with the
following parameter string:

?name=Tim&age=46&color=lightgreen

Then the browser will return a lightgreen page with an h1 heading containing
the text

Hi Tim, so you are 46 years old!

Note that the order in which the parameters appear in the URL or in the
parameter list of the servlet does not matter.

4.8 Processing numbers using servlets

Let us now revisit and extend some of the first servlets we considered above. For
example, lets generalize the hypotenuse servlet to handle any triangle provided
we enter the lengths of the two other sides.

One way to write this servlet is the following:

; hypotenuse.servlet
(servlet (a b)
(case (a)

((#null) {Enter data by adding "?a=3&b=4" to the URL})
(else {The right triangle with sides of length [a] and [b],

has a hypotenuse of length
[(sqrt (+ (* a a) (* b b)))]})))

The servlet parameters a and b must be numbers or else the servlet will generate
an error! We will discuss methods for dealing with user input errors in a later
section on ”error checking”. For now, we assume that the user will follow
instructions and enter numbers when they are expected.

58 CHAPTER 4. SCHEME SERVLETS

Exercise 8 Write a servlet ”sumtoN.servlet” which finds the sum of the num-
bers from 1 to N using the formula

1 + 2 + 3 + . . . + N = N ∗ (N + 1)/2

and use it to find the sum from 1 to 100 (You should get 5050).

Exercise 9 Write a servlet ”tip.servlet” which calculates the tip required for a
meal assuming that you tip at the 15% rate.

4.9 Giving names to values using let*

When processing complex formulas it is often helpful to break the formula into
pieces and to give names to each individual piece. For example, the body mass
index provides a rough measure of whether your are overweight. The formula
consists of dividing your weight in kilograms by the square of your height in
meters. The following servlet computes your BMI by first converting your weight
in pounds to your weight in kilograms, and your height in inches to your height
in meters, then it applies the formula:

; BMI.servlet
(servlet (w h)
(case w
((#null) {Enter data using ?w=170&h=68})
(else
(let* (

(k (/ w 2.2)) ; weight in kilograms
(m (/ h 39.36)) ; height in meters
(bmi (/ k (* m m)))
)

{If your weight is [w] pounds

and your height is [h] inches,

 Then your BMI is [bmi].

Note: a BMI over 30 is considered
medically dangerous}))))

The let* expression above provides temporary names k, m, and bmi for the
computed values. The general form of a let* statement is

(let* (
(var1 Expr1)
(var2 Expr2)
...
(varn Exprn)

)
Expr)

4.10. THE IF FORM AND CONDITIONAL EXECUTION 59

where the Exprs are evaluated and stored in the corresponding variables var1,....
These variables are then used in the final Expr to compute the value returned
by the let* expression. The key points to note here are that each variable can
be used to define the values of the following variables, but none of the variables
has a value outside of the let*. Note: there is also a let expression which is
almost exactly the same, except that the defined variables cannot depend on
each other.

Exercise 10 Write a servlet that uses a let* expression to compute the area
of a triangle whose sides are a, b, and c using the following formula:

A =
√

(s− a)(s− b)(s− c)s

where s = (a + b + c)/2 is the semiperimeter. You should try this with a = 3,
b = 4, and c = 5. These are the sides of a 3-4-5 right triangle and so the areas
should be half of base times width, which is 0.5 ∗ 3 ∗ 4 = 6.

4.10 The if form and conditional execution

As a final example of these simple servlets, we now consider a liquor test servlet
which determines whether you can buy liquor in Massachusetts.

; liquorTest.servlet
(case (age)
((#null) {Enter your age by appending ?age=19 to the URL})
(else
(if (< age 21)

{Sorry, you have to wait [(- 21 age)] years before
you can buy alcohol here.}
{You’ve been able to buy liquor here for [(- age 21)]
years})))

This servlet uses the (if TEST THEN ELSE form to test whether the buyer’s age
is 21 or higher. This form first evaluates the TEST. If the result is false, it then
evaluates the ELSE code, otherwise it evaluates the THEN code. This example
also introduces the comparison operator <. Scheme has a rich set of operators
for creating tests. The numeric comparison operators you can use are

(< a b) -- true if a is less than b
(<= a b) -- true if a is less than or equal to b
(> a b) -- true if a is greater than b
(>= a b) -- true if a is greater than or equal to b
(= a b) -- true if a is equal to b
(!= a b) -- true if a is not equal to b

In addition, the arguments a and b can be arithmetic expressions (like (/ age
10)).

You can also combine tests using the and, or, and not operators, e.g. to test
if someone is ”college age” you could use the following expression:

60 CHAPTER 4. SCHEME SERVLETS

(and (<= age 22) (>= age 16))

To test whether someone is ”not” college age, you could use either

(not (and (<= age 22) (>= age 16)))

or

(or (> age 22) (< age 16))

which are equivalent for any numeric value of age.

Exercise 11 What is the result of evaluating the following Scheme expressions:

(if (< 5 (* 2 4))
(* 23 20)
(- 18 5))

(if (> (+ 23 9) (* 6 5))
{Cool! [(+ 23 9)] rules!}
{Hmmm, [(* 6 5)] is biggest})

Exercise 12 Write a servlet that determines whether someone is a senior cit-
izen by testing if their age is at least 60.

4.11 The cond form and multiple tests

Sometimes one wants to combine several tests and do something different for
each of the possible test results. For example, one might want to classify some-
one as a child, teenager, adult, or senior citizen based on their age. The simplest
way to do this is using the cond form, as in the following servlet

; ageClassifier.servlet
(servlet (age)
(cond
((< age 13) "child")
((< age 20) "teenager")
((< age 60) "adult")
(else "senior citizen")))

The cond expression consists of several ”clauses” each of which begins with a
test. If the test is true, then the rest of the clause is evaluated. Otherwise,
testing continues with the next clause. The very last clause should always be
an ”else” clause which applies to all remaining cases. The tests can be simple
comparisons as shown above, or can be very complex expressions.

Exercise 13 Write a servlet which computes the tip given the cost of the meal
and a number between 0.0 and 10.0 representing the quality of service. You
should use a cond to determine whether to leave no tip, a 5%, 10%, 15%, or
20% tip based on the service number.

4.12. HTML FORMS AND SERVLET PARAMETERS 61

4.12 HTML Forms and Servlet Parameters

So far we have been forced to pass parameters to a servlet explicitly by encoding
them in a parameter string which we then append to the servlet’s URL. In this
section we show how to use the form tags in HTML to do this for us.

HTML forms provide a mechanism for soliciting information from the user
and sending it to the server. Lets first look at a simple example. The following
servlet generates an HTML form the first time the user visits a page. Once the
user fills out the form and presses ”submit,” the data is sent back to the same
servlet which then processes the data. In this case it just computes the age of
the user in millions of seconds!

; ageCalc.servlet
(servlet (age)
(case age
((#null)

{<html><head><title>Age Calculator Form</title></head>
<body>
<form method="get" action="ageCalc.servlet">
Enter your age in years:
<input type="text" name="age">

<input type="submit">
</form>

</body></html>})
(else
{<html><head><title>Age Calculator Form</title></head>

<body>
If you are [age] years old, then

Your have lived for
[(* age 365.25 24 60 60 0.000001)]
million seconds
</body></html>})))

Try this servlet yourself. At age 31 one is about a billion seconds old. The
form element contains attributes that specify which “server” the information
should be sent to (action) and how the information should be sent (method).
The method can be either get or post. The get method encodes the arguments
into a parameter string which is then attached to the URL, just as we have done
by hand in the previous sections. The post method passes the parameters using
another method in which they do not appear on the URL. This is safer (as the
parameters are not visible on server logs) and allows for larger parameters than
is possible with the get method. The action specifies where the data should be
sent.

Exercise 14 Modify the ageCalc servlet so that it also gets the user’s name,
and uses it in the response page.

62 CHAPTER 4. SCHEME SERVLETS

There are three main HTML elements for getting input from the user: input,
select, and textarea. Each of these elements must have a name parameter
which gives a name to the data that is sent to the server. The server will then
use this name to determine how to handle the data.

The input element The input element has several variants including check-
boxes, textfields, and file browers. We describe the most common variants below.
All of these variants have the following form:

<input type=TYPE name="NAME" value="VALUE" size=SIZE>

Observe that there is no close tag for the input element. The type attribute
can have one of the following values: text, password, checkbox, radio,
submit, reset, file, hidden, image, button.

The text and password variants create a textfield in which the user can enter
characters. The initial size is SIZE characters and the textfield is initialized with
the string of characters in ”VALUE”. The password variant displays asterisks
for each character typed by the user.

The checkbox and radio variants create checkable buttons. If a button
is checked, then its ”VALUE” will be sent to the server. Several buttons can
have the same name, in which case the server will receive several values for that
name. The radio variant allows the user to check at most one of the buttons
that share the same name.

The submit variant sends the data to the server when it is pressed and the
reset variant sets all fields in the form to their initial values.

The last four are more specialized and won’t be discussed in detail here: file
is used for selecting a file on the users disk, hidden is an element that doesn’t
appear on the webpage (but still specifies a value to be sent to the server), image
specifies a graphical submit button, and button is used for client-side scripting,
which we do not discuss here.

The textarea element This element is used for soliciting multiline input
from the user, it has the form

<textarea name=NAME rows=ROWS cols=COLS>
initial text goes
here

</textarea>

In addition to the name, you must specify the size of the textarea in rows and
columns.

The select element The select element is used to provide a fixed list of
choices from which the user must choose. It has the form:

<select name=NAME size=SIZE multiple>
<option value=V1> A1</option>

4.13. SUMMARY OF SCHEME SYNTAX 63

<option value=V2> A2</option>
...
<option value=Vn> An</option>

</select>

If the multiple keyword is present in the attribute list of the select element,
then the user is allowed to select several of the options simultaenously; otherwise,
the user can only select one. The value attributes in the option elements are
sent to the server if the item is selected. If there is no value attribute then the
text between the option tags is sent in its place.

Exercise 15 Rewrite all of the examples given in the earlier sections of this
Chapter using HTML forms to get the information from the user instead of
requiring the user to explicitly encode the information in the URL.

Exercise 16 Write a servlet which first generates a form containing all of the
form tags given above. The servlet should echo back all of the information
collected (and may add some commentary if you want).

4.13 Summary of Scheme Syntax

Figure 4.1 hows all of the Scheme expressions we have seen in this chapter and
Figure 4.2 shows the Scheme procedures we have encountered thus far.

64 CHAPTER 4. SCHEME SERVLETS

S-expressions where the Ei are numbers, strings, or S-expressions.
(E0 E1 ... Ek)

Quasi-strings where Ei are S-expressions

{....[E1]....[E2]....[En]....}

Servlets where E is an S-expression

(servlet (a b ...)
E)

Case-based execution where the Ci are constants and the Ei are expres-
sions.

(case E0
((C1) E1)
((C2 C3 C4 C5) E2)
...
(else E))

Simple tests where TEST, THEN, ELSE are expressions.

(if TEST THEN ELSE)

Multiple tests where Ti are tests and the Ei are expressions.

(cond
(T1 E1)
(T2 E2)
...
(else E))

Local Variable Binding where the Vi are variables and the Ei are expres-
sions.

(let* ((V1 E1)
(V2 E2)
...
(Vn En))

E)

Figure 4.1: Summary of Scheme Syntax

4.13. SUMMARY OF SCHEME SYNTAX 65

Logical operators:
(and T1 T2 ...)
(or T1 T2 ...)
(not T)

Arithmetic operators:

(+ a b ...) (- a b) (* a b ...) (/ a b)
(sqrt a) (exp a) (log a) (sin a) (cos a) (tan a)
(asin a) (acos a) (atan a) (round a)

Comparison operators:

(< a b) (> a b) (<- a b) (>- a b) (= a b) (!= a b)
(equal? a b)

Java procedures:

(Date.)
(Math.random)
(.getHeader request "....")
(.getRemoteAddr request)
(.sendRedirect response URL)

Figure 4.2: Scheme procedures seen so far

66 CHAPTER 4. SCHEME SERVLETS

Chapter 5

Examples of Scheme
Servlets

In this chapter we present several, increasingly more interesting, examples of
Scheme servlets. Each servlet will introduce a few more concepts about Scheme
servlets. Hopefully, by the end of the chapter you will begin to understand how
to create your own Scheme servlets.

5.1 Password-protected pages

It is often useful to restrict the audience that has access to any given webpage.
One way to restrict access is to require the users to enter a password before they
can gain access to any other pages on the site. In this first example, we show
how to create a simple password protected page that uses one password for all
users. A more interesting application would allow users to register and select
their own password, but we will get to that later.

The servlet is Figure5.1 shows our servlet. The first time a user visits this
page, there will be no form data (and the ”pw” variable will have the value
#null, which is a Scheme constant representing an empty object. In this case,
a form will be generated. If the user fills out the form and presses the submit
button, the servlet will then read an non-null value from the ”pw” parameter.
If the password is correct, the secret page will be displayed otherwise, the user
will be prompted for the correct password again!

Security Warning – note this servlet is not very secure because the source
code contains the password. Generally, the source code will not be visible to
the outside world, but if you make a backup copy of your servlet and store it
in some file that doesn’t end in ”.servlet” (say ”.txt” or ".servlet~") then the
server will assume that the file is just text and will let anyone see the contents
of this file. It is very common for editors to make exactly this kind of a backup
file and hence by editting a file in your servers webapp folder, you could let
everyone see the password!

67

68 CHAPTER 5. EXAMPLES OF SCHEME SERVLETS

; pwpage.servlet
(servlet (pw)
(case pw

((#null)
{<html><head><title>Password Form</title></head>
<body>
<h1>Please enter the correct password below</h1>
[(java.util.Date.)]

<form method="post" action="pwpage.servlet">
Please enter the password for this page:
<input type="password" name="pw" size=20>

<input type="submit">

</form>
</body>

</html>})

(("yes! scheme")
{<html><head><title>Secret Page</title></head>
<body>
<h1 style="font: bold 24pt Times,serif">
Welcome to the secret page

</h1>
The door combination is 6-20-5

</body>
</html>})

(else
{<html><head><title>Password Form</title></head>
<body>
<h1>Wrong password, go back and try again</h1>

</body></html>})))
))]

Figure 5.1: A simple Password Protected Page

5.2. COUNTERS AND FILES 69

There are various techniques for getting around this, but the general lesson
is that passwords are not helpful unless they are very carefully hidden! We will
discuss security in more detail later.

There are other ways of restricting access beside asking for a password.
Restricting access to certain IP addresses is a common way of creating an
”intranet”-like interface for your servlet. For example, Brandeis University
”owns” all IP addresses have the form

129.64.*.*

where the two asterisks represent any integers between 0 and 255. One can test
whether the user’s IP address is from Brandeis using the following test:

(.startsWith (.getRemoteAddr request) "129.64.")

Similarly, one can restrict access to computers running the MacIntosh Operating
System or to all IP address except a few ”forbidden” ones.

5.2 Counters and Files

Next we show how to create servlets that read and write to files on the server.
Some of the simple applications this enables are servlets that contain counters,
and servlets that allow you to leave a message.

We first consider the problem of implementing a servlet that keeps track of
how often it has been visited. There are many strategies one can employ for
such counters. For this example, we will write a servlet ”counter.servlet” that
stores its count in a file called counter.servlet count.

The code for the ”counter.servlet” servlet is in Figure 5.2. This servlet
introduces a few new ideas. First of all, it relies on a small library ”files.scm”
of scheme procedures for reading and writing to the count file. We assume that
this file is loaded when the server is first started up.

The servlet must first load the library before it can use the special counter
library procedures. This is done using the ”load” procedures

(load "webapps/scheme/lib/forms.scm")

Also, since the servlet now does two things:

• update a counter and

• generate a webpage,

we must use a feature of the let* expression that we haven’t mentioned so far
– the ability to do several things before computing the value to be returned by
the expression. The general form of the let* is

(let* ((V1 E1)
(V2 E2)
...

70 CHAPTER 5. EXAMPLES OF SCHEME SERVLETS

; counter.servlet
(let ((count

(+ 1
(read-from-file (servlet-file request "count") 0))))

(write-to-file (servlet-file request "count") count)

{<html><head><title>counter</title></head>
<body style="background:white; color:black">
<h1> You are visitor number [count]</h1>

</body> </html>}
)

Figure 5.2: A simple counter program

(Vn En))
F1
F2
...
F

)

where the Ei are evaluated first and their values stored temporarily the variables
Vi, then the expressions Fi are evaluated and finally the value of expression F is
returned.1 The only reason we would evaluated the Fi is that they have some
side-effect like writing something into a file on the disk or sending an email
message, or updating a database, etc.

