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Abstract. Pixelization is the simple yet powerful technique of mapping
each element of some data set to a pixel in a 2D image. There are 2
primary characteristics of pixels that can be leveraged to impart infor-
mation: 1. their color and color-related attributes (hue, saturation, etc.)
and 2. their arrangement in the image. We have found that applying a di-
mensional stacking layout to pixelization uniquely facilitates interactive
data mining, directs user queries, and provides a type of visual principle
components analysis. In this paper we describe our approach and how
it is being used to analyze multidimensional, multivariate neuroscience
data.

1 Introduction

There are many methods for multidimensional and/or multivariate visualization
[1][3][4]. Some popular 2D approaches are scatter plot matrices [1] and parallel
coordinates [5]. When faced with the task of visualizing a vast database of neu-
roscience data we chose to employ a form of pixelization because of the amount
of information that can be displayed at one time [6]. This technique maps each
data point of some set to a pixel in a 2D image, with the only constraint be-
ing a monitor’s resolution. For our purposes, it meant that we could view an
entire dataset of 1,679,616 single compartment neuron simulations in one dis-
play. This provided a global context for determining data trends and supporting
exploratory analysis.

Keim and Ward have investigated the effects of different layout strategies
for multidimensional visualization [15]. In the domain of pixelization, Keim has
demonstrated the efficacy of pixel arrangements that are determined by the
results of user queries [9] and has proposed algorithms for generating them [7].
In [10], LeBlanc et. al. introduced Dimensional Stacking which projects multiple
dimensions onto 2 axes so that all are visible in one display. This technique is
essentially a specialized layout of visual grid squares.

While LeBlanc et. al. make a subtle reference to the possibility of one data
element being mapped to one pixel, the application of dimensional stacking as



a layout scheme for pixelization has not been thoroughly investigated. We have
found that combining both approaches has unique implications for facilitating
data trend discovery. In particular, clustering within this scheme is entirely based
on the order of dimensions on each axis. The task of interactively permuting
dimension orderings can reveal functional dependencies on dimension values and
direct user queries for further analysis.

We have applied these methods to the analysis of highly structured neu-
ron simulation data where the independent and dependent variables are clearly
delineated. In database terms, our dimensions are independent variables and to-
gether can be a considered a primary key. The rest of the columns are dependent
variables or datapoint attributes and are determined by dimension values. As
such, we cannot claim a global utility of our technique when applied to data that
has a very different structure. However, these methods have proven quite useful
for our purposes and we believe can be generalized further.

In this paper we detail our approach of applying a dimensionally stacked
layout to pixelization. Section 2 provides a brief overview of pixelization, dimen-
sional stacking, and related literature. Section 3 describes the generation of the
data we were tasked to analyze, the motivation for our choice of visualization
techniques, and the application of our approaches to that data. We detail the
semantics of dimension ordering within the context of our approach in section
4. Both sections 3 and 4 use examples from our experience working with neu-
roscientists and analyzing multidimensional, multivariate neuroscience data. We
specifically show how our methods interactively support feature discovery, data
mining, and a type of visual principle components analysis. We conclude our
findings in section 5 and provide recommendations for future work in section 6.

2 Background

2.1 Layout

In [15], Ward and Keim describe how layout can convey relations between graph-
ical entities. They prescribe placing semantically similar items in close proximity
to one another. This poses the issue of how to determine what constitutes se-
mantic similarity. Grouping all red pixels together in a pixelization image may
obscure a multimodal distribution of the data values associated with red pixels.
Its usually important to retain dimensional context and impart not only attribute
values but the dimension values that create them, all in the same visualization.

Keim presents two layout schemes for multidimensional pixelization, both of
which map each dimension to a different window [9]. A user can view the same
region in 2 or more windows, to decipher correlations and functional dependen-
cies between dimensions. In what is termed a query-independent approach, the
value of some attribute is mapped to pixel colors, the data is sorted according
to that attribute, and then space filling curves are used to arrange the pixels
in an image. In a query-dependent approach, an extra window is created with
a layout that is driven by a user query. Keim develops a sophisticated metric



for determining the distance of a data element from a user query. For the extra
query-dependent window, the pixels for items that match the query are placed
in the center of the display while the rest are distributed in a generalized spiral
pattern, away from the center, in the order of increasing semantic distances. The
technique for doing so is described in [7].

