
Scheme-based Web Programming
as a basis for a CS0 Curriculum ∗

Timothy J. Hickey
†

Department of Computer Science
Brandeis University
Waltham MA, 02254

USA

tim@cs.brandeis.edu

ABSTRACT
The thesis of this paper is that Scheme-based web program-
ming is a worthy organizing topic for CS0 computer literacy
courses. We describe an approach to introducing non-science
majors to Computer Science by teaching them to write web-
pages using HTML and CSS and to also write applets and
servlets using Scheme. The programming component of our
approach is completed in about nine weeks of a thirteen week
course, leaving time for a treatment of more traditional CS0
topics such as intellectual property, privacy, artificial intel-
ligence, the limits of computability, PC architecture, Oper-
ating Systems, CMOS and logic circuits. We argue that the
use of a high level scripting language (like Scheme) is essen-
tial to the success of this approach. We also argue that wide
scale success in teaching web programming to non-majors
could enhance the students productivity when they enter
the job market, and hence this approach deserves further
study.

Categories and Subject Descriptors
K.3 [Computers and Education]: Computer and Infor-
mation Science Education—Computer Science Education;
D.3.2 [Language Classifications]: Applicative (functional)
languages

General Terms
Non-majors, programming languages/paradigms, web-based
techniques,CS1/2, course pedagogy, curriculum issues

Keywords
Scheme, HTML, CSS, servlets, applets

∗Copyright ...
†This work was supported by the National Science Founda-
tion under Grant No. EIA-0082393.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’04 USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

1. INTRODUCTION
There are many approaches to teaching a CS0 class. The

most common approach is a broad overview of Computer
Science including hardware, software, history, ethics, and an
exposure to industry standard office and internet software.
A more traditional approach is the CS0 class that focuses on
programming in some particular general purpose language,
(e.g. Javascript [6], Scheme[4], MiniJava[5]). The primary
challenge in teaching a breadth-first course is to provide stu-
dents with a critical understanding of how computers and
the internet works. The challenge in a programming-based
course on the other hand is to make the course interesting
and relevant to non-majors, who may very well never take
another Computer Science course.

Several authors have proposed merging these two approaches
by using a simpler programming language (e.g. Scheme[4])
or by using an internet-based programming language (e.g.
Javascript[6], MiniJava[5]). In this paper we describe a
seven year experiment (1997-2003) in combining these two
approaches by organizing the course around a study of web
programming using a scripting language. We currently use
Jscheme[2], a dialect of Scheme implemented in Java, but
the course could conceivably be taught in other lightweight
languages such as Javascript, Python, or Ruby.

2. RELATED WORK
The need for a simple, but powerful, language for teaching

introductory CS courses (CS0 or CS1) has been discussed by
Roberts [5] who argues for a new language, Minijava, that
provides both a simpler computing model (e.g. no inner
classes, use of wrapper class for all scalar values, optional ex-
ception throwing) and a simpler runtime environment (e.g.
a read-eval-print loop is provided). Another recent approach
to CS0 courses is to use Javascript to both teach program-
ming concepts and to provide a vehicle for discussing other
aspects of computing such as the internet and web tech-
nology. For example, David Reed proposes teaching a CS0
course [6] in which about 15% of class time is devoted to
HTML, 50% to Javascript, and 35% to other topics in com-
puter science. A third related approach is to teach Scheme
directly as a first course. This MIT approach, pioneered
by Abelson and Sussman [1], is not suitable for non-science
majors as it requires a mathematically sophisticated audi-
ence. A gentler introduction to Scheme[4] has recently been
proposed as a CS0 course which is appropriate (and in fact
important) for students in all disciplines. Unfortunately, by

attempting to teach the full Scheme language in an introduc-
tory course, little time is left for other topics (e.g. computer
architecture, chip design, internet programming, ethical and
legal issues in computing). The approach we are proposing
here provides an introduction to only a subset of the Scheme
language (introducing lists only toward the end) and intro-
duces some high-level declarative libraries for teaching an
event-driven model of GUI construction.

In the next section of the paper we give a brief intro-
duction to the material we teach in the servlet and applet
sections of the course. We then discuss the merits and prob-
lems with this approach based on our experience teaching
this materal to about a thousand non-majors over the past
seven years.

