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Abstract 

A pervasive problem facing many bio-
medical text mining applications is that of 
correctly associating mentions of entities 
in the literature with corresponding con-
cepts in a database or ontology.  Attempts 
to build systems for automating this proc-
ess have shown promise as demonstrated 
by the recent BioCreAtIvE Task 1B 
evaluation.  A significant obstacle to im-
proved performance for this task, how-
ever, is a lack of high quality training 
data. In this work, we explore methods for 
improving the quality of (noisy) Task 1B 
training data using variants of weakly su-
pervised learning methods. We present 
positive results demonstrating that these 
methods result in an improvement in 
training data quality as measured by im-
proved system performance over the same 
system using the originally labeled data. 

1 Introduction 

A primary set of tasks facing biomedical text proc-
essing systems is that of categorizing, identifying 
and classifying entities within the literature.  A key 
step in this process involves grouping mentions of 
entities together into equivalence classes that de-
note some underlying entity.  In the biomedical 
domain, however, we are fortunate to have struc-
tured data resources such as databases and ontolo-
gies with entries denoting these equivalence 

classes.  In biomedical text mining, then, this proc-
ess involves associating mentions of entities with 
known, existing unique identifiers for those entities 
in databases or ontologies – a process referred to as 
normalization.  This ability is required for text 
processing systems to associate descriptions of 
concepts in free text with a grounded, organized 
system of knowledge more readily amenable to 
machine processing. 

The recent BioCreAtIvE Task 1B evaluation 
challenged a number of systems to identify genes 
associated with abstracts for three different organ-
isms: mouse, fly and yeast.  The participants were 
provided with a large set of noisy training data and 
a smaller set of higher quality development test 
data.  They were also provided with a lexicon con-
taining all the potential gene identifiers that might 
occur and a list of known, though incomplete, 
names and synonyms that refer to each of them.   

To prepare the training data, the list of unique 
gene identifiers associated with each full text arti-
cle was obtained from the appropriate model or-
ganism database.  However, the list had to be 
pruned to correspond to the genes mentioned in the 
abstract.  This was done by searching the abstract 
for each gene on the list or its synonyms, using 
exact string matching. This process has the poten-
tial to miss genes that were referred to in the ab-
stract using a phrase that does not appear in the 
synonym list.  Additionally, the list may be incom-
plete, because not all genes mentioned in the arti-
cle were curated, so there are mentions of genes in 
an abstract that did not have a corresponding iden-
tifier on the gene list. 

This paper explores a series of methods for at-
tempting to recover some of these missing gene 



identifiers from the Task 1B training data abstracts.  
We start with a robust, machine learning-based 
baseline system: a reimplementation of the system 
in [1].  Briefly, this system utilizes a classifier to 
select or filter matches made against the synonym 
list with a loose matching criterion.  From this 
baseline, we explore various methods for re-
labeling the noisy training data, resulting in im-
proved scores on the overall Task 1B development 
test and evaluation data.  Our methods are based on 
weakly supervised learning techniques such as co-
training [2] and self-training [3, 4] for learning 
with both labeled and unlabeled data.   

The setting here is different than the typical set-
ting for weakly supervised learning, however, in 
that we have a large amount of noisily labeled data, 
as opposed to completely unlabeled data.  The 
main contribution of this work is a framework for 
applying weakly supervised methods to this prob-
lem of re-labeling noisy training data.   

Our approach is based on partitioning the train-
ing data into two sets and viewing the problem as 
two mutually supporting weakly supervised learn-
ing problems. Experimental results demonstrate 
that these methods, carefully tuned, improve per-
formance for the gene name normalization task 
over those previously reported using machine 
learning-based techniques. 

2 Background and Related Work 

2.1 Gene Name Normalization and Extrac-
tion 

The task of normalizing and identifying biological 
entities, genes in particular, has received consider-
able attention in the biological text mining com-
munity.  The recent Task 1B from BioCreAtIvE 
[5] challenged systems to identify unique gene 
identifiers associated with paper abstracts from the 
literature for three organisms: mouse, fly and 
yeast.  Task 1A from the same workshop focused 
on identifying (i.e. tagging) mentions of genes in 
biomedical journal abstracts.  