For our purposes, we needed to display both attribute values and the di-
mension values that created them, in the same image. This implicitly requires
displaying all dimensions and their possible values in one image as well. We
therefore could not use the layouts described above. To satisfy our requirements
we applied a dimensional stacking layout to pixelization and represented query
results as pixel attributes such as color.

2.2 Dimensional stacking

We devised a method of dimensional stacking based on the structure of our data
[10] [16]. The result was a subtle variation on the original concept, specifically
applied to pixelization. One can interpret our database or dataset as a function
on tuples T = (t1, . . . , tn) where all of the ti are small integers satisfying ti < D
for some small number D. Each ti is considered to be one dimension and the
cardinality of possible values it can take on is its base. When all dimension bases
are equal, T can then be viewed as a base D number with n digits.

For example, suppose n = 4 and the dimensions a, b, c, and d take on the
values 0 and 1. We can interpret these dimensions as a 4 digit binary number.
Ordering the dimensions in alphabetical order, the number 0101 would map to
a = 0, b = 1, c = 0 and d = 1 or the decimal number 5. It is possible to
have an odd number of dimensions and/or dimensions with unequal bases i.e.
0 <= ti < j , 0 <= ti+1 < k and j 6= k. We account for this below.

To get a 2D representation we map every combination of dimension values to
a pixel coordinate. First we partition the dimensions into two groups. Though
any number of dimensions can be in either group, we generally follow the rule:
X = n/2 and Y = n/2 + n mod 2 where n is the number of dimensions. The
decimal values of coordinates are calculated the same as in [10]. The reverse
operation follows this algorithm:

1. Given some decimal number m and an order of dimensions, start with the
right most (or least significant) dimension and iterate left

2. tn = m modulo (the base of tn)
3. m = m/ (the base of tn)
4. repeat for tn−i until the value for t0 is calculated

For the decimal value 7 and 3 dimensions with the bases 2, 3, 2:

1. 7 mod 2 = 1 (keep for right most parameter = 1)
2. 7/2 = 3 (ignore remainder, pass on as new num)
3. 3 mod 3 = 0 (prepend to current answer = 01)
4. 3/3 = 1(ignore remainder, pass on as new num)



5. 1 mod 2 = 1 (prepend to current answer = 101)
6. answer = 101

The x coordinate of each pixel is derived from X and y from Y. The width
of a pixelization is the product of the bases in X, and the height is the product
of the bases in Y. Our implementations support zoom and panning so we do
not require a square image nor the blank rows for balance as in [10]. Instead of
defining dimensions as “faster” or “slower”, we extend the traditional terms of
least and most significant digits to least and most significant dimensions.

2.3 Pixel attributes

In pixelization, the color of each pixel is generally determined by some value of
the data element corresponding to that pixel. Different color attributes such as
hue and saturation can be mapped to different values. If a discrete classification
of data items exists then one can associate a distinct color to each class. A
data attribute with continuous values can be normalized to lie in the range [0,1]
and then mapped into a spectrum of colors. One can combine both discrete
and continuous values by simply mapping each to a different color attribute i.e.
hue for continuous values and color for discrete values. There are well-studied
strategies for selecting effecitve color maps [14].

Keim shows how his distance measure can be mapped to pixel color intensity
in addition to layout [8]. Distance, again, is defined as the relevance of a data
item to a user query. We chose to allow user queries to directly define the color
map. In our approach queries can return either a discrete or continuous value as
described above. In the simple case, a query might test a data item’s membership
to some classification. In a more complicated case the user may compose a query
that returns the result of some function on a particular data attribute.

2.4 Dimension ordering, “optimal” orders

Graphically clustering displays to show a distinct structure in data is often con-
sidered desirable [11][15][17]. In [2], Ankerst proposes clustering dimensions with
similar attribute values in order to ensure their co-located arrangement in a pix-
elization. They further prove that this is an NP-complete problem in the context
of certain layout schemes such as space filling curves and Keim’s recursive pat-
tern [7]. The computational complexity of finding optimal dimension orders for
visual clustering depends upon the layout mechanism being used.