3. SCHEME SERVLETS
We begin our study of Scheme servlets after first spend-

ing three weeks introducing the students to the architecture
of the Internet (IP addresses, ports, routers, domain name
servers, protocols) and teaching them the fundamentals of
HTML and CSS as simple programming languages. At this
point they will have been exposed to the ideas of formal
syntax and semantics, nesting of expressions, and some ab-
straction in CSS (where you can give names to complex style
specifications).

Scheme is introduced initially as a method for adding dy-
namic content to HTML. We provide students web-based
access to a server which is dedicated to the student ac-
counts. They upload their scheme programs (using a web-
based form) to that server. The modified webserver treats
any programs ending in ”.servlet” as Scheme servlets – when
a browser tries to view such a file, the webserver treats the
file as a program which is evaluated by the Scheme inter-
preter to produce a string that is then returned to the client.

To simplify the transition from HTML/CSS to Scheme,
we use a dialect of Scheme (called Jscheme) that provides
a syntactic extension to simplify the construction of strings
containing generated content. These new strings are called
quasi-strings and are formed using curly braces instead of
double quotes.

{ }

In addition, we allow one to escape to Scheme inside the
quasi-string by using square brackets:

[...]

The expression inside the square brackets is evaluated in
Scheme and converted to a string which is then appended
into the current quasi-string. This is similar to the quasi-
quote syntax used to construct expressions in Scheme.

We can illustrate these ideas using the following simple
Scheme servlet which generates a webpage with the browsers
IP address:

{

<html>

<head><title>Your IP address</title></head>

<body>

Your IP address is

[(.getRemoteAddress request)]

</body>

</html>

}

Evaluating this expression yields the following string

<html>

<head><title>Date/Time</title></head>

<body>

Your IP address is

129.64.2.155

</body>

</html>

The students find the quasi-string syntax easy to learn and
are excited about adding dynamic content to their pages
(e.g. current date/time, host’s operating system, and other
HTML header items). At this point, Scheme simply consists
of a way of accessing the HTML headers using a ”[(...)]”
syntax and is easy for them to understand.

The next step is to introduce I/O. We do this by provid-
ing a macro servlet that allows the student access to the
HTML parameters which are specified in the argument list.
For example, they could create a webpage with a variable
text and background color using:

(servlet (textcolor bgcolor)

{<html>

<head><title>Demo</title></head>

<body>

<div style=

"background:[bgcolor];

color:[textcolor]">

<h1>Color demo</h1>

The text is [textcolor]

and the page is [bgcolor].

</div></body></html>})

The servlet can then be “run” by adding parameters to the
URL of the servlet in the browser:

...colordemo.servlet?textcolor=red&bgcolor=black

This introduction to dynamic webpages and the servlet macro
is usually covered in one 50 minute lecture and the students
can immediately start adding dynamic content to the web
pages.

The use of parameters in servlets naturally motivates user-
defined procedures which use the same substitution model.
These procedure are introduces as a kind of named “super-
tag” for generating HTML and are compared to CSS classes
which are named sets of style specifications.

For example, we show them how to define a custom web-
page procedure which is an abstraction of a class of standard
webpages:

(define (mypage css title body)

{<html><head>

<title>[title]</title></head>

<body>

<h1>Tim’s Page
[title]</h1>

[body]

© Tim Hickey 2001

</body></html>})

which can then be used used to simplify webpages:

(servlet (textcolor bgcolor)

(mypage {Demo}

{<div style=

"background:[bgcolor];

color:[textcolor]">

The text is [textcolor]

and the page is [bgcolor]

</div>}))

The semantics here is the substition model[1] and in this do-
main the advantages of using abstraction are easy to explain
as it allows them to create new webpages more quickly and
to modify the look of all of their webpages more easily.

We then continue on to introduce new primitives and
means of combining expressions to extend their expressive-
ness. We introduce simple conditionals (if and case) and
arithmetic expressions, which allows them to write simple
I/O programs (convert dollars to yen ...). This leads to a
renewed discussion of the evaluation of Scheme expressions
by successive rewriting and substitution which provides both
a nice conceptual model of computation and helps them un-
derstand how their servlets work.