This servlet illustrates the use of three new procedures:

• (read-from-file FILENAME DEFAULT-VALUE) this reads a scheme terms
from the specified FILENAME, and if no such file exists then it returns
the DEFAULT-VALUE instead.

• (write-to-file FILENAME VALUE) this writes the specified VALUE to
the specified FILE, and if the FILE does not already exist then it creates
it.

• (servlet-file request "XYZ") – this returns the file-path of the cur-
rent servlet with the suffix ” XYZ” appended to it. This file-path can be
used to read or write to this new file. The advantage of this is that the
servlet can be moved to another place on the server and will create a use
a counter in the same directory! This is very similar to the advantages of
using relative file names rather than explicit URLs when writing websites.

1Actually, one can have several expressions between Vi and Ei as well, and these expressions
are evaluated sequentially.

5.3. LOG FILES 71

; this is in the file "logger.servlet"
(let ((logdata (read-string-from-file

(servlet-file request "log")
""))

(current-entry {[(Date.)]: [(.getRemoteAddr request)]}))

(append-to-file (servlet-file request "log") current-entry)

{<html><head><title>logger</title></head>
<body style="background:white; color:black">
<h1> The list of previous visitors to this site is </h1>
<pre>[logdata]</pre>

Your entry is <pre>[current-entry]</pre>

</body>
</html>}

)

Figure 5.3: A simple log servlet

5.3 log files

In this next example, we show how to create a servlet that generates an entry
in a log file for each time the servlet is visited. The logger servlet in Figure 5.3
is quite similar to the counter servlet above.

We begin by appending the current date and time to the logfile ”

logger.servlet_log

Instead of “writing” to the counter file, we “append” to the log file. Then we
read the logfile and store it in the ”logdata” variable which we include in the
HTML file sent back to the user.

This servlet uses two new procedures for reading/writing files:

• (read-string-from-file FILE DEFAULT-VALUE) – this reads the entire
contents of the file as a string of characters, and if the file does not yet
exist it returns the DEFAULT-VALUE instead.

• (append-to-file FILE VALUE) – this appends the specified VALUE to
the next line of the specified FILE. If the file does not already exist then
it creates it.

Also note that the current-entry is created using quasi-string notation. We
could just as easily have implemented it using string-append as follows

(string-append (Date.) ": " (.getRemoteAddr request))

which may even be easier to read in this example.

72 CHAPTER 5. EXAMPLES OF SCHEME SERVLETS

{<html>
<head><title>table demo</title> </head>
<body style="background:blue; color:black;

text-align:center">
<h1> Office hours</h1>
<table cellpadding=10 cellspacing=5 border=5

style="background:white">
[(trs "" ’(
(time mon tue wed thu fri sat sun)
(9 th - - th - - -)
(10 - aj - - - - -)
(11 - aj - - - - -)
(12 - aj - - - - -)
(1 - - - - - ef ef)
(2 - - - - - ef ef)
(3 - - - - - - -)
(4 - - rs rs rs - -)
))]

</table>
</body></html>}

Figure 5.4: A simple table servlet

5.4 Scheme Tables and Lists

Next we give an example of using Scheme to create HTML tables. This will
turn out to be quite useful when we are working with databases, as the answer
to a database query often takes the form of a table. Figure 5.4 gives an exam-
ple of creating an HTML table from a list using the trs procedurfe from the
”tables.scm” library (which we assume has been preloaded by the server).

The new Scheme idea we need to use here is the notion of a list which is
represented in Scheme by placing a single quote (’) in front of an S-expression.
The effect is for Scheme to treat the S-expression as ”data” and, in particular,
not to try to evaluate it.

One of the most powerful features of Scheme is that it allows you to work
in this way with lists of data in a relatively simple way. You can create a list of
the weekdays by putting a single quote in front of a parenthesized sequence of
symbols:

’(mon tue wed thu fri)

The single quote indicates to the Scheme interpreter that the following term is
just “data” and should not be “evaluated. ” For example,

(+ 1 2 3)

evaluates to 6, but

5.5. LISTS AND QUASI-QUOTED LISTS 73

’(+ 1 2 3)

evaluates to the list (+ 1 2 3).

Exercise 17 Create the following servlet

; thisisalist.servlet
’(string-append "this" "is" "a" "list")

and see what happens when you visit this servlet with and without the initial
single quote (’). Try other S-expressions with and without quotes. In fact, you
can put a quote in front of any of the previous servlets you’ve created and see
what happens. Try to write a simple explanation for what is going on.

Scheme lists can contain sublists and this is a convenient way of representing
a table of data, e.g.

’(
(name age sex)
(john 22 male)
(jiri 20 male)
(anzy 18 female)
(miri 17 female)
)

To make this into a table we use the ”trs” procedure defined in the ”tables.scm”
library. This procedure takes a list of lists (one for each row) and creates a ”tr”
element for each of these lists.

5.5 Lists and Quasi-quoted lists

You can also create lists using the list procedure, e.g.

(list
(list {Hello there} (+ 1 2 3 4 5))
(list {Goodbye} (* 1 2 3 4 5)))

Note that this expression evaluates to

’(("Hello there" 15) ("Goodbye" 120))

You can also have the same effect using a back quote ”‘” instead of a single
quote (’), and then putting a comma (,) in front of those expression you want
to be evaluated. This is called quasi-quote notation. In our case, we could write
the previous example as:

‘(("Hello there" ,(+ 1 2 3 4 5))
("Goodbye" ,(* 1 2 3 4 5)))

74 CHAPTER 5. EXAMPLES OF SCHEME SERVLETS

5.6 Automated Email

Our final example of basic servlets demonstrates how to write a servlet that
sends email. Again, here we assume that the library ”mail.scm” has been
preloaded. The code for this library is in the appendix. This library defines
the send-mail procedure which is called as follows:

(send-mail request TO FROM SUBJECT TEXT)

Here TO, FROM, SUBJECT, and TEXT are strings.
For example, to send mail to jj@xyyaz.com from ”me@uzw.com” you would

write

(send-mail
request
"jj@xyyaz.com"
"me@uzw.com"
"This is a test"
{ Cool, this really works and I can include

scheme expressions like this:
[(* 111 111)] is 111 squared! })

The ”to” and ”from” email addresses can come from the servlet parameters (for
sending confirmation email for example). You should avoid using ”fake” return
addresses as this is annoying and the email can often be easily traced back to
you anyway!

The structure of a servlet that generates a form and then uses the form data
to send several emails is as follows:

(servlet (user-email a b c)
(case user-email

((#null) {... generate form to get email, a, b, c
from user and send it back to this servlet})

(else
; first we send email to the user and the owner
(send-mail request email "OWNER@XYYAZ.COM"

"Thanks" {Thanks for visiting XYYAZ at [(Date.)]})
(send-mail request "OWNER@XYYAZ.COM" SUBJECT
{date="[(Date.)]\n email=[email]
a=[a] \n b=[b]\n c=[c]})

; finally we send back a confirmation webpage
{Thanks for visiting XYYAZ.com})))

The key point here is that the confirmation webpage must be the last expression
in the ”else” clause, as this is what the server will return to the user after
evaluating the else clause of the case.

5.6. AUTOMATED EMAIL 75

; SurveyMail.servlet
(servlet (email birthyear favcol)
(case email
((#null)
{<html><head><title>Survey Input Form</title></head>
<body>
<h1>Please enter the data listed below</h1>
<form method="post" action="SurveyMail.servlet">
<table border=5 cellpadding=5 cellspacing=5>
[(trs
(list
(list {Your email address}

{<input type="text" name="email">})
(list {Your birthyear}

{<input type="text" name="birthyear">})
(list {Your favorite color}

{<input type="text" name="favcol">})))]
</table>
<input type="submit">

</form>
</body></html>})

(else
(send-mail request "tjhickey@cs.brandeis.edu" email

"survey results"
(list (java.util.Date.) email birthyear favcol))

;; and finally generate the survey confirmation
{<html><head><title>email survey</title></head>
<body style="background:white; color:black">
<h1> Thanks [email]

for completing the survey</h1>
</body></html>})))

Figure 5.5: An Email survey servlet

76 CHAPTER 5. EXAMPLES OF SCHEME SERVLETS

5.7 Redundancy, Refactoring and Abstraction

One of the weak points of HTML as a language is that it provides only limited
means for addressing the problems of redundancy in web pages. An example will
help illustrate this problem. Consider the HTML in Figure 5.6 which generates
a web page listing posters for sale. Each poster has an associate image file, a
title, and a price. The webpage has a fairly complex collection of HTML for
each poster in which these three elements are embedded (and the tax and total
price also appear in the HTML for each poster). Only the first two posters are
shown in this HTML, but one can imagine a website with hundreds of posters
for sale, all using the same ”template.”

With cut-and-paste technology, it is fairly easy to add a new poster to the
page. Just copy the HTML for an existing poster, calculate the tax and total
price for the new poster, and change the five fields in the HTML. There are two
problems with this approach. First, the need to do so much cutting and pasting
creates opportunities for making mistakes (e.g., forgetting to close HTML tags,
miscalculating the tax, etc.). Secondly, and more importantly. If one want to
change the way in which the posters are presented, one must change each of
the poster entries by hand. We call this the redundancy problem. If you have
redundancy in your HTML, then you might make copying errors, and if you
need to change the HTML, you may have to change all the redundant code
(again opening up opportunities for copying errors).

The CSS technology provides some relief for this problem if you are only
interested in changing the style – rather than include the style directly in the
HTML for each poster, one adds class attributes to the tags and then imports
a CSS page to define the style. If one must make structural changes, the CSS
appproach offers no help (e.g. if the tax rate changes or if one wants the images
in the center instead of the left).

In this section, we introduce the notion of abstraction as a way of handling
the redundancy problem. The idea is to create a ”template” which contains all
of the HTML for each poster, except that the values that change are replaced
by variables. One then defines this template at the beginning of the servlet and
then uses the template to generate the HTML for each poster. This template
is called an abstraction of the original HTML, and the process of going from
a redundant webpage one that uses an abstraction is called refactoring.

Lets walk through the process for this particular example. First, we define
a procedure poster which abstracts the HTML for each poster entry in Figure
5.6 using three parameters name, imagefile, and price:

(define (poster name imagefile price)
{<div style="background:rgb(0,150,150)">
<table width="100%"><tr><td>

</td><td>

5.7. REDUNDANCY, REFACTORING AND ABSTRACTION 77

<html><body style="background:white; color:red">
<h1> Posters for Sale</h1>

<div style="background:rgb(0,150,150)">
<table width="100%"><tr><td>

</td><td>
<h1 style="background:lightgreen">The Dew</h1>
</td><td>
Cost: $15.00

Tax: $0.75
Total: $15.75

</tr></table>

</div>

<div style="background:rgb(0,150,150)">
<table width="100%"><tr><td>

</td><td>
<h1 style="background:lightgreen">Abstract #17</h1>
</td><td>
Cost: $13.5

Tax: $0.675
Total: $14.175

</tr></table>

</div>

....

</body></html>

Figure 5.6: A Posters Sale site

78 CHAPTER 5. EXAMPLES OF SCHEME SERVLETS

<h1 style="background:lightgreen">[name]</h1>
</td><td>
Cost: $[price]

Tax: $[(* price 0.05)]
Total: $[(* price 1.05)]

</tr></table>

</div>

})

After this procedure has been defined, it can be invoked by supplying the desired
values for the three parameters. The server uses these values to generate the
HTML in the template, which is then inserted into the page. For example, the
full refactored servlet is shown in Figure 5.7.

One can actually make one more refactoring by using the map procedure
discussed earlier. The idea is to use the apply procedure which allows us to
apply the poster procedure to the list of its arguments, hence we can rewrite
the body of the Posters page as

(servlet ()
(define (poster ...) ...)

(define (make-poster L) (apply poster L))

{<html><body style="background:white; color:red">
<h1> Posters for Sale</h1>
[(map make-poster
’(
("The Dew" "dew.jpg" 15.00)
("Abstract #17" "foil.jpg" 13.50)
("Childhood Remembered" "sueno.jpg" 20.00)
("A Cat’s Eye ViewTable" "table.jpg" 16.00)
("A Covey of Toys" "toys.jpg" 13.00)
...))

]
</body></html>}

The advantage of this final refactoring is that one can then store the poster data
in a separate file (or a database) and thereby completely separate the HTML
from the data.

5.7. REDUNDANCY, REFACTORING AND ABSTRACTION 79

(servlet ()
; insert some code here
(define (poster name imagefile cost)
{<div style="background:rgb(0,150,150)">
<table width="100%"><tr><td>

</td><td>
<h1 style="background:lightgreen">[name]</h1>
</td><td>
Cost: $[cost]

Tax: $[(* cost 0.05)]
Total: $[(* cost 1.05)]

</tr></table>

</div>

})

{<html><body style="background:white; color:red">
<h1> Posters for Sale</h1>
[

(poster "The Dew" "dew.jpg" 15.00)
(poster "Abstract #17" "foil.jpg" 13.50)
(poster "Childhood Remembered" "sueno.jpg" 20.00)
(poster "A Cat’s Eye ViewTable" "table.jpg" 16.00)
(poster "A Covey of Toys" "toys.jpg" 13.00)
...

]
</body></html>}

)

Figure 5.7: A Posters Sale site

80 CHAPTER 5. EXAMPLES OF SCHEME SERVLETS

Part III

Reactive GUI Programming

81

Chapter 6

Graphical User Interface
Design in Scheme

In the previous chapters we have been concerned with server-side web program-
ming in which the client interacts with the server using a browser. We used
HTML with CSS to create the Graphical User Interface (GUI). The browser
and the server communicate using the HTTP protocol, the responses to the
users input are specified using Scheme.

In this section we consider another approach to web programming in which
the Graphical User Interface is provided by a Scheme program rather than the
browser. The communication is done by sending Scheme expressions back and
forth between clients, and the responses to user input and to communication
input is specified using Scheme.

Web programming, as we discuss in the next few chapters, provides a more
interactive style of programming than is possible with web pages and servlets.
We will focus on writing ”reactive” programs in which each user interaction
triggers a response consisting of some fixed number of operations. This paradigm
includes a large number of interesting examples.

6.1 Intro to the JLIB toolkits

We begin with a introduction to a simple toolkit for building graphical user
interfaces (i.e. windows, buttons, menus, etc.) The applets we consider will
pop up one or more windows and allow the user to enter data, press buttons,
connect to databases on the server, chat with other users, etc.

For example, the program in Figure 6.1 is stored in a file ”hello.applet”
and if you visit this file with your browser. You will see a page that contains the
five lines of comments describing the program and its author, and your browser
is Java-enabled, it will pop up a window with the word “greetings” at the top
in red letters with a Helvetica Bold 60pt font, and a button labelled “goodbye”
beneath. When you click on the button, the window disappears.

83

84 CHAPTER 6. GRAPHICAL USER INTERFACE DESIGN IN SCHEME

"Greeting"
"Tim Hickey"
"http://www.cs.brandeis.edu/~tim"
"This pops up a greeting window"
"http://www.cs.brandeis.edu/~tim/hickey.new.gif"

(jlib.JLIB.load)
(define win
(window "hello"
(col
(label "Greetings"

red (HelveticaBold 60)
(button

"goodbye"
(action (lambda(e) (.hide win))))))))

(.pack win)
(.show win)

Figure 6.1: hello.applet

If you change the filename from hello.applet to hello.snlp, and if you
have installed the Java Web Start plug-in1 then the browser will download the
program as a Java Web Start application and it will again pop-up a window as
before. The difference with Java Web Start is that the next time you visit that
link, the browser will only download the program if there has been a change in
the code. If not, then it will use the version it has stored on your disk. Moreover,
you can disconnect your computer from the net and still run the stored copy of
the program.

The program if Figure 6.1 illustrates a number of features of the JLIB toolkit.
First, observe that it defines three components:

• a label

• a button, and

• a window.