2.2 NLP with Noisy and Un-labeled Training 
Data 

Within biomedical text processing, a number of 
approaches for both identification and normaliza-
tion of entities have attempted to make use of the 

many available structured biological resources to 
“bootstrap”  systems by deriving noisy training data 
for the task at hand.  A novel method for using  
noisy (or “weakly labeled”) training data from bio-
logical databases to learn to identify relations in 
biomedical texts is presented in [6].  Noisy training 
data was created in [7] to identify gene name men-
tions in text.  Similarly, [8] employed essentially 
the same approach using the FlyBase database to 
identify normalized genes within articles.   

2.3 Weakly Supervised Learning 

Weakly supervised learning remains an active area 
of research in machine learning.  Such methods are 
very appealing: they offer a way for a learning sys-
tem provided with only a small amount of labeled 
training data and a large amount of un-labeled data 
to perform better than using the labeled data alone.  
In certain situations (see [2]) the improvement can 
be substantial.   

Situations with small amounts of labeled data 
and large amounts of unlabeled data are very 
common in real-world applications where labeling 
large quantities of data is prohibitively expensive.  
Weakly supervised learning approaches can be 
broken down into multi-view and single-view 
methods.   

Multi-view methods [2] incrementally label 
unlabeled data as follows.  Two classifiers are 
trained on the training data with different “views” 
of the data.  The different views are realized by 
splitting the set of features in such a way that the 
features for one classifier are conditionally inde-
pendent of features for the other given the class 
label.  Each classifier then selects the most confi-
dently classified instances from the unlabeled data 
(or some random subset thereof) and adds them to 
the training set.  The process is repeated until all 
data has been labeled or some other stopping crite-
rion is met.  The intuition behind the approach is 
that since the two classifiers have different views 
of the data, a new training instance that was classi-
fied with high confidence by one classifier (and 
thus is “ redundant”  from that classifier’s point of 
view) will serve as an informative, novel, new 
training instance for the other classifier and vice-
versa.      

Single-view methods avoid the problem of find-
ing an appropriate feature split which is not possi-
ble or appropriate in many domains.  One common 
approach here [4] involves learning an ensemble of 



classifiers using bagging.  With bagging, the train-
ing data is randomly sampled, with replacement, 
with a separate classifier trained on each sample.  
Un-labeled instances are then labeled if all of the 
separate classifiers agree on the label for that in-
stance.  Other approaches are based on the expec-
tation maximization algorithm (EM) [9]. 

3 System Descr iption 

The baseline version of our system is essentially a 
reproduction of the system described in [1] with a 
few modifications.   The great appeal of this sys-
tem is that, being machine learning based, it has no 
organism-specific aspects hard-coded in; moving 
to a new organism involves only re-training (as-
suming there is training data) and setting one or 
two parameters using a held-out data set or cross-
validation.   

The system is given a set of abstracts (and asso-
ciated gene identifiers at training time) and a lexi-
con.  The system first proposes candidate phrases 
based on all possible phrases up to 8 words in len-
gth with some constraints based on part-of-
speech1.  Matches against the lexicon are then car-
ried out by performing exact matching but ignoring 
case and removing punctuation from the both the 
lexical entries and candidate mentions.  Only maxi-
mal matching strings were used – i.e. sub-strings of 
matching strings that match the same id are re-
moved.  

The resulting set of matches of candidate men-
tions with their matched identifiers results in a set 
of instances.  These instances are then provided 
with a label - “ yes”  or “no”  depending on whether 
the match in the abstract is correct (i.e. if the gene 
identifier associated with the match was annotated 
with the abstract).  These instances are used to 
train a binary maximum entropy classifier that ul-
timately decides if a match is valid or not.   