Below is a typical example of the kind of servlets these
students are writing after the few week of instruction on
Scheme servlets.

;; project2a.servlet

(my-page (servlet (a s1)

(case a

((#null)

{<form method="post"

action="project2a.servlet">

Please enter an amount in U.S. dollars:

<input type="text" name="a">

calculate<input type="submit" name="s1"

value="How many shekels?"

</form>

})

(else

{[a] dollars is equal to

[(* 4.56 (Double. a))] shekels

}))))

The example was written by a non-science major and has
editted slightly to remove her name and other identifying
data. The first clause of the case is invoked when the servlet
is first visited. The second clause is invoked on the second
visit, after the form has been completed. The case pat-
tern can also be used to create password protected pages or
to combine several webpages into a single page (e.g. for a
presentation.)

To make the servlets more fun (and useful) we provided
access to the send-mail procedure, which allows them to
write servlets that automatically construct and send emails.
We found we needed to restrict the email to destinations in-
side the University, as students would sometime write buggy
programs that mistakenly sent emails to unsuspecting per-
sons outside of the university.

For persistence, we currently provide the dbquery proce-
dure which allows them to make simple SQL queries to a
student database and returns the result as a list of lists.
This motivates the study of structured data and provides
an opportunity to discuss the “map” procedure of Scheme
and use it to generate HTML tables of a SQL query re-
sults. We don’t teach much SQL, but rather show them a
few simple SQL patterns (creating a simple table, inserting
into a database, selecting records from a database, counting
records in a query) and provide a procedure to convert the

results into an HTML table. With these simple tools they
can begin to create interesting and useful web programs and
in the process learn about fundamental programming con-
cepts like formal syntax and semantics, procedural abstrac-
tion, side effects, evaluation of expressions, and the substi-
tution model of Scheme.

4. APPLETS
The course then moves on to the study of applets, which

are programs than run in the browser window. The course
web server has been modified to allow students to write
applet programs in Scheme and store them in files ending
with ”.applet”. Any such file is automatically converted into
an HTML page containing a Jscheme interpreter applet in
which the students code is passed as a parameter. From the
student’s point of view, they upload a program to server,
visit the page they’ve just created, and their program starts
running on their browser.

To allow the students to focus on the fundamental con-
cepts of this type of programming, we provide them with a li-
brary (jlib) that provides declarative access to the javax.swing
(or just the java.awt) package. An example of one student’s
simple Scheme program using this library is shown below.
Due to the declarative nature of the library, this should be
fairly easy to understand without any explanation. This pro-
gram was written after one week of instruction on Scheme
applets. It is not algorithmically complex, but it does il-
lustrate the range of “reactive” programs they are able to
create.

"Homework 3b"

"STUDENT X"

"http://tat.cs.brandeis.edu:8090/aut02/cs2a"

"money calculator"

(define (init thisApplet)

(define lib (jlib.JLIB.load))

(define pennies (textfield "" 10))

(define nickels (textfield "" 10))

(define dimes (textfield "" 10))

(define quarters (textfield "" 10))

(define totalDollars (label "---"))

(define w

(window "money calculator"

(HelveticaBold 24)

(border

(north (label "Money Calculator"

(HelveticaBold 40)))

(center

(table 5 2

(label "pennies") pennies

(label "nickels") nickels

(label "dimes") dimes

(label "quarters") quarters

(button "Total"

(action (lambda(e)

(let* (

(p (readexpr pennies))

(n (readexpr nickels))

(d (readexpr dimes))

(q (readexpr quarters))

(total

(* .01

(+ (* 1 p)(* 5 n)(* 10 d)(* 25 q))))

)

(writeexpr totalMoney total)

))))

totalMoney)

))))

(.pack w)

(.show w)

The key points about this windowing library are that it pro-
vides procedures for each of the main GUI widgets (win-
dow, button, menubar, label) and it also provides proce-
dures for specifying layouts (e.g. border, center, row, col,
table). The arguments are optional and can appear in any
order. The library determines how too act on the argu-
ments based on their type, freeing the user from having
to remember whether color goes before or after the font,
etc. Examples of arguments are fonts, background colors,
and actions. Also, several of the GUI widgets (textfield,
textarea, label, choice, ...) are viewed as I/O objects and
the ”readexpr” and ”writeexpr” procedures can be used to
read/change their displayed values.