Dimension order has a particular significance for dimensional stacking [11][16].
Since every ordering of parameters corresponds to a distinct image, the orderings
for n dimensions yield n! images. If there are an even number of dimensions then
half of these images are merely the result of swapping the x and y coordinates
of each pixel. For an even number of dimensions, a brute force search for an
optimal dimension order would require scoring n!/2 images. If there are an odd
number of dimensions one must score all n! images.



In our experience, we have found that there are often many different projec-
tions that yield substantive insights into the structure of the data. We discuss
some automatic approaches to finding interesting projections below, but our
experience has been that it is relatively easy to traverse the space of projec-
tions by swapping a pair of dimensions at a time and rapidly finding interesting,
information-rich projections.

3 Data

3.1 Motivation for pixelization

The impetus for our use of dimensional stacking was borne out of a collaborative
effort with colleagues in the Neuroscience department at Brandeis University. In
a research effort by Prinz et. al., a large database of model neuron data was
generated to better understand how individual membrane currents contribute to
the electrical activity of a neuron [12]. The database was generated in a brute
force style by several model neuron simulators running in parallel. Each model
neuron was characterized by a sequence of 8 conductance parameters: KCa, Na,
CaS, H, CaT, Kd, A, and leak. All of these could take on 6 different values and
no two models shared the same combination of values. Simulations were run
for every combination of parameter values and various attribute values recorded
for each i.e. whether the neuron was silent, spiking, bursting, irregular. This
yielded 68 model neuron simulations, each of which correspond to one row in the
database tables. The primary key or model number for each of these tables is
the model neuron conductance parameter values in the form of an 8 digit base
6 number. The 3GB database contained 2KB of data for each of the 1,679,616
model neurons.

An initial statistical analysis of the database revealed a bimodal distribution
of spiking neurons dependent on period length. Some questions arose about the
relationship between the parameter values of those neurons and their classifica-
tion as fast/slow spikers, e.g. what are the locations of these two classes of spikers
in conductance space (conductance space refers to the 8 dimensional space of all
possible conductance parameter values)? How are they distributed throughout
conductance space? What can be said about the border region between these
distributions, if there is one?

The need for a visualization tool was evident. Such a tool would help not only
with the questions at hand but could facilitate feature discovery. We evaluated
some tools but found most were not suited for the amount of data we were work-
ing with. XGobi, for instance, would freeze before completely loading the data
[13]. A requirements analysis was performed for a visualization technique that
would be adequately expressive. Two characteristics of the database containing
neuron information immediately eliminated the vast majority of approaches:

1. It was vast (1,679,616 rows per table).
2. It was multi-dimensional.



Our tool needed to represent a mapping from the 8 conductance parameters
for each neuron model to its other attributes held in the database (e.g. activity
type and details of the voltage trace). The desire was to display some attribute
value for every model neuron in the same image. This would reveal the location of
attribute values in the 8 dimensional conductance space and allow easy indexing
to the parameter values that created them. It was a useful coincidence that the
size of our dataset (1,679,616 points) was similar to the number of pixels on a
modern computer screen. This suggested using one pixel per model neuron.

The database was generated before we started our work, so the decisions
about how many parameters were of interest and how to discretize their pos-
sible values were made for us. The structure of the data led us to employ a
version of dimensional stacking. In the next section we describe the application
of pixelization with a dimensional stacking layout to our database.

3.2 Applying dimensional stacking and pixelization

During the process of applying dimensional stacking and pixelization to the
neuroscience database, several implementations were used. A first pass was done
in JScheme, a language for rapidly scripting Java GUIs paired with the power
and syntactic simplicity of Scheme. Additional implementations used Matlab
and Java. In the following sections we present a high level description of the
features provided by our tools though implementation specifics are out of the
scope of this paper.