Maximum entropy classifiers model the condi-
tional probability of a class, y, (in our setting, 
y=“yes”  or y=“no”) given some observed data, x. 
The conditional probability has the following form 
in the binary case (where it is equivalent to logistic 
regression): 

                                                           
1 Specifically, we excluded phrases that began with verbs 
prepositions, adverbs or determiners; we found this constraint 
did not affect recall while reducing the number of candidate 
mentions by more than 50%. 
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 where Z(x) is the 

normalization function, the iλ are real-valued 

model parameters and the if  are arbitrary real-

valued feature functions. 
One advantage of maximum entropy classifiers 

is the freedom to use large numbers of statistically 
non-independent features.  We used a number of 
different feature types in the classifier:  

 
• the matching phrase  
• the matched gene identifier  
• the previous and subsequent two words of the 

phrase 
• the number of words in the matching phrase  
• the total number of genes that matched against 

the phrase 
• all character prefixes and suffixes up to length 4 

for words within the phrase  
 
An example is shown below in Figure 1 below. 

 
Abstract Excerpt: 
 
“ Thi s new r ecept or ,  TOR ( t hymus or -
phan r ecept or ) …”  
 
Feature Class Specific Feature 
Phr ase TOR 
GENEI D MGI 104856 
Pr evi ous- 1 ,  
Pr evi ous- 2 r ecept or  
Subsequent - 1 (  
Subsequent - 2 t hymus 
Number  of  Mat ches 2 
Number  of  Wor ds 1 
Pr ef i x- 1 T 
Pr ef i x- 2 TO 
Pr ef i x- 3 TOR 
Suf f i x- 1 R 
Suf f i x- 2 OR 
Suf f i x- 3 TOR 
 

Figure 1.  An abstract excerpt with the matching 
phrase “ TOR” .  The resulting features for  the match 
are detailed in the table. 

 
In addition to these features we created addi-

tional features constituting conjunctions of some of 
these “atomic”  features.  For example, the con-
joined feature Phrase=TOR AND GE-
NEID=MGI104856 is “on”  when both conjuncts 
are true of the instance.   

To assign identifiers to a new abstract a set fea-
tures are extracted for each matching phrase and 



gene id pair just as in training (this constitutes an 
instance) and presented to the classifier for classi-
fication. As the classifier returns a probability for 
each instance, the gene id associated with the in-
stance with highest probability is returned as a 
gene id associated with the abstract, except in the 
case where the probability is less than some 
threshold 10, ≤≤ TT  in which case no gene id is 
returned for that phrase. 

Training the model involves finding the pa-
rameters that maximize the log-likelihood of the 
training data.  As is standard with maximum en-
tropy models we employ a Gaussian prior over the 
parameters which bias them towards zero to reduce 
overfitting. 

Our model thus has just two parameters which 
need to be tuned to different datasets (i.e. different 
organisms): the Gaussian prior and the threshold, 
T .  Tuning the parameters can be done on a held 
out set (we used the Task 1B development data) or 
by cross validation:  

4 Weakly Supervised Methods for  Re-
labeling Noisy Normalization Data 

The primary contribution of this work is a novel 
method for re-labeling the noisy training instances 
within the Task 1B training data sets.  Recall that 
the Task 1B training data were constructed by 
matching phrases in the abstract against the syno-
nym lists for the gene ids curated for the full text 
article for which the abstract was written.  In many 
cases, mentions of the gene in the abstract do not 
appear exactly as they do in the synonym list, 
which would result in a missed association of that 
gene id with the abstract.  In other cases, the data-
base curators simply did not curate a gene id men-
tioned in the abstract as it was not relevant to their 
particular line of interest.   

Our method for re-labeling potentially misla-
beled instances draws upon existing methods for 
weakly supervised learning.  We describe here the 
generic algorithm and include specific variations 
below in the experimental setup.   

The first step is to partition the training data 
into two disjoint sets, D1 and D2.

2 We then create 
two instances of the weakly supervised learning 

                                                           
2 Note that instances in D1 and D2 are also derived form dis-
joint sets of abstracts.  This helps ensure that very similar 
instances are unlikely to appear in different partitions. 

problem where in one instance, D1 is viewed as the 
labeled training data and D2 is viewed as the unla-
beled data, and in the other instance their roles are 
reversed.  Re-labeling of instances in D1 is carried 
out by a classifier or ensemble of classifiers, C2 
trained on D2.  Similarly, instances in D2 are re-
labeled by C1 trained on D1.  Those instances for 
which the classifier assigns high confidence (i.e. 
for which )|""( xyesyP = is high) but for which 
the existing label disagrees with the classifier are 
candidates for re-labeling.   Figure 2 diagrams this 
process below. 