The first five lines of the program listed above are strings
that provide documentation about this program. If this code
is placed in a file with the extension ”.snlp” in the course
webserver, then it is converted into an XML file using the
Java Network Launching Protocol (JNLP), and this causes
the program to be downloaded to the client’s computer and
run in a sandbox. If it is placed in a file ending in ”.applet”
then the server generates a webpage containing an applet
that runs the code in the file.

We also introduce some 2D graphics and a little network-
ing in the section of the class so that motivated students can
write their own network games. As an example of how much
the students can learn, we had one student with no prior
background in Computer Science who implemented a net-
worked game applet for playing pictionary. She implemented
the chatting windows, a whiteboard, and demonstrated that
it could be played by many people at different computers.
Most students however, chose simpler final projects such
as quiz games or chat simulators, and some simple created
GUI landscapes that the user could traverse by clicking on
buttons and menus that would open new windows, change
background colors, and write text into textareas.

5. EXPERIENCE
We have used the Scheme-based web programming ap-

proach to teach a large Introduction to Computers course
for the past seven years (1997-2003) and we would judge
the course to be successful in a number of ways.

First of all, the classes have ranged in size from 80-250 stu-
dents, tracking the rise and fall of the Internet bubble, but
the course has remained one of the most popular courses on
campus in terms of the number of students enrolling (very
few courses at our institution have more than 100 students).
Second, the class has continued to attract a wide distri-
bution of students across the liberal arts departments and
class years (freshman through senior), so the inclusion of
programming has not “scared off” non-science students. Fi-
nally, the students have continued to score highly on the final
exam, which is a three hour in class programming assign-

ment in which they must write fairly sophisticated servlets
and applets without using a computer. Fully half of the stu-
dents scored 90% or higher on the rigorously graded final
exam last year.

We have used several techniques to accommodate the non-
science students that are a majority in this class. The home-
work assignments allow students to exercise their creativity
in creating a web artifact (webpage, servlet, applet, applica-
tion) which must meet some general criteria. For example,
in one assignment they are required to create a servlet that
uses several specific form tags (in HTML) and generates
a webpage in which some arithmetic computation is per-
formed. This encourages a bricolage approach to learning
programming concepts which seems to appeal to non-science
majors. The course features weekly quizzes which take an
opposite approach. The students are shown a simple web
artifact and asked to write the code for it during a twenty
minute in-class exam. This practice helps keep the students
from falling behind in the class and also helps counterbal-
ance the openness of the homework assignments. The final
exam is based on the weekly quizzes so they also serve a role
in preparing students for the exam. The course provides a
high level of teaching assistant support and uses peers who
have completed the course in a previous year. The stu-
dents post their homework assignments on the web and are
thereby able to learn from each other, while the creativity
requirement keeps copying to a minimum.

There are still some remaining rough spots in the course.
One problem is the lack of a really good debugger/validator
for the Scheme servlets and applets. This is especially tricky
for the Scheme servlets where the students are mixing three
or more languages – HTML, CSS, Scheme, and possibly
SQL. The relatively mediocre quality of our debuggers cre-
ates some unnecessary frustration for some of our students,
but most of the problems are with paren matching and even-
tually do get solved. We are working on building better de-
buggers. Another problem is that we currently teach the
course entirely on a dedicated course server, so the students
never learn to install and run a server on their home comput-
ers. The downside of this approach is that they are not able
to apply what they’ve learned outside of the course. Simi-
larly, if the database component of the course were a little
better designed the students ability to write useful programs
would be greatly increased.

From a social point of view, some students are still un-
comfortable with the solitary nature of programming. We
have tried to answer these concerns by scheduling abundant
Lab Assistant hours staffed by undergraduates who have re-
cently completed the course. We are currently looking into
allowing group homework projects in the hope of enticing
more students to continue programing after the class has
completed.

There are two requirements for offering this type of course.
First, one must find a way to provide the students with easy
access to a webserver that can handle Scheme servlets. Sec-
ond, the instructor needs to carefully select a subset of the
language that will be taught to the students and to provide
highlevel libraries where appropriate to make the language
more declarative. Links to the software and course materi-
als for the class we teach is free, open-source, and available
online at

http://jscheme.sf.net

Links to some earlier versions of the class are also available.