Each of these components has a string written somewhere on it (“Greetings”,
“goodbye”, and “hello” respectively). The label has also been given a specified
color and font, and the button has been given an action. The relative position
of the label and button has been specified by the col layout procedure, which
states that the label and button should appear in a column. Finally, the
action on the button causes the window to disappear when the button is
pushed. The last two commands are (.pack win) which does the window layout

1http://java.sun.com/products/javawebstart

6.2. OVERVIEW OF THE JLIB TOOLKITS 85

and determines the precise minimum size of the window so that everything just
fits inside it. The (.show win) command makes the window appear.

Although this little program does quite a bit (requiring a paragraph to de-
cide), the code for the program is relatively concise. Each word that appears
in the program has a particular effect (except for the lambda(e) which we will
explain later). By replacing col with row we would get a horizontal layout, and
by replacing label with button our greeting would be able to take an action.

6.2 Overview of the JLIB toolkits

The key idea of the JLIB toolkit is to use the flexibility and expressiveness
of Scheme to create a GUI-building library which allows complex GUIs to be
built by evaluating a simple and declarative expression whose structure closely
resembles the structure of the GUI itself.

The JLIB model is based on five fundamental concepts:

• COMPONENTS – there are a small number of ways to construct basic
components (buttons, windows, ...)

• LAYOUTS – there are a small number of ways to layout basic components
(row, col, table, grid, ...)

• ACTIONS – there is a simple mechanisms for associating an action to a
component

• PROPERTIES – there are easy ways for setting the font and color of
components

• TAGS – this is a mechanism for giving names to components while they
are being laid out.

Another key idea is that operations on all components should be as uniform
as possible. For example, there are procedures ”readstring” and ”writestring”
which allow one to read a ”string” from a component, and write a string onto
a component. Thus ”writestring” can change the string on a label, a button, a
textfield, a textarea. It can also change the title of a window or add an item to
a choice component. Likewise, readstring returns the label of a button, the text
in a textarea or textfield, the text of the currently selected item in a choice, the
title of a window, and the text of a label.

Similarly, JLIB is designed so that the component and layout constructors
require a few initial arguments of specified types, followed by many optional
arguments which may apper in any order and whose types are used to determine
their effect.

For example, a font object will change the font of the component, a color
object will change the background color, a Listener object will add an action
listener to the component, a string will generally become the label of the object.

We introduce each of these components in turn. As we go through these
examples you should try them out yourself in a Jscheme interpreter window.

86 CHAPTER 6. GRAPHICAL USER INTERFACE DESIGN IN SCHEME

Feel free to write variations of the programs we show here. This will help you
learn how to ”think” in Scheme. Programming is a skill that is best learned by
doing rather than by reading alone.

6.3 Windows

Window are the most basic component of Graphical User Interfaces. All other
components must appear inside a window and any particular GUI might use
several different windows (e.g. help windows, ”about” windows, file selection
windows, warning windows, editting windows).

The most basic window contains just a title (which is a string that usually
appears in the title bar). The following code creates a window with the title
”Hello”, sets is size to be 300 pixels wide by 400 pixels high, and makes it appear
on the screen:

(define w (window "Hello"))
(.resize w 300 400)
(.show w)

Note that we have used the ”define” syntax to give the name ”w” to the window.
This name is need when we resize the window and make it visible in the following
two expressions. We will see many more windows below, so we don’t dwell any
further on them at this point.

6.4 Labels

A label is a component used to display some text on the GUI. For example, the
following program creates a window with the text ”Hello” in the titlebar and
the phrase ”Hello again” in the inside of the window:

(define w (window "Hello" (label "Hello again")))
(.resize w 300 400)
(.show w)

The first argument of the ”label” procedure must be the string that will appear
on the label. We will see below that one can also specify the font and the color
of a label by adding more arguments to the ”label” procedure.

6.5 Fonts

There are nine built-in fonts that you can use in the JLIB library, and for each
font you can pick any font size (as long as it is a positive whole number). These
fonts are:

(Helvetica 23) (HelveticaBold 100) (HelveticaItalic 12)
(TimesRoman 29) (TimesRomanBold 88) (TimesRomanItalic 9)
(Courier 33) (CourierBold 32) (CourierItalic 33)

6.6. COLORS 87

For example, the following program extends our previous example, by specifying
that the text on the label should be displayed in a 60 point bold-face Helvetica
font:

(define w
(window "Hello"

(label "Hello again" (HelveticaBold 60))))
(.pack w)
(.show w)

The (.pack w) expression changes the size of the window so that it is just large
enough to fit the label.

One can also specify other fonts using the Font. procedure. This requires
you to specify the name of the font, the style (bold, italic, plain), and the size
(in points).

(define w
(window "Hello"

(label "Hello again"
(Font. "New Century Schoolbook" Font.BOLD$ 32))))

(.pack w)
(.show w)

The style is specified by using one of the following style names:

Font.BOLD$
Font.Plain$
Font.Italic$

The name of the font is a string (enclosed in curly braces), and the point size
is any positive integer. Note: this will cause an error if you ask for a font that
the computer does not have access to.

6.6 Colors

There are several ways to specify colors. The simplest is to use one of the named
colors. The current set of named colors for JLIB is

white, lightGray gray darkGray black
red pink orange yellow green magentan cyan blue

You can also specify a color by specifying how much red, green, and blue light
should be mixed to form the color:

(color RED GREEN BLUE)

where RED, GREEN, BLUE are numbers between 0 and 255. Note that this is
additive color mixing which is quite different from the subtractive color mixing
of paints. For example to get yellow you mix red and green, to get white you
mix red, green, and blue. Some of the color mixes are shown below:

88 CHAPTER 6. GRAPHICAL USER INTERFACE DESIGN IN SCHEME

yellow (color 255 255 0)
white (color 255 255 255)
black (color 0 0 0)
blue (color 0 0 255)
lightblue (color 200 200 255)
darkblue (color 0 0 150)

You can set the background of a label (or any other component) just by including
the color as one of the arguments of the label. Continuing with our running
example, we can make the label yellow as follows:

(define w
(window "Hello"

(label "Hello again" (HelveticaBold 60) yellow)))
(.pack w)
(.show w)

6.7 Tabular Layouts

So far we have considered windows containing a single label. We now look at
four procedures for specifying the layout of multiple components in a window.
Although these layouts can be applied to any component, we will stick with
labels for simplicity.

The first two layouts we discuss are the row and column layouts. The row
procedure arranges its arguments horizontally across the window. The col
procedures arranges its arguments vertically. For example, the following code
produces a window with labels ”red”, ”green”, ”yellow”, and ”blue” having the
same color as their label, laid out horizontally across the window:

(define w
(window "Hello"
(row
(label "red" red)
(label "green" green)
(label "yellow" yellow)
(label "blue" blue))))

(.pack w)
(.show w)

By swapping ”col” for ”row”, the labels would be arranged vertically.
The row and col procedures also take additional arguments which specify

what should happen when the window is resized. One possibility is to have the
components in the row stay the same size even though the window grows. On
the otherhand, one might want the components in the row to expand as the
window expands (the expansion can be horizontal, or vertical, or both). To
specify this expansion property one adds one of the following to the row or col
argument lists:

6.7. TABULAR LAYOUTS 89

none
horizontal
vertical
both

If the components do not expand horizontally and vertically, the one must spec-
ify how they should be placed inside the row or col. There are several choices,
listed below:

north northeast northwest east west
south southeast southwest center

So, we can modify the running example and have the labels in the row stay the
same size, and be centered in the row, as follows:

(define w
(window "Hello"
(row ’none ’center white
(label "red" red)
(label "green" green)
(label "yellow" yellow)
(label "blue" blue))))

(.pack w)
(.show w)

Note that one must precede the specifiers with a single quote. Also observe that
we can specify the color of the row – this is the color of the space between the
components in the row.

One can also lay components out in a tabular form with R rows and C
columns. There are two procedures for doing this:

(grid R C)
(table R C)

The difference between them is that each of the cells in the grid is exactly the
same size, where as in the table the cells may vary in size. Continuing with our
example, we can make a table of four labels as follows:

(define w
(window "Hello"
(table 2 2
(label "red" red)
(label "green" green)
(label "yellow" yellow)
(label "blue" blue))))

(.pack w)
(.show w)

90 CHAPTER 6. GRAPHICAL USER INTERFACE DESIGN IN SCHEME

Likewise we could use a ”grid” in place of ”table” in this example. Try it and
see how they differ.

There is one other major layout mechanism that is quite useful – the border
layout. This layout allows one to put five components on a page. They can go
in the north, south, east, west, and center. When the window is resized, the
center component grows (or shrinks) horizontally and vertically, while the other
components stay near the edges. For example, we could extend the previous
example, by putting the table in the center of a border layout with labels in the
four other positions:

(define w
(window "Hello"
(border
(center
(table 2 2
(label "red" red)
(label "green" green)
(label "yellow" yellow)
(label "blue" blue)))

(north (label "north" white))
(south (label "south" yellow))
(east (label "east" green))
(west (label "west" red))

)))
(.pack w)
(.show w)

This example also shows how layouts can be ”nested.” Notice that we have put
a table in the ”center” of the border layout. Likewise, we could put a table or
a column in the east or west of the border. Or we could put a grid inside one
of the table entries.

Exercise 18 Build several GUIs with colored labels as above. Try to create
layouts that are nested several levels deep and see what happens when you expand
and contract the window.

6.8 Buttons

Buttons are similar to labels except that you can attach ”actions” to them.
These actions are carried out when the button is pushed. The following program
creates a window with four buttons, but these buttons have no actions associated
with them. WHen you press them they change color slightly to indicate that
they have been pressed, but nothing else happens.

(define w
(window "Hello"
(row ’none ’center white

6.9. ACTIONS 91

(button "big" red)
(button "small" green)
(button "just right" yellow)
(button "gone" blue)

)))
(.pack w)
(.show w)

6.9 Actions

One of the most important arguments to components is the “action” argument
which specifies what to do when the component is selected (e.g. when a button is
pushed or a menuitem selected, or a choice selected, or a textfield value entered).
The syntax for the action argument is:

(action (lambda (e) COMMANDS))

the “lambda” specifies that the “COMMANDS” are to be delayed until the
action is performed. The “e” represent the kind of event that triggered the
action. From the “e” variable we can get the time the action was triggered,
which component it came from, where the mouse was (for a mouse event), etc.

(define w
(window "Hello"
(row ’none ’center white
(button "big" red

(action (lambda(e) (.resize w 500 500))))
(button "small" green

(action (lambda(e) (.resize w 10 10))))
(button "just right" yellow

(action (lambda(e) (.pack w))))
(button "gone"

(action (lambda(e) (.hide w))))
)))

(.pack w)
(.show w)

Observe that we add an action to a button by adding a term of the following
form to its argument list:

(action (lambda(e)))

where the ”....” represents some scheme code that will be executed when the
button is pushed.

92 CHAPTER 6. GRAPHICAL USER INTERFACE DESIGN IN SCHEME

6.10 Choice components

The choice procedure produces a component that allows the user to choose from
a fixed set of choices. The choice components often will use a ”case” expression
in their action argument as this allows the program to take different actions
based on the particular choice that was made. The first several arguments of
the choice component are strings that the user is able to choose among. The
remaining optional arguments are the color, font, and actions (in any order).

The following GUI lets the user make a choice of size for the window.

(define w
(window "Hello"

(choice "big" "small" "just right" "gone"
(action (lambda(e)
(case (readstring (.getSource e))
(("big") (.resize win 500 500))
(("small") (.resize win 10 10))
(("just right") (.pack win))
(("gone") (.hide win))

))))))
(.pack w)
(.show w)

This example shows one way of implementing an action that depends on the
choice taken by the user. The tricky part is the

(readstring (.getSource e))

The ”e” in this case is the ”event” that occurs when the user selects a choice. The
”.getSource” procedure determines the component that generated that event (in
this case, the choice), and the ”readstring” reads the string labelling that choice.
The rest of the action is a ”case” expression that selects the appropriate action
based on the user’s choice.

6.11 Tags and Naming

As we will see it is often useful to be able to give names to components (for
example if we want to read from or write to a component, we must have a way
of refering to it).

The “Tag” mechanism provides a simple way to name and refer to objects.
A tagger is created using the following expression

(let ((t (maketagger)))
EXPR)

This creates a tagger “t” which can be used in the following expression. To
assign a name ”abc” to an object ”X” you use the syntax:

6.11. TAGS AND NAMING 93

(t "abc" X)

to lookup the object whose name is ”abc”, you use the syntax

(t "abc")

For example, the choice example above could have been rewritten to avoid the
user of .getSource as follows:

(define t (maketaqger))
(define w

(window "Hello"
(t "size"
(choice "big" "small" "just right" "gone"
(action (lambda(e)
(case (readstring (t "size"))
(("big") (.resize win 500 500))
(("small") (.resize win 10 10))
(("just right") (.pack win))
(("gone") (.hide win))

)))))))
(.pack w)
(.show w)

Notice that the choice expression is an argument of a call to the tagger. When
the action is invoked, the expression (t "size") refers to the choice component
itself and hence has the same effect as (.getSource e). Yet another way to
write this program is to give the choice component a name using the define
syntax:

(define sizechooser
(choice "big" "small" "just right" "gone"

(action (lambda(e)
(case (readstring sizechooser)
(("big") (.resize win 500 500))
(("small") (.resize win 10 10))
(("just right") (.pack win))
(("gone") (.hide win))

)))))

(define w
(window "Hello"
sizechooser))

(.pack w)
(.show w)

Observe that the name sizechooser is used both in the action, where we need
to read the user’s choice, and it is used in the window when we want to add the
choice to the window.

94 CHAPTER 6. GRAPHICAL USER INTERFACE DESIGN IN SCHEME

Of the three versions shown above, the last has the disadvantage of requiring
components to be defined outside of their context. Thus, when the sizechooser
component is defined, you don’t know where it will be appearing.

6.12 Textfields and Texareas

Textfields and Textareas provide places for users to write text. They are created
as follows:

(textfield "initial text" 30 ...)
(textarea 10 30 ...)

The first two arguments of the textfield expression are required and they specify
the initial string and the width (in columns), respectively. Likewise, the first
two arguments of the textarea expression are required and specify the number
of rows and the number of columns, respectively. Textfields can also take an
action (which will be invoked when the user hits the enter key).

The following program shows how to write use a textarea to store and display
the program’s responses to the user. In this case, the user selects choices of
languages, and the program appends ”Hello” in that language into the textarea?

(define ta (textarea 10 50)); 10 rows and 50 cols
(define w

(window "Hello"
(col
(choice "English" "Spanish" "Japanese"
(action (lambda(e)
(case (readstring (.getSource e))
(("English") (.append ta "Hello\n"))
(("Spanish") (.append ta "Hola\n"))
(("Japanese") (.append ta "Konichi-wa\n"))

))))
ta)))

(.pack w)
(.show w)

Here we have named the textarea ta using a define expression? and the ex-
pression

(.append ta "TEXT")

has the effect of adding the ”TEXT” to the end of the textarea
Observe that each of the three choices result in something being written

to a textarea, we can make a slight change to this program to eliminate this
redundnacy by movingb the case inside the writeexpr, as follows:

(action (lambda(e)
(.append ta

6.13. A CHAT APPLET 95

(case (readstring (.getSource e))
(("English") "Hello\n")
(("Spanish") "Hola\n")
(("Japanese") "Konichi-wa\n")

))))

This version is preferable because by removing the redunancy, we also remove
oppurtunities for making mistakes. If we wanted to change this program so
that instead of appending to the textarea it just erased the previous contents
wrote the ”TEXT” by itself, this could be done by replacing .append with
writestring. In the first version, one would have to make this replacement for
each of the clauses of the case expression. In the second version, one only makes
one change.

6.13 A Chat Applet

This next example (Figure 6.2) shows an IM-like interface for talking with an
electronic psychiatrist. The GUI consists of a central textarea for displaying the
conversation (in an IM-like manner), together with a textfield at the bottom for
the user’s responses

(define t (maketagger))
(define w (window "doctor silicon"
(border
(center

(t "ta" (textarea 10 60
"Hello. Why don’t you tell me how you are feeling today?")))

(south
(table 1 2
(label ">> ")
(t "user" (textfield "" 60 yellow (action (lambda(e)

....the action goes here....
)))))))))

(.pack w)
(.show w)

This psychiatrist randomly picks out responses from a short list every time
you enter your own sentence. Observe that the GUI has exactly one action,
which is applied when the user hits return after typing in a response.