 

 
 
Figure 2.  Diagram illustrating the method for  re-
labeling instances.  The solid ar rows indicate the 
training of a classifier  from some set of data, while 
block ar rows descr ibe the data flow and re-labeling 
of instances. 

 
One assumption behind this approach is that not 

all of the errors in the training data labels are corre-
lated.  As such, we would expect that for a particu-
lar mislabeled instance in D1, there may be similar 
positive instances in D2 that provide evidence for 
re-labeling the mislabeled in D1.  

Initial experiments using this approach met 
with failure or negligible gains in performance.  
We initially attributed this to too many correlated 
errors.  Detailed error analysis revealed, however, 
that a significant portion of training instances be-
ing re-labeled were derived from matches against 
the lexicon that were not, in fact, references to 
genes – i.e. they were other more common English 
words that happened to appear in the synonym lists 
for which the classifier mistakenly assigned them 
high probability.  

   D1     D2 

C2 C1 

   D2’     D1’  

  Final Classifier 

Original 
Training Data 

Modified Train-
ing Data 

Re-labeling 
classifiers 



Our solution to this problem was to impose a 
constraint on instances to be re-labeled:  The 
phrase in the abstract associated with the instance 
is required to have been tagged as a gene name by 
a gene name tagger in addition to the instance re-
ceiving a high probability by the re-labeling classi-
fier.  Use of a gene name tagger introduces a check 
against the classifier (trained on the noisy training 
data) and helps to reduce the chance of introducing 
false positives into the labeled data.   

We trained our entity tagger, Carafe, on a the 
Genia corpus [10] together with the BioCreative 
Task 1A gene name training corpus.  Not all of the 
entity types annotated in the Genia corpus are 
genes, however. Therefore we used an appropriate 
subset of the entity types found in the corpus.  Ca-
rafe is based on Conditional Random Fields [11] 
(CRFs) which, for this task, employed a similar set 
of features to the CRF described in [12].   

5 Exper iments and Results 

The main goal of our experiments was to demon-
strate the benefits of re-labeling potentially noisy 
training instances in the task 1B training data.  In 
this work we focus the weakly supervised re-
labeling experiments on the mouse data set.  In the 
mouse data there is a strong bias towards false 
negatives in the training data – i.e. many training 
instances have a negative label and should have a 
positive one.  Our reasons for focusing on this data 
are twofold: 1) we believe this situation is likely to 
be more common in practice since an organism 
may have impoverished synonym lists or “gaps”  in 
the curated databases and 2) the experiments and 
resulting analyses are made clearer by focusing on 
re-labeling instances in one direction only (i.e. 
from negative to positive). 

In this section, we first describe an initial ex-
periment comparing the baseline system (described 
above) using the original training data with a ver-
sion trained with an augmented data set where la-
bels changed based on a simple heuristic.  We then 
describe our main body of experiments using vari-
ous weakly supervised learning methods for re-
labeling the data.  Finally, we report our overall 
scores on the evaluation data for all three organ-
isms using the best system configurations derived 
from the development test data. 

5.1 Data and Methodology 

We used the BioCreative Task 1B data for all our 
experiments.  For the three data sets, there were 
5000 abstracts of training data and 250, 110 and 
108 abstracts of development test data for mouse, 
fly and yeast, respectively.  The final evaluation 
data consisted of 250 abstracts for each organism.  
In the training data, the ratios of positive to nega-
tive instances are the following: for mouse: 
40279/111967, for fly: 75677/493959 and for 
yeast: 25108/3856.  The number of features in each 
trained model range from 322110 for mouse,  
881398 for fly and 108948 for yeast.  

Given a classifier able to rank all the test in-
stances (in our case, the ranks derive from the 
probabilities output by the maximum entropy clas-
sifier), we return only the top n gene identifiers, 
where n is the number of correct identifiers in the 
development test data – this results in a balanced 
F-measure score.  We use this metric for all ex-
periments on the development test data as it allows 
better comparison between systems by factoring 
out the need to tune the threshold.   

On the evaluation data, we do not know n. The 
system returns a number of identifiers based on the 
threshold, T.  For these experiments, we set T on 
the development test data and choose three appro-
priate values for three different evaluation “sub-
missions” . 