Pixel layout Each model neuron was uniquely defined by its conductance
parameter values, an 8-tuple of integers in the range [0, 5]. The conductances
were KCa, Na, CaS, H, CaT, Kd, A, and leak and served as the dimensions of
our data set. The entire space of possible parameter values and model neurons
was therefore 8 dimensional. We reduced this to two dimensions by partitioning
the parameters into two sets of four elements each, and viewing them as a pair
of for digit base 6 numbers. These numbers served as the decimal coordinates
of the pixel associated with the model neuron bearing those parameter val-
ues. More precisely, we chose a set of four conductances (independent variables)
x1, x2, x3, x4 and computed a pixel’s x coordinate as:

x = x1 ∗ 63 + x2 ∗ 62 + x3 ∗ 61 + x4 ∗ 60

The y coordinate was calculated in the same fashion using the remaining
conductances. The concise nature of this equation is due to the fact that each
dimension has a base of 6. The algorithm for deriving a decimal value from
dimensions with differing bases (or possible value cardinalities) is described in
[10]. Because pixel coordinates map directly to dimension values we were able to
interactively report the values for each neuron model/pixel during mouse over
events.

Fig. 1 illustrates four classes of neurons. Those with tonically spiking voltage
plots are in red. The blue, green, and purple colors indicate neurons with bursting
voltage plots where the number of spikes per second is in the range [0,10], (10,18],



or (18,1000] respectively. The white pixels are either silent or irregular bursters;
we are not considering those classes in this sequence of images.

The axes are labeled with the conductances assigned to each. The most sig-
nificant dimensions are KCa and CaT. Fig. 3 is a clip from the lower left corner
where the values for both are 0. Fig. 4 is another clip from the lower left corner
where the values for Na and Kd are 0. Thus, if you break the square down into
a 6X6 grid, all pixels in one of the largest square would have one value for KCa
and CaT. You can then break that square down into a 6X6 grid and the largest
squares there would be values for Na and Kd.

Pixel coloring 68 model neurons mapped to 68 pixels. 8 dimensions partitioned
into two groups of four created a 1296 by 1296 square image. The colors assigned
to pixels were directly specified by user queries written in SQL. Solid regions of
color or repeating patterns represented data trends.

4 Dimension ordering

The ordering of dimensions (conductance values for our data) has a profound
effect on the image resulting from our dimensional stacking method. For instance,
the data and color assignments in Figs. 1 and 2 are identical. The only difference
is the order of dimensions. One is not necessarily better than the other, but each
reveals different information about the underlying data. For instance, in Fig. 2 it
is actually quite apparent that when H and leak levels are 0, neurons usually do
not have a bursting activity (there are very few blue pixels). This is not readily
apparent in Fig. 1. Similarly, the features of Fig. 1 (e.g. predominance of spikers
when KCa < 1) are not readily apparent in Fig. 2.

Because we had 8 dimensions, there were 8!/2 = 20,160 possible projections or
images. The division by 2 results from extracting identity rotations, i.e. swapping
each pixel’s x and y coordinate. This dynamic occurs in any dimension set with
an even cardinality.

4.1 Semantic order effect

Fig. 1 clearly indicates that there is some structure in these classes of neurons.
In particular, the fact that the red color predominates in the left and bottom
edges of the image indicates that the tonically spiking neurons only occur when
KCa or CaT are relatively low (e.g. less than 4) and that most spiking occurs
when at least one of these values is less than 2. This is a feature of the 1st level
dimensions in this particular projection.

Another feature clearly visible in this plot is that when KCa and Cat are
both relatively large (at least 2), then the burst rate is relatively slow (less than
10) for all neurons with small values of Na or Kd. This is a feature of the “2nd
level” of dimensional stacking.

A feature of the third level of dimensional stacking can be seen in the location
of the fast bursters. It is clear, visually, that these purple pixels appear primaily



in the lower right parts of the 3rd level grid squares when KCa and CaT are
large (say at least 3). This is the condition that A < CaS.

In general, the most significant dimensions determine the clustering of an
image. For instance, because KCa is the most significant dimension on the X axis,
and CaT is the most significant on the y axis, the red pixels (which represent
spiking neurons) cluster when their values are near zero. we can deduce that
neurons tend to spike when there are low concentrations of KCa or CaT.