(action (lambda(e)
(appendlnexpr (t "ta")

(string-append
"\n\n Client: "
(readstring (t "user"))
"\n\n Doctor: "
(respond (readstring (t "user")))))

96 CHAPTER 6. GRAPHICAL USER INTERFACE DESIGN IN SCHEME

(jlib.JLIB.load)
(define (random N) ;return random number between 0 and N
(.intValue (Math.round (* N (Math.random)))))

(define (respond sentence)
(case (random 10)
((0) "Relax. Tell me about your first memories.")
((1) "I’m a computer. You can tell me anything!")
((2) "Are you often depressed?")
((3) "What is your deepest darkest secret?")
((4) "If you want help, youhave to open up!")
((5) "Good. Now we are getting somewhere.")
((6) "Ummmmm. Go on.")
((7) "I see. Can you elaborate.")
((8) "No. I just can’t believe that.")
(else "Hmmm, interesting, please continue.")))

(define t (maketagger))
(define w (window "doctor silicon"
(border
(center

(t "ta" (textarea 10 60 "Hi. How are you today?")))
(south
(table 1 2
(label ">> ")
(t "user"
(textfield "" 60 yellow
(action (lambda(e)
(.append (t "ta") "\n Client: ")
(.append (t "ta") (readstring (t "user")))
(.append (t "ta") "\n Doctor: ")
(.append (t "ta") (respond (readstring (t "user"))))
(.append (t "ta") "\n\n"))))))))))

(.pack w)
(.show w)

Figure 6.2: An IM window with a robot-Doctor

6.14. CALCULATOR PROGRAMS 97

(writeexpr (t "user") "")))

The action appends the user’s response to the center textarea (along with a
tag identifying it as the user’s sentence). It also generates a response to the
sentence, and appends that one as well to the centeral textarea (this time with
the ”doctor” label).

Observe the redundnacy in the action. Each line starts with the same
.append call. We can eliminate this redundancy by having just one call to
.append if we first append the five strings together using string-append. The
new action would become:

(.append (t "ta")
(string-append

"\n Client: "
(readstring (t "user"))
"\n Doctor: "
(respond (readstring (t "user")))
"\n\n"))

Yet another approach would be to use the ”quasi-string” notation that we saw
in our work on servlets. The action would then have the form:

(action (lambda (e)
(.append (t "ta") {

Client: [(readstring (t "user"))]
Doctor: [(respond (readstring (t "user")))]

})))

Recall that the curly braces {} are used to enclose text and that the expressions
in the square braces are evaluated to produce strings which are then inserted
into the text.

Exercise 19 Try extending the psychiatrist applet by adding more keyword lists
and more responses.

6.14 Calculator Programs

So far we have worked with programs that reading and write text from various
components. The following demo shows how to write programs that operate
with numbers. The key difference is that instead of using readstring we use
readexpr.

The program below doubles whatever the user types into the textfield. The
action is taken when the user hits the enter key:

(define w
(window "Hello"

(textfield "1" 20

98 CHAPTER 6. GRAPHICAL USER INTERFACE DESIGN IN SCHEME

(action (lambda(e)
(let* ((t (.getSource e))

(x (readexpr t))
(y (* 2 x)))

(writeexpr t y)))))))

(.pack w)
(.show w)

The first two arguments to ”textfield” are the initial contents (in this case the
number 1) and the size of the textfield (in columns). One can also set the font
and background color of the textfield.

6.15 Menus

Menus are constructed using three procedures menubar this contains a list of the
menus, menu this contains a string (the name of the menu) followed by menus
and menuitems, menuitem these contain strings labelling the menuitem. One
can also provide actions to be carried out when then menuitem is selected.

Below is a standard example of a File menu with a quit option that hides
the window. This also has GUI components for implementing a chat window
(although none of the needed actions are there!)

(define w
(window "Hello"
(menubar
(menu "File"
(menuitem "quit"
(action (lambda(e) (.hide w)))))

(menu "Help"
(menuitem "about")
(menuitem "documentation")))

(border
(north

(label "Chat Central" (HelveticaBold 40)))
(center

(textarea 10 50))
(south

(row
(label ">>")
(textfield "chat here" 30))))))

(.pack w)
(.show w)

Observe that each menu can have zero or more menuitems and can also contain
submenus.

6.15. MENUS 99

We illustrate the process of adding actions to a GUI by showing how to
attach actions to buttons and menuitems that make various windows appear
and dissappear. For example, we will add the ”quit” and ”about” menuitems
to a GUI. The idea is that when the user selects the ”quit” item, the main
window should disappear. This is done by adding the following expression into
the ”Quit” menuitem

(action (lambda(e) (.hide main)))

where ”main” is the name of the main window. When the user selects the
”about” item from the ”Help” menu, a window should popup that gives some
information about the program. This is done with a similar action, except that
we use .show instead of .hide.

We implement this sample program by first creating both the ”about” win-
dow and the main window, but we only ”show” the main window. When the
user clicks on the ”about” menuitem, the action should ”show” the ”about”
window. We also put an OK button on the ”about” window which will make
the window disappear when it is pressed.

The code for this program is below:

"AboutWin"
"Tim Hickey"
"http://www.cs.brandeis.edu/~tim"
"This demo shows how to show and hide windows in a GUI"
"http://www.cs.brandeis.edu/~tim/jscheme.gif"

(define lib (jlib.JLIB.load))

(define main
(window "About Window Demo"
(menubar

(menu "File"
(menuitem "Quit"
(action (lambda(e) (.hide main)))))

(menu "Help"
(menuitem "About"
(action (lambda(e) (.show aboutwin))))))

(border
(north (label "Multi-window Demo" (HelveticaBold 40)))
(center
(textarea 5 20

"Try clicking on the about and and quit menuitems")))))
(define aboutwin
(window "about"
(border
(center
(textarea 10 40 (color 255 245 235)

100 CHAPTER 6. GRAPHICAL USER INTERFACE DESIGN IN SCHEME

"
Title: AboutWin
Author: Tim Hickey
Home: http://www.cs.brandeis.edu/~tim
Description: This demo shows how to show/hide windows in a GUI
Icon: http://www.cs.brandeis.edu/~tim/jscheme.gif
"))

(south
(button "ok"

(action (lambda(e)
(.hide aboutwin))))))))

(.pack main)
(.pack aboutwin)
(.show main)

6.16 MoreCalculator Programs

Here we give a few more examples of programs that get numeric input from
components and use that to compute some numerical result. Our example is
the Fahrenheit to Celsius converter in Figure 6.3.

Lets look over this application. First, the GUI itself uses a border layout
with a menubar. The menubar has a File menu with a quit menuitem and when
the user clicks the quit item, the window is hidden.

(menubar
(menu "File"
(menuitem "quit"
(action (lambda(e) (.hide win))))))

The main part of the window has a label in the north, a labelled input textfield
in the center, and two buttons with actions in the south. The actions are the
trickiest part of this program. Lets look at them in detail.

(let* (
(f (readexpr (t "x")))
(c (* (/ 5.0 9.0) (- f 32.0)))

)
(writeexpr (t "x") c))

This action starts by reading the expression in the textfield (t ”x”). It then
uses that number, f, to compute the celsius equivalent. This is done by first
subtracting 32 and then multiplying the result by 5/9. Once f and c have been
computed, the value of c is written back onto the textfield with the ”x” tag.

Rather than using two buttons, we could have used a ”choice” component
as follows:

(t "operation" (choice "convert to F" "convert to C"

6.16. MORECALCULATOR PROGRAMS 101

"F to C converter"
"Tim Hickey"
"http://www.cs.brandeis.edu/~tim"
"This converts Fahrenheit to Centigrade"
"http://www.cs.brandeis.edu/~tim/hickey.new.gif"

(begin
(jlib.JLIB.load)
(define t (maketagger))
(define win (window "F to C Converter"
(menubar
(menu "File"
(menuitem "quit"
(action (lambda(e) (.hide win))))))

(border
(north (label "F to C Converter" (HelveticaBold 32)))
(center
(row
(label "temperature")
(t "x" (textfield "212" 20))))

(south
(grid 1 2
(button "convert to C" (action (lambda (e)
(let* (
(f (readexpr (t "x")))
(c (* (/ 5.0 9.0) (- f 32.0))))

(writeexpr (t "x") c)))))
(button "convert to F" (action (lambda (e)
(let* (
(c (readexpr (t "x")))
(f (+ 32.0 (* c (/ 9.0 5.0)))))

(writeexpr (t "x") f))))))))))
(.pack win)
(.show win)

Figure 6.3: FtoC.applet

102 CHAPTER 6. GRAPHICAL USER INTERFACE DESIGN IN SCHEME

(action (lambda(e)
(case (readstring (t "operation"))
(("convert to F")

(let* ((f (readexpr (t "x")))
(c (* (/ 5.0 9.0) (- f 32.0))))

(writeexpr (t "x") c)))
(("convert to C")

(let* ((c (readexpr (t "x")))
(f (+ 32.0 (* c (/ 9.0 5.0)))))

(writeexpr (t "x") f))))))))

The key points to notice here are that we use ”readstring” because the choice
labels have spaces in them and in the cases we use double-quotes around the
strings, for the same reason.

Exercise 20 Modify the calculator program so that it contains two textfields
(labelled F and C). Add actions to the textfields such that typing a number in
the F field and hitting return will write the equivalent Celsius temperature in the
C field, and vice versa.

Exercise 21 Write a program that computes the area of a triangle give then
length of its three sides. The formula, which holds for all triangles, is

area =
√

(s− a)(s− b)(s− c)s)

where the three sides have lengths a, b, and c and s is the semi-perimeter, defined
by

s = (a + b + c)/2

To do this in Scheme you will need to use the square root function sqrt. For
example, sqrt 16 returns 4.0.

6.17 Quizzes

The program in Figure 6.4 demonstrates the use of choice components and the
use of a ”case” expression in the action for the choice. There are a few points
to note here:

• We can read what is written in the ”choice” component by using
(readstring (.getSource e))
in the action. The e refers to the event that occurs when the choice is
selected, the call to .getSource returns the components that generated
that event (i.e. the choice itself), and readstring returns the string
written on the choice component.

• The cond expression allows one to generated different responses depending
on what the choice was selected.

6.17. QUIZZES 103

(define t (maketagger))
(define w
(window "quiz game"
(border

(north (label "Quiz Game" (HelveticaBold 32)))
(center
(col
(row
(label "What is the capital of Kenya")
(choice "Cairo" "Nairobi" "Sudan" "El Paso"
(action (lambda(e)

(let ((G (readstring (.getSource e))))
(writestring (t "response")
(cond
((equal? G "Cairo") "No, that’s in Egypt")
((equal? G "Nairobi") "Yes, good job!")
((equal? G "Sudan") "That’s a country!!")
((equal? G "El Paso") "Wrong hemisphere!")

)))))))

(row
(label "What is the capital of Bolivia")
(choice "Cairo" "Nairobi" "Sudan" "El Paso"
(action (lambda(e)
(let ((G (readstring (.getSource e))))
(writestring (t "response")
(cond
((equal? G "Cairo") "No, that’s in Egypt")
((equal? G "La Paz") "Yes, good guess?!")
((equal? G "Sudan") "That’s a country!!")
((equal? G "El Paso") "Wrong hemisphere!")

)))))))))
(south

(t "response"
(label "----------------------"))))))

(.pack w)
(.show w)

Figure 6.4: Quiz Game

104 CHAPTER 6. GRAPHICAL USER INTERFACE DESIGN IN SCHEME

• The responses are written into a label at the bottom of the quiz game.

Note that this example illustrates quite a bit of redunancy again. We can
eliminate some of this redundancy by trying to abstract out that which is the
same across each of the redundant versions and capture it in a procedure as
shown in Figure 6.5 This version has many advantages over the earlier one. In
particular, if one wants to change the layout of the quiz questions, the change
need only be made once (in the definition of quizzer). Also, the specification
of each quiz question contains only the minimal amount of information needed
(the questions and the ir responses).

6.18 Graphics

The simplest way to create graphics using JLIB is to use the canvas procedure
to create a panel for drawing on.

(define c (jlib.SchemeCanvas. 400 500))

The arguments to the canvas method specify the width and height in pixels.
There are several methods available for drawing on a canvas. They all require

that you use the ”graphics context” of the canvas which you get using

(.bufferg$ c)

The graphical operations you can use are:

(define g (.bufferg$ c))
(.setColor g (color R G B))
(.drawLine g x1 y1 x2 y2)
(.drawRect g x1 y1 w h)
(.drawOval g x1 y1 w h)
(.drawArc g x1 y1 w h a d)
(.fillRect g x1 y1 w h)
(.fillOval g x1 y1 w h)
(.fillArc g x1 y1 w h a d)

You can also draw a string S starting at location x,y using:

(.setFont g (Helvetica 12))
(.drawString g x y str)
\end{verbatgim}
General Polygons can be drawn by first creating a polygon from points, and then drawing or filling the polygon:
\begin{verbatim}
(define p (java.awt.Polygon.))
(.addPoint p x1 y1)
(.addPoint p x2 y2)

...
(.drawPolygon g p)
(.fillPolygon g p)

6.18. GRAPHICS 105

(define (quizzer Question A1 R1 A2 R2 A3 R3 A4 R4)
(row
(label Question)
(choice A1 A2 A3 A4
(action (lambda(e)
(writestring (t "response")
(let ((G (readstring (.getSource e))))
(cond
((equal? G A1) R1)
((equal? G A2) R2)
((equal? G A3) R3)
((equal? G A4) R4)))))))))

(define t (maketagger))
(define w
(window "quiz game"
(border

(north (label "Quiz Game" (HelveticaBold 32)))
(center
(col
(quizzer "What is the capital of Kenya"

"Cairo" "No, that’s in Egypt"
"Nairobi" "Yes, good job!"
"Sudan" "That’s a country!!"
"El Paso" "Wrong hemisphere!")

(quizzer "What is the capital of Bolivia"
"Cairo" "No, that’s in Egypt"
"La Paz" "Yes, good guess?!"
"Sudan" "That’s a country!!"
"El Paso" "Wrong hemisphere!")))

(south
(t "response"

(label "----------------------"))))))
(.pack w)
(.show w)

Figure 6.5: Quiz Game

106 CHAPTER 6. GRAPHICAL USER INTERFACE DESIGN IN SCHEME

"gdemo0"
"Tim Hickey"
"http://www.cs.brandeis.edu/~tim"
"Simple demo showing use of graphics in JLIB"
""

(jlib.JLIB.load)
(define c (canvas 400 400)) ;; a 400x400 area for drawing
(define w (window "graphics1"
(border
(center c)
(south
(row
(button "clear" (action (lambda(e) (run-it clear))))
(button "draw" (action (lambda(e) (run-it drawface))))

)))))

(define (run-it F) ;run animation and report errors
(define ta (textarea 10 60))
(define errwin (window "error" ta))
(.pack errwin)
(.start (Thread. (lambda()

(tryCatch (F) ; run graphics code F
(lambda(e) ; display any errors that arise
(writestring ta e) (.show errwin)))))))

(define (clear)
(define g (.bufferg$ c))
(.setColor g white)
(.fillRect g 0 0 1000 1000)
(.setColor g black)
(.repaint c))

(define (drawface)
(define g (.bufferg$ c)) ;; get graphics object of canvas
(.setColor g blue)
(.fillOval g 200 200 100 100) ;; draw a blue "face"
(.setColor g red)
(.fillOval g 220 220 10 10) ;; draw left "eye"
(.fillOval g 270 220 10 10) ;; draw right "eye"
(.fillOval g 220 260 60 30) ;; draw mouth
(.repaint c))

(.resize w 400 400)
(.show w)

Figure 6.6: A simple graphics program

6.19. SECURITY 107

Figure 6.6 gives an example of a simple graphics program. The GUI code
creates a ”canvas” for drawing on, and two buttons – one for clearing the screen
and one for drawing a face. Both procedures are called using the ”run-it”
procedure.

(define (run-it F) ;run animation and report errors
(define ta (textarea 10 60))
(define errwin (window "error" ta))
(.pack errwin)
(.start (Thread. (lambda()

(tryCatch (F) ; run graphics code F
(lambda(e) ; display any errors that arise
(writestring ta e) (.show errwin)))))))

The ”run-it” procedure starts the graphics running in a separate ”thread,” this
allows you to still interact with the program while the graphics are going on. Its
not too important in this case, but if we had a long animation (e.g. with a face
moving around the screen), you would want to be able to resize the window,
change its position, close it, etc, and for this you need the graphics to be running
”separately” from the rest of the program. The ”run-it” procedure also contains
a ”tryCatch” expression. This is used for catching in errors and reporting them
(in the lambda section).