5.2 Exper iment Set 1: Effect of match-based 
re-labeling 

Our first set of experiments uses the baseline sys-
tem described earlier.  We compare the results of 
this system using the Task 1B training data “as 
provided”  with the results obtained by re-labeling 
some of the negative instances provided to the 
classifier as positive instances.   We re-labeled any 
instances as positive that matched a gene identifier 
associated with the abstract regardless of the (po-
tentially incorrect) label associated with the identi-
fier. The Task 1B dataset creators marked an 
identifier “no”  if an exact lexicon match wasn’ t 
found in the abstract.  As our system matching 
phase is a bit different (i.e. we remove punctuation 
and ignore case), this amounts to re-labeling the 
training data using this looser criterion. The results 
of this match-based re-labeling are shown in Table 
1 below. 

 



 Baseline Re-labeled 
Mouse 68.8 72.0 

Fly 70.8 75.3 
Yeast 89.7 90.0 
 

Table 1 Balanced F-measure scores compar ing the 
baseline vs. a system trained with the match-based 
re-labeled instances on the development test data. 

5.3 Exper iment Set 2: Effect of Weakly Su-
pervised Re-labeling 

In our next set of experiments we tested a number 
of different weakly supervised learning configura-
tions.  These different methods simply amount to 
different rankings of the instances to re-label 
(based on confidence and the gene name tags).  
The basic algorithm (outlined in Figure 1) remains 
the same in all cases. Specifically, we investigated 
three methods for ranking the instances to re-label: 
1) naïve self-training, 2) self-training with bagging, 
and 3) co-training.  

Naïve self-training consisted of training a single 
maximum entropy classifier with the full feature 
set on each partition and using it to re-label in-
stances from the other partition based on confi-
dence.   

Self training with bagging followed the same 
idea but used bagging.  For each partition, we 
trained 20 separate classifiers on random subsets of 
the training data using the full feature set. The con-
fidence assigned to a test instance was then defined 
as the product of the confidences of the individual 
classifiers.   

Co-training involved training two classifiers for 
each partition with feature split.  We split the fea-
tures into context-based features such as the sur-
rounding words and the number of gene ids 
matching the current phrase, and lexically-based 
features that included the phrase itself, affixes, the 
number of tokens in the phrase, etc.  We computed 
the aggregated confidences for each instance as the 
product of the confidences assigned by the result-
ing context-based and lexically-based classifiers. 

We ran experiments for each of these three op-
tions both with the gene tagger and without the 
gene tagger.  The systems that included the gene 
tagger ranked all instances derived from tagged 
phrases above all instances derived from phrases 
that were not tagged regardless of the classifier 
confidence.  

A final experimental condition we explored was 
comparing batch re-labeling vs. incremental re-
labeling.  Batch re-labeling involved training the 
classifiers once and re-labeling all k instances us-
ing the same classifier.  Incremental re-labeling 
consisted of iteratively re-labeling n instances over 
k/n epochs where the classifiers were re-trained on 
each epoch with the newly re-labeled training data. 
Interestingly, incremental re-labeling did not per-
form better than batch re-labeling in our experi-
ments.  All results reported here, therefore, used 
batch re-labeling. 

After the training data was re-labeled, a single 
maximum entropy classifier was trained on the 
entire (now re-labeled) training set.  This resulting 
classifier was then applied to the development set 
in the manner described in Section 3. 

 
MAX With Tagger  Without Tagger  
Self-Naïve 74.4 (4000) 72.3 (5000) 
Self-Bagging 74.8 (4000) 73.5 (6000) 
Co-Training 74.6 (4000) 72.7 (6000) 

 
AVG With Tagger  Without Tagger  
Self-Naïve 72.2 71.2 
Self-Bagging 72.2 71.5 
Co-Training 71.9 71.2 

 
Table 2.  Maximum and average balanced f-measure 
scores on the mouse data set for  each of the six sys-
tem configurations for  all values of k – the number  of 
instances re-labeled.  The numbers in parentheses 
indicate for  which value of k the maximum value was 
achieved. 