6. CONCLUSIONS/FUTURE WORK
Overall the most rewarding aspect of the course is that

these non-science students have been able to learn how to
write fairly sophisticated HTML, CSS, servlets, and applets
all within an 8 week unit of a 13 week semester, and they
still have time to learn about more traditional Computer
Literacy topics such as intellectual property, the internet,
operating systems, PC architecture, and logic circuits. This
is especially gratifying considering the diversity of the stu-
dent body in terms of class year and major, as shown in the
tables below

Major

27% Science

28% Social Science

15% Humanities

2% Arts

27% Undecided

Year Fr So Jr Se

50% 24% 13% 13%

The overall course evaluations were generally positive al-
though some students felt the course moved too quickly and
others that it moved to slowly. Most were happy to have
learned to create webpages and many were surprised by how
much they had learned.

The primary reasons for the success of this approach seems
to be two-fold:

• by using a subset of Scheme we eliminate the problem
of learning syntax (as one must only match parens and
quotes and the Jscheme IDEs help one do this) and
also minimize the problem of learning the underlying
abstract machine due to the declarative nature of the
language. Rather than learning about memory loca-
tions and program counters and control flow, they are
learning about the substitution model and the evolu-
tion of Scheme programs by rewriting text.

• by organizing the course around web programmming
we capture the interest of the students who are then
willing to devote long hours of programmming to get
their servlets or applets working.

We have tried unsuccessfully to organize an introductory
Java course around web programming, but this has had
much less satisfactory results in that the students learned
less than when we followed a more traditional console-based
approach, and they weren’t able to master the same level
of web programming as in the Scheme-based course. These
results might be due to the difficulty that novices have in
learning a “professional API” like java.awt or javax.swing,
but it could also be related to the fact that Java is cogni-
tively more complex than Scheme. It requires students to
learn about objects, classes, fields and methods (static and
instance) just to write the simplest applet.

Scheme, on the other hand, has proved to be an excellent
vehicle for introducing key CS concepts such as formal syn-
tax and semantics, and also allows the students to build in-
teresting and fairly complex web artifacts. Other languages
could probably be used equally well in this approach to CS0,
but our experience would indicate that high-level scripting

languages (like Scheme, Python and Ruby) would have the
best chance of success in this domain.

Although we are not quite there yet, it seems likely that
in a few more years, we should understand enough about
this approach to allow all students, no matter what their
major, to learn to program and to have their programming
skills enrich their personal and professional lives in a way
that the Basic and Pascal programming Computer Literacy
classes of the 70’s and 80’s were never able to accomplish. It
is at least conceivable that a large scale effort to teach web
programming to our youth will result in a more skilled and
productive workforce and citizenry.

Acknowledgment
I would like to acknowledge the support of my Jscheme code-
velopers over the years, including Ken Anderson and Peter
Norvig, and my students Hao Xu, Lei Wang who helped
develop the very first version in 1997. I would also like to
thank the 1000+ students that have taken the course over
the past seven years and who have helped refine the course
by their suggestions and encouragement.

7. REFERENCES
[1] H. Abelson and J. Sussman. Structure and

Interpretation of Computer Programs MIT Press.

[2] Ken Anderson, Timothy J. Hickey, Peter Norvig. Silk:
A playful combination of Scheme and Java Workshop
on Scheme and Functional Programming Rice
University, CS Dept. Tech. Rep. 00-368, Sept 2000.

[3] William Clinger and Jonathan Rees, editors. “The
revised4 report on the algorithmic language Scheme.”
In ACM Lisp Pointers 4(3), pp. 1-55, 1991

[4] Robert Bruce Findler, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, and Matthias Felleisen.
DrScheme: a pedagogic programming environment for
Scheme. Proc. 1997 Symposium on Programming
Languages: Implementations, Logics, and Programs,
1997.

[5] Eric Roberts. An overview of MiniJava. in SIGCSE’01
ACM Digital Library, 2000.

[6] David Reed. Rethinking CS0 with Javascript. in
SIGCSE’01 ACM Digital Library, 2000.