The ”draw-face” procedure shows a straightforward use of the graphics com-
mands. The points to observe are that one must first get the graphics buffer
”g” of the canvas before drawing on it, and finally that one must call ”repaint”
at the end to make the changes visible. The ”repaint” command causes the
current contents of the buffer to be drawn onto the canvas all at once.

Exercise 22 You might try modifying this example to have the face move across
the page when a new ”move face” button is pushed. The idea is just to repeatedly
clear the buffer and call ”draw-face”.

6.19 Security

The software we discuss in this chapter can be run in a browser or independently
of a browser.

There are two approaches to running these programs in browsers. We assume
they are being served by the Jscheme webapp of the Tomcat server described
in the previous chapters.

If the program has the extension .applet it will be run as a java applet inside
the browser. It it has the extension .snlp, it will be run as a Java Web Start
application. In both of these cases, the program must begin with five lines of
comments:

program name
program author
URL of program website

108 CHAPTER 6. GRAPHICAL USER INTERFACE DESIGN IN SCHEME

one line description of program
URL of image to be used as icon for program

The programs can also be run directly from a command window using the
Jscheme archive file (jscheme.jar) which is available inside the webapps/scheme/lib
folder in the jscheme tomcat webapp. The command for running the chat.applet
is:

% java -cp jscheme.jar jscheme.REPL chat.applet

assuming that the jscheme.jar and chat.applet are in the same location.
The applet and snlp versions of the program will run in a ”sandbox”, which

is a protected run space that prevents the programs from viewing or modifying
any files on your computer. It also prevents the program from making certain
internet connections and puts other more subtle limits on the program.

When the program is run directly from the command window there is no
sandbox used by default.

The current JLIB primitives are listed below:

6.20 Summary of GUI building procedures

Components are created using the functions below. The optional arguments are
described in the next section and can be used to set the color, font, and other
properties of the component. The type of the argument is used to determine
how it affect the component.

* (window TITLE arg1 arg2 ...)
* (button STRING arg1 arg2 ...)
* (textfield STRING NUMCOLS arg1 arg2 ...)
* (textarea NUMROWS NUMCOLS arg1 arg2 ...)
* (choice arg1 arg2 ...)
* (label STRING arg1 arg2 ...)
* (canvas W H ...)
* (menubar NAME arg1 arg2 ...)
* (menu NAME arg1 arg2 ...)
* (menuitem NAME arg1 arg2 ...)

When you have more than one component in a window you need to decide where
each component should appear in the window and what should happen when
the window size is changed. These placement decisions are specified using layout
procedures which we will introduce as we go along.

Reading/Writing

• (readstring COMPONENT) – reads the text on a component as a string

• (readexpr COMPONENT) – reads the text on a component as a Scheme
term

6.20. SUMMARY OF GUI BUILDING PROCEDURES 109

• (writeexpr COMPONENT OBJ) – convert the object to a string and write
on the component

• (.append COMPONENT OBJ) – append the string to the text on the com-
ponent

Other Common Actions

• (.hide COMP) (.show COMP) hiding or showing a component (or win-
dow)

• (.pack WIN) (.resize WIN ROWS COLS) resizing a window

• (.setForeground COMP COLOR) (.setBackground COMP COLOR)

• (.setFont COMP FONT)

110 CHAPTER 6. GRAPHICAL USER INTERFACE DESIGN IN SCHEME

Part IV

Recursion and Algorithms

111

Chapter 7

Overview of Scheme

In this chapter we provide an overview of those parts of the Scheme language
that we have seen so far, in addition to a few aspects that have not yet been
covered. In the following Chapter we investigate the substitution model of
Scheme and discuss how to write more complex programs. This leads naturally
to a discussion of the limits of computation and we provide some examples of
explicit problems that can not be solved by computers (but may be solvable by
humans!)

7.1 Scheme expressions and values

Every Scheme program is a sequence of Scheme expressions where a Scheme
expressions is either a constant, symbol, quoted element, or a compound ex-
pression called an s-expressions.

The constants are numbers, double quoted strings (e.g. ”this is a string”),
single characters (e.g. #’a’, #’ ’), and boolean values (true is #t and false is
#f).

Symbols are typically sequences of printable characters (excluding spaces,
quotes, double quotes, parentheses, square brackets, or curly brackets). For
example, name, feet->meters, cool!!! are all symbols.

A quoted element is formed by putting a single quote (’) in front of the
object. For example, ’a ’’b ’1.234 are three quoted elements, the second
being a quote of a quoted element.

The constants and symbols of a Scheme program are combined together
using s-expressions, which are a kind of generalized list. A list is represented in
Scheme by enclosing the elements of the list in a pair of parentheses:

(element1 element2 ... elementk)

For example, () is the empty list, (1 2 3 4 5) is a list of numbers and (a b
"cool list" 2.718281828459045 -3 #t) is a list of various constants.

An S-expression is a list whose elements are either constants, symbols, quoted
elements, or s-expressions. For example,

113

114 CHAPTER 7. OVERVIEW OF SCHEME

(+ 1 2 (* 3 4 5) (/ (* 9 10) 15))

is an s-expression.

7.2 Evaluation

A Scheme program is a set of S-expressions and one ”runs” the program by
evaluating these expressions in order, from the first to the last. Evaluation of
an expression is a process in which the expression is transformed, possibly in
several steps, into a value.

7.2.1 Arithmetic

The simplest expressions to evaluate are the mathematical expressions. These
are combinations of numbers and mathematical operators. The rules for evalu-
ating such expressions are the following:

E1 One must evaluate the innermost expressions first

E2 In an expression (F A1 ... An), the expression F must evaluate to an
operator f (e.g. addition), and the expressions Ai must evaluate to values
ai. One then applies the operator f to the values a1, ..., an, to compete
the evaluation.

Thus, to evaluate an expression one first evaluates the innermost parenthesized
subexpressions and replaces them with their values1. This process is repeated
until no parentheses remain. For example, if we start with

(+ 1 2 (* 3 4 5) (/ (* 9 10) 15))

The innermost s-expressions are (* 3 4 5) and (* 9 10). These evaluate to
60 and 90, respectively, so the original expression evolves to

(+ 1 2 60 (/ 90 15))

Now the innermost expression is (/ 90 15) which evaluates to 6. Hence the
expression evolves to:

(+ 1 2 60 6)

This has no subexpressions and so the final evaluation yields

69

which is the result of evaluating the original s-expression.
The list of mathematical operators available in Scheme is shown in Figure

7.1.
1Technically, we should distinguish between the numerals 1,2,3,... and their values, but we

will gloss over this distinction for the time being

7.2. EVALUATION 115

(+ num num num ... num) ;; addition
(* num num num ... num) ;; multiplication
(- num num) ;; subtraction
(- num) ;; negation
(/ num num) ;; division
(sqrt num)
(sin num)
(cos num)
(tan num)
(asin num)
(acos num)
(atan num)
(exp num)
(log num)

Figure 7.1: Mathematical Operators in Scheme

7.2.2 GUI expressions and side-effects

The rules for the evaluation of simple GUI expressions are almost the same as
for arithmetic. As before one evaluates the innermost expressions first, but the
values are now graphical widgets. For example, to evaluate the expression

(.show
(window "test"
(menubar
(menu "File" (menuitem "quit"))
(menu "Help" (menuitem "about")))))

we first evaluate the innermost menuitems to get two menuitems which we
denote by MQ and MA respectively. Evaluating these expressions causes the win-
dowing system of the computer you are using to create two menuitem widgets
(and in the process assigning many default values, e.g. the font used, the back-
ground color, the border, the size, etc.) The creation of these menuitems is
called a side-effect of the evaluation of the expression. If you evaluate a single
menuitem, the Scheme system will return some textual representation for that
object. For example, evaluating

(menuitem "Quit")

might result in the following

java.awt.MenuItem[menuitem0,label=Quit]

Returning to our example, the expression evolves to

(.show
(window "test"
(menubar (menu "File" MQ) (menu "Help" MA))))

116 CHAPTER 7. OVERVIEW OF SCHEME

where MQ, MA are our representation of the menuitem objects that were created
in the previous step.

Now the menu expressions are innermost and the evaluate to two menu ele-
ments, say MF and MH, yielding

(.show (window "test" (menubar MF MH)))

The menubar expression evaluates to a menubar object MB:

(.show (window "test" MB))

The window expression evaluates to a window object W.

(.show W)

and the show expression evaluates to the special value #null and at the same
time makes the window appear on the screen.

7.3 Special Forms

There are about a dozen special forms in Scheme. These are expressions whose
evaluation rules differ slightly from the standard evaluation described above.
Most expressions (F A ... B) are evaluated by evaluating all of their compo-
nents F,A,...,B to get Scheme objects f,a,...,b and then applying f (which
must be a function) to the arguments a,...,b. Special forms usually postpone
the evaluation of some of their components until later. Once you know the spe-
cial forms and a reasonable subset of the primitives, you will find yourself able
to write substantial programs fairly easily.

7.4 define and symbol values

We have already seen that some Scheme symbols come with preassigned val-
ues, e.g. the arithemtic operators (+,-,*,/) and the mathematical functions
(sin,cos,...). Others can be given values by loading libraries. For example, load-
ing the JLIB library gives values to the window, menubar, and other procedures.

Users can directly assign values to symbols using the special form define.

(define NAME EXPRESSION)

For example, to compute the volume of a cylinder whose base is a circle of radius
10 and which has height 34 we can evaluate the following expressions.

(define pi 3.141592653589793238462643383276)
(define area10 (* pi 10 10))
(define cylvol (* area10 34))

This binds area10 to the area of the base, and cylvol to the volume of the
cylinder.

7.5. LAMBDA AND ANONYMOUS FUNCTIONS 117

7.5 lambda and Anonymous functions

Scheme also lets one define functions and assign them to symbols. For example,
evaluating the following expression binds the symbol square to the function
that squares its input value.

(define (square x) (* x x))

To handle these user definitions we must add a new evaluation rule for Scheme

E4 To evaluate an expression (F A1 ... An) where F is a user defined pro-
cedure of the form

(define (F p1 ... pn) BODY)

one replaces the expression by the BODY of the procedure, but with the
parameter symbols p1, ...,pn replaced by the corresponding arguments A1,
...,An.

Thus, to evaluate

(sqrt (+ (square 4) (square 3)))

We first replace the (square 4) and (square 3) expressions with their respec-
tive bodies

(sqrt (+ (* 4 4) (* 3 3)))

Evaluation then proceeds as before, yielding

(sqrt (+ 16 9))

which becomes

(sqrt 25)

and finally yields

5

as expected as 5 =
√

32 + 42.
There is another equivalent way to define functions using the the “lambda”

special form. This allows us to separate the process of defining a function from
the process of binding it to a symbol. For example, the square function can be
defined as follows:

(define square (lambda (x) (* x x)))

Here the special form (lambda(x) (* x x)) returns the function that replaces
its single argument x with its body (* x x). The define expression, then binds
that function value to the symbol square. You can think of “lambda” as being
a synonym for “function.” Its general form is

118 CHAPTER 7. OVERVIEW OF SCHEME

(lambda (v1 ... vn)
E1
E2
...
Ek)

This represents a function of n variables (v1 ... vn). When this function is
called it evaluates each of the expressions E1,..., Ek and returns the value of the
last expression Ek. The sequence of expressions E1, ..., Ek is called the body of
the procedure.

7.6 Internal defintions

The first few expressions inside a procedure body can themselves be define
expressions. These are called local definitions and are visible only inside the
procedure itself.

For example, we could write a procedure to create a show a warning window
as follows:

(define (warning message)
(define w
(window "Warning"
(label message red (HelveticaBold 40))))

(.pack w)
(.show w)
w)

Each time this procedure is called it creates a window containing the warning
message and makes it visible. For example, evaluating the following expressions
will create two warning windows.

(warning "Vulgar conversation is prohibited.")
(warning "Press Quit to end this session.")

Note that the value of the symbol w is not visible outside of the definition, which
is good since it allows us to call the procedure several times and have several
windows without creating a conflict over the variable w.

7.7 set! and changing defined values

You can cahnge the value of a defined variable using the “set!” special form (it
is pronounced “set-bang”)

(set! NAME EXPRESSION)

For example, in the following example, each time we call the square function it
adds on to the variable “a. ” This provides a way of counting how many times
“square” is called.

7.8. IF AND CONDITIONAL EXECUTION 119

(define a 0)
(define (square x) (set! a (+ a 1)) (* x x))

7.8 if and Conditional Execution

Scheme offers three special forms for conditional execution (that is for providing
a means for testing the input and executing different code depending on the
result of the test). The first is the if-then-else expression. It evalutes the TEST
if the test is false (#f) it evaluates the ELSE code; otherwise, if the test is true
(#t) it evaluates the THEN code. (In fact, if the test is any non-false value, it
evaluates the THEN code):

(if TEST THEN ELSE)

For example, we can write the function that returns the maximum of its two
inputs as follows:

(define (max2 a b)
(if (< a b) b a))

7.9 cond and multiple conditions

Sometimes one has many different tests and for each test there is a different
piece of code that should be evaluated. This can be implemented with nested
“if”s, but a better approach is to use the “cond” special form:

(cond (
(TEST1 E1 ... E2)
(TEST2 F1 ... F2)
...
(else G1 ... G2)
)

)

The expression evaluates the first “TEST1” if it is true (actually just non-false),
then it evaluates E1,... E2 and returns the value of E2. If “TEST1” is false,
then it proceeds to TEST2, and repeats the process. If none of the tests are
true, then it evaluates the expressions in the “else” clause (G1, ..., G2) and
returns the value of the last one.

7.10 case and constant values

The case is a good expression to use when the tests are all of the form (equal?
X Vi) for some constant values V1, V2, ... The general form of this expression
is

120 CHAPTER 7. OVERVIEW OF SCHEME

(case EXPR
((C1 C2 ...) E1 ... E2)
((D1 D2 ...) F1 ... F2)
...
(else G1 ... G2)

)

For example, the following procedure can be used to determine whether a symbol
is a vowel, consonant, digit, or something else:

(define (classify-symbol L)
(case L
((a e i o u y) ’vowel)
((b c d f g h j k l m n p q r s t v w x z) ’consonant)
((0 1 2 3 4 5 6 7 8 9) ’digit)
(else ’non-alpha-numeric)))

(classify-symbol ’e) ;; this returns ’vowel

7.11 Grouping for side effects

The “begin” expression is useful when you want to evaluate several expression
and return the value of the last one. It has the form:

(begin
E1
...
E2

)

This if often useful with an ”if” statement, e.g. the following expression writes
onto two components if ”age” is less than 21 and otherwise just writes into one
component. The begin is needed to group the first two write actions into a
single expression.

(if (< age 21)
(begin

(writestring (t "response") "You are too young")
(writestring (t "price") "------"))

(writestring (t "price") "29.95"))

7.12 let and block structure

Scheme provides several mechanisms for giving names to values for use in a
sequence of expressions. The most common of these is the “let*” whose syntax
is as follows:

7.13. EXCEPTION HANDLING 121

(let* (
(V1 E1)
(V2 E2)
...
(Vk Ek)
)

F1
F2
...
Fn)

This expression is evaluated by first evaluating “E1” and storing the value in
“V1,” then evaluating “E2” and storing the value in “V2”, etc. Finally, these
bindings are used to evaluate “F1”, “F2”,... “Fn” and the value of “Fn” is
returned.

7.13 Exception Handling

Sometime procedures are unable to complete their task as expected. In such
cases they often “throw an exception.” A standard example of this is dividing 1
by 0. The “tryCatch” special form provides a way for handling such exceptions.
Its syntax is:

(tryCatch E1 (lambda(e) F1 ... Fn))

It evaluates the expression “E1” and if there is an exception (say e), then it
evaluates the expressions “F1”,... and returns the value of “Fn”

7.14 Threads

Sometimes we want part of a program to run ”by itself” (e.g. a graphics ani-
mation can run ”in the background” allowing the user to continue to interact
with the GUI). This is done by creating a thread and starting it. The standard
idiom for starting up a new thread is as follows:

(.start (java.lang.Thread. (lambda() CODE)))

122 CHAPTER 7. OVERVIEW OF SCHEME

Chapter 8

Recursion

In this chapter we investigate an interesting feature of the Scheme evaluation
rules. Namely, that the body of Scheme procedure can contain a call to itself.