In this way, one can perform a type of interactive principle components anal-
ysis by reordering dimensions to maximize clustering of a particular phenomenon
or pattern. One visual analysis technique is to alternate between finding principle
components through dimension reordering, and using the resulting visualizations
to inform queries. This results in an organized approach to feature discovery and
directed queries, allowing users to mine the data using hypotheses and discover
unforeseen patterns. For instance, in Fig. 1 there are white grid points through-
out the image wherever H = 0. We could reposition H as the most significant
dimension of 1 axis to try and cluster this phenomenon and determine the effects
of this parameter. This is done in Fig. 2 which shows indeed that there is very
little spiking and almost no bursting when H and leak are less than 1.

The dimensionally stacked pixelization of neuroscience data provided a num-
ber of insights. Over a period of minutes or hours the conductances of a real
neuron may change incrementally. With our layout, the neuroscientists would
be able to trace the path of a single neuron through the conductance space as
its activity changed. We believe similar analysis could be performed with other
data sets.

4.2 Clustering and “optimal” orders

As mentioned above, in many cases there is no single optimal order that provides
maximal information from a dataset. Nevertheless, there has been substantial
research in finding automatic algorithms to find ordering that are potentially
information rich.

Yang presents an approach termed DOFSA, an automatic and interactive
way of ordering, spacing, and filtering dimensions based on similarity [17]. In
their algorithm, dimensions with similar value distributions are clustered and
organized into a hierarchical tree structure. Ordering dimensions is then per-
formed as a depth first traversal of the tree. This changes the search problem for
finding an optimal dimension order to a sorting problem thereby reducing the
computational complexity.

In dimensional stacking, dimension similarity is not necessarily relevant to
visual clustering or an optimal dimension order. In the simple case, a data trend
may be determined by only 1 dimension. In our visualization the trend would
only be apparent when that dimension is the most significant one on the x or
y axis. Grouping according to similarity would not accomplish this. In general,
techniques that cluster according to dimension similarity inform us of what di-
mensions could be grouped together, but do not prescribe a global order, i.e.



Fig. 1. A view of number of maxima per second.



Fig. 2. A view of number of maxima per second (using a less informative projection
than in Fig. 1).



Fig. 3. A closeup of the lower left corner Fig. 1 where KCa and Cat are less than 1.

Fig. 4. A closeup of the lower left corner of Fig. 3 where Kd and Na are also less than
1.

what dimension goes first. Grouping all pixels of a certain color may also oc-
clude certain facts such as a multimodal distribution. We may wish to see 2
distinct clusters, one determined by dimension A and one by dimension B.

Peng defines a measure for the clutter in a dimensional stacked image as the
“number of isolated filled bins” / “number of total occupied bins” [11]. For our
use of pixelization with dimensional stacking, simply replace “bins” with “pix-
els.” Determining whether a single pixel is connected on any side with another
pixel of similar color can be quite expensive over many millions of iterations.
Our neuroscience colleague Dr. Adam Taylor proposed a simpler and computa-
tionally feasible measure of clutter which counts the number of color changes in
each row and column of pixels.

5 Conclusions

Applying a multidimensional layout to pixelization provides great utility for ex-
ploratory analysis of multidimensional data. Users can directly query data to
color pixels or interactively reorder dimensions to find patterns and determine
principle component/dimension effects. Both of these approaches can be com-
bined in an iterative process where found features inform user queries.

Displaying all dimensions in one image is highly informative as users can see
the dimension values that produce the attribute values they are viewing. With
a dimensional stacking layout, pixilated data, query specified color maps, and



interactive dimension ordering, large databases can be interactively explored in
an information rich visual environment.

6 Future work

One issue is the fact that dimensional stacking works best with a small set
of monotonically increasing values allowed for each dimension (and the sim-
plest case is when all dimensions have the same number of values). This fact
is noted by LeBlanc, Ward, and Keim. Our neuroscience data fit perfectly into
this paradigm however other data sets may not. One question is how our ap-
proach could be applied to other domains. Some methodology for determining
dimensions vs. attribute values and discretizing the latter would be necessary.
One possible area of research is to investigate the general applicability of our
approach and construct such a methodology. Also, much of the background lit-
erature on clustering and clutter reduction describe a very small set of heuristic
algorithms. One possible area of investigation is to employ methods such as sim-
ulated annealing, genetic algorithms, or branch and bound to find information
rich dimension orderings.
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