8.1 Teaching Scheme to Count

Consider, for example, the following procedure:

(define (f x)
(if (= x 0) x (f (- x 1))))

Lets now trace the evaluation of the following expression:

(f 2)

The first step is to replace the procedure call (f 2) with the body of the pro-
cedure, where the parameter x is replaced by the argument 2. This yields,

(if (= 2 0) 2 (f (- 2 1)))

The test (= 2 0) evaluates to false, and so this expression evolves to the ELSE
part:

(f (- 2 1))

which evolves as usual to

(f 1)

Again, we have an instance of a user-defined procedure call. This evolves to

(if (= 1 0) 1 (f (- 1 1)))

and since (= 1 0) evaluates to false, this evolves to the ELSE part again:

(f (- 1 1))

123

124 CHAPTER 8. RECURSION

which evolves to

(f 0)

Applying the substitution rule yet again we get

(if (= 0 0) 0 (f (- 0 1)))

but this time the test (= 0 0) evaluates to true, so the expression evaluates to
the THEN part:

0

It should not be hard to convince yourself that a call to

(f 1000)

would evolve to (f 999) and then to (f 998), and would continue counting
down until it reaches (f 0) at which point it evolves to 0 and evolves no more.

It should take only a moment for your computer to countdown from one
million using this procedure. Counting down from a trillion (or a quadrillion)
on the other hand can take days or years (depending on how fast your computer
is).

This simple countdown example also illustrates one of the pitfalls of using
recursive programs. Consider what happens if we evaluate the expression

(f -1.0)

This evaluates to (f -2.0) and continues counting down getting numbers that
are progressively more negative and hence farther from zero. Since the test
(= x 0) will never be true, this evaluation will never stop. Such never-ending
evaluations are called infinite loops.

Actually, this example is somewhat subtle because our initial analysis would
require the computer to manuipulate numbers with ever increasing numbers of
digits. This would require ever increasing amounts of memory and at some
point all matter in the universe would be required just to represent the numbers
computed in this loop. Hence in a physical sense the program would generate an
out-of-memory error at some point in the future. Another subtle aspect of this
problem is that in most implementations of Scheme a decimal point in a number
indicates an approximate value and once such numbers get large the system
will only be approximately correct, in particular at some point it will reach a
number x such that subtracting 1 from x using approimate arithmetic yields
the same x back. This then generates an infinite loop without a memory error.
Nevertheless, if physical theories are correct, all of the protons in the computer
(and the universe) will eventually decay into other other particles, once again
causing an computer error that will stop the evaluation. Thus, arguments about
infinite loops should always be taken in an abstract, non-physical sense.

8.2. USEFUL COMPUTATION 125

8.2 Useful computation

Next we consider a slightly more complex procedure.

(define (g x y)
(if (= y 0)

x
(g y (% x y))))

Here the percent symbol (% x y) denotes the remainder function which returns
the remainder of x divided by y, e.g. (% 17 5) is 2, as 17 divided by 5 is 3 with
a remainder of 2.

Lets now trace the evolution of

(g 252 112)

This evolves, by the substitution rule, to

(if (= 112 0) 252 (g 112 (\% 252 112)))

Since the test (= 112 0) is false, this evolves to the ELSE part of the expression:

(g 112 (\% 252 112))

and since 252 divided by 112 is 2 with a remainder of 28, this evolves to

(g 112 28)

Again, by the substitution rule, we get

(if (= 28 0) 112 (g 28 (\% 112 28)))

which evolves to

(g 28 (\% 112 28))

but 28 goes into 112 exactly four times with no remainder, so this evolves to

(g 28 0)

and one last application of the substitution rule yields:

(if (= 0 0) 28 (g 0 (\% 0 28)))

which evolves to

28

as the test (= 0 0) is true. This evaluation has yielded the greatest common
divisor (28) of the two arguments (252,112) of the call.

126 CHAPTER 8. RECURSION

8.3 The Halting Problem

We have seen that recursion can result in programs that run a very long time,
or that never stop at all. It can also be used to right programs that perform
fairly complex computations that are difficult for humans to undertake. After
starting to write a few recursive programs you will find that infinite loops are
an all too common occurrence. Even worse, it is difficult to tell whether your
program is in an infinite loop or if it is just taking a long time to compute its
answer and will soon return the result.

It would be nice, therefore, to have a procedure halts? which you could
apply to a function and a procedure to determine whether it would eventually
halt. Thus

(halts? F 5)

would return true if the call (F 5) would eventually halt and would return false
otherwise. Here we consider only functions that don’t interact with the user or
the system to simplify matters.

Unfortunately, it is impossible to build such a Scheme system. To see why,
imagine someone has given you access to a Scheme system that purports to have
a correct implementation of this halts? procedure and that this procedure is
itself guaranteed to eventually halt with either a true or false value.

Before continuing with this example, lets pause for a moment and consider
a related problem of trying to debunk a fortune teller. Suppose someone claims
to be able to tell your future in exquisite detail and to always give an answer to
any question you may ask. If you ask this charleton which of your two hands
you will raise next, then, after he returns his answer, you simply raise the other
hand and you have disproven his claim. This situation is relevant to the halts?
procedure because the designers have claimed to write a procedure that can tell
a particular aspect of the future about any procedure we write.

With such a challenge, we could write the following procedure:

(define (skeptic x)
(if (halts? skeptic x) (skeptic x) 0))

The idea behind this procedure is that when it is called with an argument x it
will ask the halts procedure whether skeptic x will halt or not, and then it
will do the opposite!

Lets trace the evolution of a call to skeptic. For example,

(skeptic 7)

evolves, by the substitution rule to

(if (halts? skeptic 7) (skeptic 7) 0)

By the guarantee on the halts? procedure we know that the test will eventually
stop with either a true or false value. But, no matter which value the halts?
procedure returns, it will be the wrong value! For example, if

8.3. THE HALTING PROBLEM 127

(halts? skeptic 7)

returns true and the halts? procedure is working as advertized, then (skeptic
7) must eventually halt, but since the test returns true, the expression evolves
to

(skeptic 7)

and has clearly entered an infinite loop. Likewise if

(halts? skeptic 7)

returns false, and if halts? is working as advertized, then (skeptic 7) must
loop forever, but since the test returns false, the expression evolves to the ELSE
part which is

0

and it clearly has halted.
”Ahhh”, you say, but maybe we could write a halts? procedure that works

on all programs that don’t contain the halts? procedure, i.e., maybe it is the
self-reference that is causing the problem. That would be a good guess, but in
fact, a slightly more complex argument also shows that no such halts? proce-
dure can be written. This demonstrates an interesting situation in which there
is a problem (determine whether the evolution of a given Scheme expression will
eventually stop or not) which can not be solved by computers. More precisely,
there is no computer program that can examine a Scheme expression and always
determine whether or not it will eventually halt. This is an inherent limit on
the abilities of computers. It does not however imply that humans are similarly
limited, unless of course we are merely computers ourselves.

128 CHAPTER 8. RECURSION

Part V

Advanced Topics

129

Chapter 9

Databases

In this chapter we give an introduction to the use of databases in web program-
ming. Databases provide a means of storing and retrieving large amounts of
data efficiently. In the previous chapter, we have seen a simple way to read data
from and write data to the server’s disk. For small amounts of data this works
well, but it becomes unacceptably slow for large data sets.

We will first give an introduction to databases in general and to the SQL
(Structure Query Language) in particular, then we explain how to process
database queries in Scheme. In the next Chapter we give several examples
of accessing databases from Scheme servlets.

9.1 Database concepts

A database is a named collection of data which is organized into tables. When
you create a table, you must provide a unique name for the table, and you must
specify the number of columns in the table and the names for each columns.
Moreover, you must specify what type of value each column can contain. The
most common types are

• INTEGER for whole numbers

• DECIMAL for decimal numbers

• VARCHAR for character strings

9.2 Intro to SQL, SQL clients, and SQL servers

SQL (Structured Query Language) is the most widely used language for man-
aging databases. It is a relatively simple language that allows you to

• create new databases and tables

• put data into a table

131

132 CHAPTER 9. DATABASES

• add users to a database and give them permissions

• select information from a database

• modify information in a database

An SQL system usually consists of two components:

• an SQL engine that creates, modifies, and searches through the databases,
and

• an SQL client that connects to the engine and provides a graphical inter-
face for the user to construct and execute SQL queries.

The SQL server can often be setup as a web service, so that anyone can connect
to the server over the web and make SQL queries, provided they know a user
name and password for accessing the system.

In this Chapter we will describe the use of one particular open source
database server and client, the hsql Database Engine – a sourceforge open-
source project. We have chosen this database because it is multiplatform, easy
to install, and free. Like almost all software, it comes with no warranty, and in
this case, it should not be used for commercial purposes unless you invest great
care in analyzing the code looking for security problems. Nevertheless, it will
serve fine as an educational tool. Another database

The hsqldb system and its documentation can be downloaded from

http://hsqldb.sourceforge.net

We have included the hsqldb system itself in the scheme webapp (actually it is
in the file tomcat/webapps/scheme/WEB-INF/lib/hsqldb.jar.

9.3 A Simple Database-backed Survey

In the next section we give a complete example of setting up a database and
a table and building a servlet that uses that table to implement a simple sur-
vey and analyze the results. In the later sections we will discuss the concepts
underlying this example. In the following Chapter we give more examples of
database-backed servlets.

9.3.1 Overview of the survey servlet

The survey is just an html file that asks the users age, political party, and and
who they voted for in the last presidential election. When the user answers
these questions and submits the form, the data will be stored as a row in a
database and then several queries will be run to analyze the data gather so far.
This data will then be presented to the user on the response page.

Thus we must create a database with a table to store the survey answers,
an HTML page to get the users answers and a servlet page to store the data in

9.3. A SIMPLE DATABASE-BACKED SURVEY 133

the database and generate a response page with a summary of the poll results
so far.

It would be better to try and make sure the same person from the same
computer doesn’t vote many times to influence the outcome, but in this simple
example we will ignore these concerns.

9.3.2 Creating a new database

The first step is to start a SQL client and create a database and table for your
data. You start the client with the following commands from inside the hsqldb
folder:

% cd demo
% java -cp ../lib/hsqldb.jar org.hsqldb.utils.DatabaseManager

Note: Windows users must use backslash instead of slash. Also, you must set
your path so that it contains the java program.

Starting the DatabaseManager pops up a window titled “Connect” with five
fields. You should select the following field values:

PROMPT VALUE DEFAULT VALUE
Type: HSQL Database Engine Standalone (the second choice)
Driver: org.hsqldb.jdbcDriver (this one)
URL: jdbc:hsqldb:webDB (jdbc:hsqldb:test)
USER: sa (sa)
Password: ("")

The USER “sa” is the System Administrator, which is the only user able to
create new databases and to have full control over the database. The “webdb”
in the URL, is the name of your new database.

Once you click “OK” you will have created the webdb database (if it didn’t
already exist it will be created) and you will see the “HSQL Database Manager”
window which provides a front-end to the database.

9.3.3 Creating a new table in the database

You can now create the “survey” table by selecting CREATE TABLE from the
Command menu, and then completing the command to read as follows:

CREATE TABLE survey(age INTEGER,party VARCHAR,votedfor VARCHAR);

Hitting the Execute button will create that table and you can examine it by
selecting the Refresh Tree menuitem in the View menu.

Next change the system administrator password to what ever you want by
executing the following query.

SET PASSWORD mynewpassword;

134 CHAPTER 9. DATABASES

This will prevent others from being able to connect to your server as the sys-
tem adminstrator. The next time you visit this database, you will need to
specify “mynewpassword” as the “sa” password, rather than the default empty
password.

9.3.4 Starting a server for the database

Next you should go to the tomcat/webapps/scheme/WEB-INF/db folder and
start up the hsqldb database engine server as follows:

% cd webapps/scheme/WEB-INF/db
% java -cp ../lib/hsqldb.jar org.hsqldb.Server -port 9001 -database webdb

This starts a service on your computer allowing access to the webdb database on
port 9001. If you want to provide access to several different databases, you need
to start a new server for each one, and use different ports for each database.

9.3.5 The survey servlet

We have now finished creating the database and table. Next, we discuss the
servlet dbsurvey.servlet which creates an HTML form and processes the
user’s responses to that form. The code for the form is shown in Figure 9.1.

The general structure of the servlet is that it first gets the three form param-
eters (age, party, and votedfor) from the browser. If age is #null this means
that the user has not yet visited the form page, so the servlet generates the
HTML form. If age is not #null, then we must store the user vote in the
database, get the current tally, and generate a webpage with the current tally
on it.

[; this is in the file "dbsurvey.servlet"
(let (
(age (.getParameter request "age"))
(party (.getParameter request "party"))
(votedfor (.getParameter request "votedfor"))
)

(if (equal? #null age) ;; first visit to this page
THENmake web page with form to get user data....
ELSEstore user data in database, report current tally....

))
]

We have already seen how to create an HTML form, and there is nothing new
here, so lets look at the “ELSE” part of the “if” expression.

Before we can access the database, we need to load the “db.scm” library.
Also, we will be converting a database answer into an HTML table, so we need
the “table.scm” library. The code for storing the user’s vote into the database
uses the runquery procedure defined in lib/db.scm and has the following form

9.3. A SIMPLE DATABASE-BACKED SURVEY 135

[; this is in the file "dbsurvey.servlet"
(let (
(age (.getParameter request "age"))
(party (.getParameter request "party"))
(votedfor (.getParameter request "votedfor"))
)

(if (equal? #null age) ;; first visit to this page
{<html><head><title>Survey Form </title></head> <body>

Please enter the following data:
<form method="post" action="dbsurvey.servlet">

 Your age: <input type=text name="age">
 Your political party:
<select name="party"> <option>democrat</option>
<option>republican</option><option>green</option>
<option>other</option> </select>

 Who you voted for in last election:
<select name="votedfor">
<option>Bush</option><option>Gore</option>
<option>Nader</option><option>other</option>

</select>
<input type=submit></form> </body></html>}

(begin
(load "webapps/scheme/lib/db.scm")
(load "webapps/scheme/lib/table.scm")
(runquery "jdbc:hsqldb:hsql://localhost" "sa" "mynewpassword"
{INSERT INTO survey VALUES([age],’[party]’,’[votedfor]’)})

{<html><head><title>Survey response</title></head></body>
<h1> Thank you for your response</h1>
The current tally is
<table border=5 cellpadding=5 cellspacing=5>
[(make-trs (runquery "jdbc:hsqldb:hsql://localhost"

"sa" "mynewpassword"
{SELECT VOTEDFOR,count(*) FROM survey GROUP BY VOTEDFOR}
))]

</table></body></html>}
)))]

Figure 9.1: The database-backed survey servlet

136 CHAPTER 9. DATABASES

(runquery
HOST/DB USER PASSWORD
QUERY)

where the HOST/DB is given by a string that refers to the SQL server and
the USER and PASSWORD are the current system administrator USER and
PASSWORD. 1 In our case, we will make two database queries. The first will
insert the user’s selections into the database. The second will summarize the
voting totals for each listed candidate. Both of these queries have the following
form:

(runquery
"jdbc:hsqldb:hsql://localhost:9001" "sa" "mynewpassword"
QUERY)

where QUERY is the actual SQL query that accesses or modifies the database.
Note that we have set up a server on port 9001 which is serving the webdb
database that contains the survey table we created above. This query provides
access to that database and that table, assuming the server is running.

The first SQL query, that inserts the user’s choices into the survey table is
:

{INSERT INTO survey VALUES([age],’[party]’,’[votedfor]’);}

The SQL keywords are capitalized and the words that we have created are
lowercase. The INSERT INTO query always has the form

{INSERT INTO ..tablename... VALUES([value1],’[value2]’,...);}

where the string values must be enclosed in single quote (’), but the numeric
values should not be quoted.

Observe that the query is enclosed in curly braces “” so that it is just viewed
as data by Scheme. The age, party, and votedfor variables are enclosed in square
brackets “[]” indicating that their values as Scheme variables should be used.
This may be a little confusing at first, but all SQL queries in Scheme servlets
have this form. They are enclosed in curly braces and the parts come from the
users data are enclosed in square brackets.

The next part of the servlet generates the webpage that will be returned to
the user. It consists of the usual HTML code, but we escape into scheme to
create the rows of an HTML table:

[(make-trs
(runquery "jdbc:hsqldb:hsql://localhost" "sa" "mynewpassword"
{SELECT VOTEDFOR,count(*) FROM survey GROUP BY VOTEDFOR ;}

))]

1It would be safer to create a new user and grant them limited access to the database, but
that will take us too far afield for the moment.

9.4. A QUICK INTRO TO SQL 137

Note that we are again using the runquery procedure, but this time we are
using the SELECT query. Its syntax will be described in more detail later in this
section. This particular query returns a table whose rows consist of the distinct
strings in the VOTEDFOR column of the table, together with a count of how
often that string occurred in the table.

The runquery procedure always returns a list of lists. Each inner list corre-
sponds to a row of the table, except the first, which is a row of column names.
The make-trs converts this list into a sequence of HTML tr rows.

For this example, the “runquery” procedure returns a list of the voting totals
of the form:

((Bush 1) (Gore 1) (Nader 2))

The “make-trs” procedure turns this into rows of an HTML table of the form

<tr><td>Bush </td><td> 1</td></tr>
<tr><td>Gore </td><td> 1</td></tr>
<tr><td>Nader</td><td> 2</td></tr>

9.4 A Quick Intro to SQL

A complete list of the SQL commands which are supported by hsqldb is given
at the hsql website:

http://hsqldb.sourceforge.net/internet/hSql.html

In this section, we will give several examples of SQL queries that can illustrate
these general commands.

9.4.1 Creating and removing tables

The “CREATE TABLE” command, creates a table in the current database.
You must specify the name of the table as well as the names and types of each
column. For example, the following command creates the “movies” table in the
current database:

CREATE TABLE movies(title VARCHAR,minutes DECIMAL,rating VARCAR);

The name of the table is ”movies” and it has three columns. The first and third
columns are strings of characters and the middle column is a decimal number.
The names of the three columns are ”title,minutes,rating” respectively. Each
column must have a name and a type. The simplest types are VARCHAR
(for strings of characters), INTEGER (for whole numbers), and DECIMAL (for
decimal numbers). Removing an entire table is easy:

DROP TABLE movies;

but note that this is a permanent operation. You cannot easily undo a dropped
table.

138 CHAPTER 9. DATABASES

9.4.2 Adding,Modifying, and Removing rows of tables

To insert a row into a table we use the INSERT INTO command. The values we
insert must be in the same order in the CREATE TABLE command.

INSERT INTO movies VALUES(’Star Warriors’, 150, ’G’);

Once values are in a table we may want to modify or delete them. We can
remove all rows that meet some criterion using the DELETE FROM command.

DELETE FROM movies WHERE title=’Star Warriors’;
DELETE FROM movies WHERE minutes/60 > 3.5;
DELETE FROM movies WHERE (rating=’R’) OR (rating = ’NR’);

The “where” section allows you to specify a fairly complex condition using
equality, arithmetic, comparison, and logic operations (AND, OR, NOT). Like-
wise, we can update individual columns in the rows of a table using the update
command:

UPDATE movies SET rating=’NC17’ WHERE rating=’X’;

This would change all rows with an “X” rating to the new “NC17” rating.

9.4.3 Selecting rows of a table

One of the most common uses of databases is to select out some interesting
subset of rows. This is done using the SELECT command For example, the
following query returns a table with two columns (the title and the duration in
hours) containing all movies with a G rating:

SELECT title,minutes/60 FROM movies WHERE rating=’G’;

You can also compute summary data use SQL. The following query computes
the number of movies of each rating:

SELECT COUNT(*),rating FROM movies GROUP BY rating=’G’;

Chapter 10

Examples of Database
Servlets

In this section we present some examples of servlets that interact with databases.

10.0.4 A webpage incorporating database content

Our first example is an expanded version of the survey demo in the previous
example. The code appears in Figure 10.1.

In this example, the survey asks several questions and then provides various
types of summary data. The overall structure of this first servlet is

{<html>...GENERATE HTML HEADER...
<body style="color:black; background:white">

[(begin ... LOAD LIBRARIES...
(let ((command (.getParameter request "command")))
(if (equal? #null command)

{... DISPLAY ALL MESSAGE IN DB,
GENERATE LINK TO ADD A NEW MESSAGE:

Add a new message}
(case command
(("newmsg")
{... GENERATE FORM GETTING MESSAGE INPUT FROM USER

AND SENDING IT To db1.servlet with "command=addmsg"})
(("addmsg")
{... STORE USER’S MESSAGE IN THE DATABASE
GENERATE AN ACKNOWLEDGEMENT, AND PROVIDE
A LINK BACK TO THE TOP})

(else {unknown command: [command]})))))]
</body></html>...GENERATE BOTTOM OF HTML PAGE... }

139

140 CHAPTER 10. EXAMPLES OF DATABASE SERVLETS

{<html><head><title>Simple DB Frontend Demo </title></head>
<!-- this is a simple front end to a database
it assumes the database contains a table created by
CREATE TABLE news(d DATE, t TIME, subj VARCHAR, msg VARCHAR);
-->
<body style="color:black; background:white">

[(begin ;; we need these libraries for file I/O and table making
(load "webapps/scheme/lib/db.scm")
(load "webapps/scheme/lib/table.scm")
(let ((command (.getParameter request "command")))
(if (equal? #null command)
{<h1>Simple Frontend for the NEWS database</h1>

<!-- display the links stored in the "msgs" file -->
<table border=5>
<tr><th>date</th><th>time</th>

<th>subject</th><th>message</th></tr>
[(make-trs

(rest
(runquery "jdbc:hsqldb:hsql://localhost"

"sa" "mynewpassword"
{SELECT * FROM news})))]

</table>

Add a new message}

(case command
(("newmsg")

{<form method="post" action="db1.servlet">
<input type="hidden" name="command" value="addmsg">
Subject:
<input type="text" name="subject">

Message:

<textarea name="msg" rows=10 cols=60></textarea>

<input type="submit">
</form>})

(("addmsg")
(let ((subject (.getParameter request "subject"))

(msg (.getParameter request "msg")))
(runquery "jdbc:hsqldb:hsql://localhost"

"sa" "mynewpassword"
{INSERT INTO news

VALUES(CURDATE(),CURTIME(),’[subject]’,’[msg]’)})

{Posted message
Subject:
[subject]
Message:

[msg]
back to top}))

(else {unknown command: [command]})))))]
</body> </html>}

Figure 10.1: The database-frontend servlet

141

Thus, this servlet generates three different pages depending on the value of
the parameter ”command.” If it is ”#null” then the servlet shows the “front
page” which displays all the messages in the database and provides a link to
the “newmsg” page. The “newmsg” page is just an HTML form soliciting
the desired info from the user and sending the data back to itself, but with
”command=addmsg” This last page stores the user data in the database and
generates an “thank you” page with a link back to the front page.

The front page is generated by the following brls code:

{<h1>Simple Frontend for the NEWS database</h1>
<!-- display the links stored in the "msgs" file -->
<table border=5>
<tr><th>date</th><th>time</th>

<th>subject</th><th>message</th></tr>
[(make-trs

(rest
(runquery "jdbc:hsqldb:hsql://localhost"
"sa" "mynewpassword"
{SELECT * FROM news;})))]

</table>

Add a new message }

which is mostly static HTML except for the table. The SQL query to retrieve
all rows in the table is

SELECT * FROM news;

The rest procedure removes the first row from the result (the first row is always
a list of the column names).

The ”newmsg” page generates an HTML form requesting the subject and
message from the user:

{<form method="post" action="db1.servlet">
<input type="hidden" name="command" value="addmsg">
Subject:
<input type="text" name="subject">

Message:

<textarea name="msg" rows=10 cols=60></textarea>

<input type="submit">
</form>}

There is nothing new here except for the use of the ”hidden” input element.
This input element sets the value of the ”command” parameter to ”addmsg”,
but it does not appear on the user’s page. It’s sole purpose is to tell the servlet
which subpage the data should be processed by.

The ”addmsg” page stores the user’s data in the database, shows the user
what has been stored, and provides a link back to the front page:

142 CHAPTER 10. EXAMPLES OF DATABASE SERVLETS

(let ((subject (.getParameter request "subject"))
(msg (.getParameter request "msg")))

(runquery "jdbc:hsqldb:hsql://localhost"
"sa" "mynewpassword"
{INSERT INTO news

VALUES(CURDATE(),CURTIME(),’[subject]’,’[msg]’);})

{Posted message
Subject:
[subject]
Message:

[msg]
back to top})

The SQL query for inserting the data show the use of two SQL procedures
CURDATE() and CURTIME() which return the current data and the current time
respectively.

10.0.5 Extensions

There are many ways that this example can be extended. We discuss a few of
them here.

10.0.6 Deleting rows

One useful extension is to allow users to delete as well as add messages. To
make this easy we would like to have each row in the database have a unique
number, so we could just say delete row 37 or delete all rows numbered less than
19. The best way to do this is to create the table with an additional column
that will be automatically assigned an “identity” number each time a new row
is inserted. This is done using the “INTEGER IDENTITY” type. So, for our
example, the CREATE TABLE statement would need to be rewritten as

CREATE TABLE news
(d DATE, t TIME, subj VARCHAR, msg VARCHAR, n INTEGER IDENTITY);

This also affects the other SQL queries. Since we now have an additional column,
the INSERT commands have to include a NULL in the last position. This will
cause the database engine to automatically insert the correct value in the table.

{INSERT INTO news
VALUES(CURDATE(),CURTIME(),’[subject]’,’[msg]’,NULL);})

The SQL for deleting the Nth message is then

{DELETE FROM news WHERE n=[N];}

10.0.7 Adding Password Protection

It would also be a good idea to require the user to present a password before
letting them modify the database. This can be easily done using the HTML
form. Just add a “password” input element and then modify the ”runquery”
procedure call to use the value of the password parameter

10.1. THE DATABASE-BACKED WEBPAGE 143

(runquery "jdbc:hsqldb:hsql://localhost"
"sa" (.getParameter request "password")
{......})

10.1 The database-backed webpage

Our next example is a webpage that uses the ”news” table in the ”webdb”
database to add database content to a web page. The code for this servlet is in
Figure 10.2. This page is quite similar to the previous one in that it generates a
table from the database data. What is different about this demo is that it only
shows the first row of the database and provides links which allow the user to
access the first 10 or first 1000 messages. The procedure to return the first N
elements of a list is defined, right after the libraries are loaded, by the following
code:

(define (firstN N L)
(if (or (< N 1) (null? L)) ()

(cons (first L) (firstN (- N 1) (rest L)))))

This uses all four of the major “list” operations of Scheme:

• (cons X L) – creates a new list by putting the element X at the beginning
of the list L, so (cons ’a ’(b c d)) returns the list ’(a b c d)

• (first L) – returns the first element of a list so (first ’(a b c d)
returns the element a.

• (rest L) – returns a copy of the list L, but with the first element removed,
so so (rest’(a b c d) returns the list ’(b c d)

• (null? L) – returns the true value (#t) if L is the empty list, and returns
the false value #f, otherwise.

The servlet also demonstrates some error checking when it is trying to compute
the value of the variable nummsg which will be used to determine how many
rows of the table to display. If the parameter nummsgs does not have a value
(for example upon visiting the page for the first time), then nummsgs1 will have
the value #null, and trying to convert this into a number using Double. will
generate an exception. The servlet handles this case, by trying to catch that
exception, and returning 1 if indeed there is any error converting nummsgs1 into
a number. This is done with the

(tryCatch EXPR1 (lambda(e) EXPR2))

expression which first tries to evaluate EXPR1 to get the return value. If there
is an exception, then it evaluates EXPR2 to either get the return value, or throw
an exception.

144 CHAPTER 10. EXAMPLES OF DATABASE SERVLETS

[(begin ;; we need these libraries for file I/O and table making
(load "webapps/scheme/lib/db.scm")
(load "webapps/scheme/lib/table.scm")
(define (firstN N L)
(if (< N 1) ()

(cons (first L) (firstN (- N 1) (rest L)))))

(let* (
(nummsgs1 (.getParameter request "nummsgs"))
(nummsg (tryCatch (Double. nummsgs1) (lambda(e) 1)))

)
{<html><head><title>Simple DB-backed webpage Demo

</title></head>
<!-- this is a simple webpage

getting some of its data from a database -->
<body style="color:black; background:white">

<h1>The DBDEMO project</h1>
This is the main page of the DBDEMO project:
<table border=10 width=80%>
<tr>
<td style="font:bold 40pt serif;text-align:center">

STATIC CONTENT GOES HERE
</td></tr></table>

<h2>Latest News</h2>
<table border=5>
[(if (> nummsg 1)

{<tr><th>date</th><th>time</th>
<th>subject</th><th>message</th></tr>}

"")]
[(make-trs
(firstN nummsg

(rest
(runquery "jdbc:hsqldb:hsql://localhost"

"sa" "mynewpassword"
{SELECT * FROM news ORDER BY d,t desc;}))))]

</table>

View all messages

View last 10 messages

</body>
</html>

}))]

Figure 10.2: The database-backed webpage

10.2. A NETWORK DATABASE FRONT-END 145

10.2 A Network Database Front-end

In this section, we discuss a simple graphical user interface to a database. The
code is in Figure 10.3.

Observe that most of the program is concerned with setting up the interface
(creating and naming the components, specifying how they should be laid out
on the screen, etc.). The only place where the database is involved is in the
”submitquery” procedure.

(define (submitquery query)
(tryCatch

(runquery (readstring (t "host/db"))
(readstring (t "user"))
(readstring (t "pw")) query)

(lambda(e) (list "ERROR: " e))))

This procedure reads the appropriate textfields to determine the URL of the
database and the user/password information. It then creates sends the query
to that database and returns the result. If there is an error then it returns a
list containing the error.

This program also shows a way to get access to the a component without
using a tagger. In the action for the ”choice” component, the component itself
is obtained using the ”.getSource” procedure applied to the event ”e”. This is
useful when one only needs to refer to a component in the component’s action
code.

Exercise 23 Revise this database example so that it provides a custom front
end to a particular database, i.e. so that it allows the user to add, delete, and
search in the database just by pushing buttons and filling out fields. All the SQL
querying should go on in the actions that you create.

Exercise 24 Write a general purpose GUI that allows the user to interact with
a general database (specified in the ”host/db” field) without having to know any
SQL. These DB clients are quite popular and are not too hard to create.

146 CHAPTER 10. EXAMPLES OF DATABASE SERVLETS

(jlib.JLIB.load)
(load "db.scm")
;; this is webapps/scheme/lib/db.scm file(define tag (maketagger))

(define tag (maketagger))
(define win
(window "DB DEMO"

(border
(north (col ’horizontal

(label "JDBC Demo Page" (HelveticaBold 24))
(table 3 2

(label "DatabaseURL")
(tag "host/db"

(textfield "jdbc:hsqldb:hsql://localhost" 50))
(label "User")

(tag "user" (textfield "sa" 50))
(label "Password")

(tag "pw" (textfield "mynewpassword" 50)))
(row
(choice "#sample queries"

"create table demo(name VARCHAR, price DECIMAL);"
"drop table demo;"
"insert into demo values(’abc’,’1123’);"
"select * from demo where price > 500;"
"delete from demo where name=’abc’;"
(action (lambda(e)
(writestring (tag "query")
(readstring (.getSource e)))))))

(tag "query" (textarea 5 50
"create table demo(name VARCHAR, price DECIMAL);"))
(row ’none

(button " SEND QUERY "
java.awt.Color.white$ (HelveticaBold 18)

(action (lambda (e)
(showresults
(submitquery (readstring (tag "query")))))))

(button "clear" (action (lambda(e)
(writestring (tag "results") "")))))))

(center
(tag "results" (textarea 10 50))))))

(define (showresults results)
(for-each (lambda(x) (appendlnexpr (tag "results") x))

results))
(define (submitquery query)
(display (list ’runquery (readstring (tag "host/db"))

(readstring (tag "user"))
(readstring (tag "pw")) query)) (newline)

(tryCatch
(runquery (readstring (tag "host/db"))

(readstring (tag "user"))
(readstring (tag "pw"))
query)

(lambda(e) (list "ERROR: " e))))
(.pack win) (.show win)

Figure 10.3: Simple Front End to a Database

Chapter 11

Peer to Peer programming

In this Chapter we provide an introduction to peer-to-peer computing. The first
main example we will discuss is a chat room. The second is an enhanced chat
program that manages multiple rooms and lets you join multiple rooms with
multiple aliases.

11.1 Group-servers and Group-clients

The chat room examples will be implemented using a library (jlib.Networking)
that allows us to create group-servers and group-clients. The group-clients are
simple objects that allow you to

• join a group server, by selecting a name and group and specifying the host
and port of the group server,

• send messages to everyone in the group (yourself included)

• specify actions that should be performed whenever a message arrives from
the group

11.2 Starting a group server

You can start a group server by opening a command window and giving the
following commands:

java -cp jscheme.jar jscheme.REPL
> (jlib.Networking.load)
> (define S (make-group-server 23232))
>

This will start a group server running on port 23232 of your computer. (As
usual, this assumes that you are in the directory containing jscheme.jar). You
can shutdown the server by giving the command

147

148 CHAPTER 11. PEER TO PEER PROGRAMMING

> (exit)

or by shutting down your computer!
You can test your group-server by opening another command window (pos-

sible on a different computer) and giving the following commands:

java -cp jscheme.jar jscheme.REPL
> (jlib.Networking.load)
> (define H "127.0.0.1")
;; use the IP address of your group server here

> (define P 23232)
;; use the port of your group server here

> (define G (make-group-client "me" "test" H P))
; connect to server

> (G ’add-listener ’mykey (lambda R (display R) (newline)))
;; this causes group-client to display msgs with key= ’mykey

> (G ’send ’mykey "Hello World" (* 1111 1111))
;;;; a response should appear here

> (G ’send ’otherkey "Hello World Again" ’a ’b ’c)
;;;; no response should appear here
;;;; as there is no listener on ’otherkey

Exercise 25 Startup a server on one machine and two clients on two other
machines and use the two clients to chat. Do this by setting up the listener as
shown above and then making G calls of the form

(G ’send ’mykey "joe:.....")

to send messages.

11.3 A Simple Chatroom applet

Next we assume that you have started a group-server on port 23232 on your
computer and you have also started a tomcat server with a jscheme webapp. If
you insert the program in Figure 11.1 in the webapps/scheme folder, then it will
provide users access to a single chatroom. The first part of the applet contains
the documentation used to construct the applet page. The second part of the
applet contains a procedure which creates a chat window given the username,
chatgroup, host, and port of the group server. Most of this code is standard
GUI code like that we have already seen. The three interesting parts of the
program are where the group client is created

(define S (make-group-client UserName ChatGroup Host Port))

11.3. A SIMPLE CHATROOM APPLET 149

"chat1a.applet"
"Tim Hickey"
""
"This is a simple example of a chat applet"
""

(begin
(jlib.JLIB.load)
(jlib.Networking.load)
(let ()
(define (chatwin UserName ChatGroup Host Port)
(define t (maketagger))
(define S (make-group-client UserName ChatGroup Host Port))
(define w (window "test"
(col
(button "quit" (action (lambda (e)

(S ’logout) (.hide w))))
(t "chatarea" (textarea 20 50))
(t "chatline" (textfield "" 50 (action (lambda(e)

(S ’send "chat"
(string-append UserName ": " (readstring (t "chatline"))))

(writeexpr (t "chatline") "")
)))))))

(S ’add-listener "chat" (lambda R
(appendlnexpr (t "chatarea") R)))

(.pack w) (.show w)
w
)

(define (rand N) (Math.round (* N (Math.random))))

(chatwin
(string-append "user-" (rand 1000))
"chat"
(.getHost (.getDocumentBase thisApplet))
23456)

))

Figure 11.1: A multi-room chat program

150 CHAPTER 11. PEER TO PEER PROGRAMMING

and the action of the textfield, which reads what the user has written in the
textfield and sends it to the group server with the keyword ”chat”

(S ’send "chat"
(string-append UserName ": " (readstring (t "chatline"))))

and finally the part of the program in which we add a listener to handle the
messages that come in from the group server (including our own messages). In
this case, we just append the messages with keyword ”chat” to the end of the
chatarea.

(S ’add-listener "chat" (lambda R
(appendlnexpr (t "chatarea") R)))

Observe that the use of the keyword allows us to carry on several simultaneous
group conversations on different topics with the same group client. Finally when
the user presses the quit button, we logout of the group-client which causes the
group-client to close its connection to the group-server

(S ’logout) (.hide w)

You might try to modify this applet so that it censors any message containing
any of a small list of unsavory words (e.g. SH*T, but note that this might
unfairly single out message about shitake mushrooms.)

You might also add a password feature, or look into requiring each user to
have a unique user name. You could hook up this applet to access a database of
usernames and passwords of registered clients if you want a little more security.

11.4 A Multiroom Chat applet

In this section we show how to extend the previous example to allow for multiple
rooms and to allow for some querying as to who is online.

The key idea here is to create a registration window that allows the user
to ask the group-server questions about the user, groups, etc. currently being
served. This is done using the ”send-line” procedure from the ”Networking.scm”
library. The group-server will respond to three queries (as shown below) with
a list of the users, groups, and users-in-group. For example, the action on
the following button queries the server for a list of the active groups and then
displays that list in the textarea:

(button "show groups" (action (lambda(e)
(writeexpr (t "serverinfo")

(send-line Host Port "groups\n")))))

This window also allows the user to startup a new chat window using the spec-
ified user/group/host/port to create a chatwindow. The code for the chat win-
dow is exactly as shown in the previous example, so we don’t repeat it here.

The ”send-line” procedure sends a string of characters to the specified host/port.
You can use it to get the current local time on a server by sending an empty
message to port 13

11.4. A MULTIROOM CHAT APPLET 151

(send-line "129.64.2.3" 13 "\n")

Here we have sent a carriage return, but using the empty string ”” would prob-
ably suffice for most servers anyway.

152 CHAPTER 11. PEER TO PEER PROGRAMMING

"chat2.applet"
"Tim Hickey"
""
"multi-room chat GUI"
""

(begin
(jlib.JLIB.load) (jlib.Networking.load)

(define (rand N) (Math.round (* N (Math.random))))
(define (chatwin) ...) ;; as in previous example

(define (make-register-window Host Port)
(define t (maketagger))
(define regwin (window "register"
(border
(center (t "serverinfo" (textarea 10 40)))
(north
(border
(north (col

(t "group" (textfield "test" 20))
(t "user" (textfield "guest" 20))))

(south
(row
(button "show users" (action (lambda(e)
(writeexpr (t "serverinfo")

(send-line Host Port "users\n")))))
(button "show groups" (action (lambda(e)
(writeexpr (t "serverinfo")

(send-line Host Port "groups\n")))))
(button "show users in group" (action (lambda(e)
(writeexpr (t "serverinfo")

(send-line Host Port (string-append
"users-in-group\n"
(readstring (t "group"))))))))

(button "join group" (action (lambda(e)
(make-chat (readstring (t "user"))

(readstring (t "group")) Host Port)
)))

)))))))
(.pack regwin) (.show regwin) regwin)

(register-window
(tryCatch
(.getHost (.getDocumentBase thisApplet))
(lambda(e) "127.0.0.1"))

23456))

Figure 11.2: A multi-room chat program

Chapter 12

Examples of P2P
Programming

This chapter is not yet ready.

12.1 Servents

12.2 Network-aware GUI components

12.3 Running a chat registrar

12.4 Whiteboards

12.5 Shared Textareas

153

154 CHAPTER 12. EXAMPLES OF P2P PROGRAMMING

Part VI

Appendices

155

Appendix A

The Tomcat server and
Jscheme

A.1 Installation instructions for Mac/Linux

The Tomcat server will only run on your Mac if you have the Mac OS 10.1
operating system or higher. It should run under any Linux distribution. We
assume from now on that you do have one of these operating systems and that
you know how to run a browswer and open a terminal window

A.1.1 Installing tomcat

The installation process is fairly easy. First you need to open a browser and
download the jscheme-tomcat.tgz file from the website

http://www.cs.brandeis.edu/~tim/Downloads/jscheme-tomcat.tgz

and store it somewhere on your system. Lets say your username is Joe and you
store it in

/Users/joe/jscheme-tomcat.tgz

You can then close the browser.
Next you unpack it by opening a terminal window, go to the directory where

you downloaded the tgz file and giving the unpack command as follows:

% tar xvzf jscheme-tomcat.tgz

This will create a folder called tomcat in that directory.

A.1.2 Starting/Stopping the Tomcat Server

Next, go into the tomcat directory and set the JAVA HOME variable to be the
path to the 1.3+ version of the Java Development Kit.

On the Mac, this is currently done by the following command:

157

158 APPENDIX A. THE TOMCAT SERVER AND JSCHEME

% cd tomcat
% setenv JAVA_HOME /Systems/Library/Frameworks/JavaVM.framework/Versions/1.3.1/Home

Under linux its the same, but the JAVA HOME is usually ”/usr/java/jdk1.3”.
You can run the ”locate javac” command to find where your Java files are
located.

Now you are ready to start the server by issuing the command:

% bin/startup.sh

You can stop the server at any time by issuing the command

% bin/shutdown.sh

Or my shutting down your computer.

A.1.3 Adding content to the server

Finally, to add webcontent to your server, you should change directory into
the tomcat/webapps folder. This shows all of the webapps that your server is
currently delivering. Of particular interest for us is the scheme webapp. Change
directory into the scheme folder and any files you create in here (or in subfolders)
will be served on the web. Moreover, files ending in sssp, sxml, brls, applet, snlp
will be processed as described in the main body of this text.

A.1.4 Accessing the server

Your server is now running on your machine on port 8080. If your machine
has a registered domain name, say /tt mymachine.com, then you can access the
scheme files on your server at the web address:

http://mymachine.com:8080/scheme

If you don’t have a registered domain name (which is most often the case) then
you must use the IP address itself as the address.

To find out your IP address on a MAC, you can select the “System Prefer-
ences” item in the “apple menu,” then select Network, and have it show “Built-
in Ethernet” or “Airport,” whichever you are using. The screen will then show
your IP address.

On a Mac or under Linux, you can also give the command

% ifconfig -a

and it will give you your IP address (along with lots of other info!)

A.2. INSTALLATION INSTRUCTIONS FOR THE PC 159

A.2 Installation instructions for the PC

The Tomcat server will only run on your PC if you have also installed the Java
JDK version 1.2 or higher. Older versions of windows have this preinstalled,
but Microsoft decided not to preinstall Java in XP. You can download an install
Java by visiting

http://java.sun.com/j2se/1.3

and selecting the “Microsoft Windows” download option.
We assume from now on that you do have this operating system and that

you know how to run a browswer and open a dos window (start-¿programs-
¿accessories-¿commandprompt).

A.2.1 Installing tomcat

The installation process is fairly easy. First you need to open a browser and
download the jscheme-tomcat.zip file from the website

http://www.cs.brandeis.edu/~tim/Downloads/jscheme-tomcat.zip

and store it somewhere on your system. Lets say you store it at the toplevel in

C:jscheme-tomcat.zip

You can then close the browser.
Next you unpack it by opening a terminal window, go to the directory where

you downloaded the tgz file and giving the unpack command as follows:

% cd C:
% unzip jscheme-tomcat.zip

This will create a folder called C:tomcat.

A.2.2 Starting/Stopping the Tomcat Server

Next, go into the tomcat directory and set the JAVA HOME variable to be the
path to the 1.3+ version of the Java Development Kit. This is currently done
by the following command:

% cd C:tomcat
% set JAVA_HOME=C:\jdk1.3.1_02

where you will need to specify where Java is on your system. It usually installs
in the top level of the C drive and has a name that begins with “jdk” Now you
are ready to start the server by issuing the command:

% bin\startup.sh

You can stop the server at any time by issuing the command

160 APPENDIX A. THE TOMCAT SERVER AND JSCHEME

% bin\shutdown.sh

Or my shutting down your computer.
If you get an “Out of environment memory error,” when trying to start up

the server, then you will need to increase the default size of the environment in
the MSDOS window. Do this by right clicking on the MSDOS icon in the upper
left corner of the DOS window. Then click on the memory tab, and then select
the largest value for the initial environment (e.g. around 4000). Shutting down
the MSDOS window (by typing ”exit”) and opening a new MSDOS window
should eliminate that error. Just reenter the JAVA HOME and startup the
server.

A.2.3 Adding content to the server

Finally, to add webcontent to your server, you should change directory into
the webapps folder. This shows all of the webapps that your server is currently
delivering. Of particular interest for us is the scheme webapp. Change directory
into the scheme folder and any files you create in here (or in subfolders) will be
served on the web. Moreover, files ending in sssp, sxml, brls, applet, snlp will
be processed as described in the main body of this text. Note that you must
store these files as plain text (not as HTML, or Microsoft Word)

A.2.4 Accessing the server

Your server is now running on your machine on port 8080. If your machine
has a registered domain name, say /tt mymachine.com, then you can access the
scheme files on your server at the web address:

http://mymachine.com:8080/scheme

If you don’t have a registered domain name (which is most often the case) then
you must use the IP address itself as the address. You get the IP address by
going to (start-¿.....)

A.3 Creating a certificate for secure web pages

THIS SECTION IS IN PREPARATION.

A.4 Configuring for email

THIS SECTION IS IN PREPARATION.

Appendix B

Installing the HSQL
Database

Download instructions.

Starting the Server.

Starting the DatabaseManager

Changing the System administrator password.

161

162 APPENDIX B. INSTALLING THE HSQL DATABASE

Appendix C

Code for the servlet and
applet libraries

163

164APPENDIX C. CODE FOR THE SERVLET AND APPLET LIBRARIES

C.1 Files.scm

;; files.scm

(define (write-to-file filename data)

(let ((f (java.io.PrintWriter. (java.io.FileWriter. filename #f))))

(.println f (string-append data))

(.close f)))

(define (append-to-file filename data)

(let ((f (java.io.PrintWriter. (java.io.FileWriter. filename #t))))

(.println f (string-append data))

(.close f)))

(define (read-from-file name default)

(tryCatch

(let* (

(f (open-input-file name))

(data (read f)))

(.close f)

data)

(lambda(e) default)))

(define (read-all-from-file name default)

(tryCatch

(let* ((f (open-input-file name))

(data

(let loop ((x (read f)))

(if (eof-object? x) ()

(cons x (loop (read f)))))))

(.close f)

data)

(lambda(e) default)))

(define (read-string-from-file name default)

(tryCatch

(let* ((f (java.io.BufferedReader. (java.io.FileReader. name)))

(data

(let loop ((x (.readLine f)))

(if (equal? x #null) ()

(cons (string-append x "\n")

(loop (.readLine f)))))))

(.close f)

(apply string-append data))

(lambda(e) default)))

(define (servlet-file request name)

{webapps[(.getRequestURI request)]_[name]})

C.2. MAIL.SCM 165

C.2 mail.scm

(define (send-mail request to from subj text)

;;;

(define smtp-host "smtp.cs.brandeis.edu")

;;; You must change this to your smtp host !

(define smtp-protocol "imap")

;;; and change this to your protocol

;;;

(define (getRealPath servlet File)

(.getRealPath

(.getServletContext (.getServletConfig servlet)) File))

(define (send to from subj text)

(define (isnull? x) (or (equal? x "") (eq? x #null)))

(define smtp-mbox "INBOX")

(define props

(let ((x (java.lang.System.getProperties)))

(.put x "mail.smtp.host" smtp-host)

x))

(define ses (javax.mail.Session.getDefaultInstance props #null))

(define (sendmail to from subj text msg)

(begin

(if (not (isnull? to))

(begin

(let ((toAddrs

(javax.mail.internet.InternetAddress.parse to #f))

(myto javax.mail.Message$RecipientType.TO$))

(.setRecipients msg myto toAddrs))))

(if (not (isnull? from))

(begin

(let ((fromAddr

(javax.mail.internet.InternetAddress. from)))

(.setFrom msg fromAddr))))

(if (not (isnull? subj))

(.setSubject msg subj))

(if (not (isnull? text))

(.setText msg text))

(javax.mail.Transport.send msg)))

(sendmail to from subj text (javax.mail.internet.MimeMessage. ses)))

(send to from subj (.toString text))

)

166APPENDIX C. CODE FOR THE SERVLET AND APPLET LIBRARIES

Bibliography

[1] World Wide Web Consortium webpages.

167