 
We tested each of these six configurations for 

different values of k, where k is the total number of 
instances re-labeled3.  Table 2 highlights the maxi-
mum and average balanced f-measure scores 
across all values of k for the different system con-
figurations. Both the maximum and averaged 
scores appear noticeably higher when constraining 
the instances to re-label with the tagger.  The three 
weakly supervised methods perform comparably 
with bagging performing slightly better.  

                                                           
3 The values of k considered here were: 0, 10, 20, 50, 100, 
200, 300, 500, 800, 1000, 2000, 3000, 4000, 5000, 6000, 
7000, 8000, 9000, 10000, 12000 and 15000. 



 

 
 

Figure 3.  The top graph shows balanced F-measure 
scores against the number  of instances re-labeled 
when using the tagger  as a constraint.  The bottom 
graph compares the re-labeling of instances with the 
gene tagger as a constraint and without.  

 
In order to gain further insight into re-labeling in-
stances, we have plotted the balanced F-measure 
performance on the development test for various 
values of k.  The upper graph indicates that the 
three different methods correlate strongly.  The 
bottom graph makes apparent the benefits of tag-
ging as a constraint.  It also points to the weakness 
of the tagger, however.  At k=7000 and k=8000, 
the system tends to perform worse when using the 
tags as a constraint.  This indicates that tagger re-
call errors have the potential to filter out good can-
didates for re-labeling. 

Another observation from the graphs is that per-
formance actually drops for small values of k.  This 
would imply that many of the instances the classi-
fiers are most confident about re-labeling are in 
fact spurious.  To support this hypothesis, we 
trained the baseline system on the entire training 
set and computed its calibration error on the de-
velopment test data. The calibration error measures 
how “ realistic”  the probabilities output by the clas-
sifier are.  See [13] for details. 

 
Figure 4.  Classifier  calibration er ror  on the devel-
opment test data. 

 
Figure 4 illustrates the estimated calibration er-

ror at different thresholds.  As can be seen, the er-
ror is greatest for high confidence values indicating 
that the classifier is indeed very confidently pre-
dicting an instance as positive when it is negative.  
Extrapolating this calibration error to the re-labling 
classifiers (each trained on one half of the training 
data) offers some explanation as to why re-labeling 
starts off so poorly.  The error mass is exactly 
where we do not want it - at the highest confidence 
values.  This also offers an explanation as to why 
incremental re-labeling did not help. Fortunately, 
introducing a gene tagger as a constraint mitigates 
this problem. 

5.4 Exper iment Set 3: Final Evaluation 

We report our results using the best overall system 
configurations on the Task 1B evaluation data.  We 
“submitted”  3 runs for two different mouse con-
figurations and one for both fly and yeast.  The 
highest scores over the 3 runs are reported in Table 
3.  MouseWS used the best weakly supervised 
method as determined on the development test 
data: bagging with k=4000.  MouseMBR, Ye-
astMBR and FlyMBR used match-based re-labeling 
described in Section 5.2. The Gaussian prior was 
set to 2.0 for all runs and the 3 submissions for 
each configuration only varied in the threshold 
value T.  

 
 F-measure Precision Recall 

MouseWS 0.784 0.81 0.759 
MouseMBR 0.768 0.795 0.743 

FlyMBR 0.767 0.767 0.767 
YeastMBR 0.902 0.945 0.902 

 
Table 3.  Final evaluation results.  

 



These results are competitive compared with 
the BioCreAtIvE Task 1B results where the highest 
F-measures for mouse, fly and yeast were 79.1, 
81.5 and 92.1 with the medians at 73.8, 66.1 and 
85.8, respectively.  The results for mouse and fly 
improve upon previous best reported results with 
an organism invariant, automatic system [1]. 

6 Conclusions 

The quality of training data is paramount to the 
success of fully automatic, organism invariant ap-
proaches to the normalization problem.  In this pa-
per we have demonstrated the utility of weakly 
supervised learning methods in conjunction with a 
gene name tagger for re-labeling noisy training 
data for gene name normalization.  The result be-
ing higher quality data with corresponding higher 
performance on the BioCreAtIvE Task 1B gene 
name normalization task.   

Future work includes applying method outlined 
here for correcting noisy data to other classifica-
tion problems. Doing so generally requires an in-
dependent “ filter”  to restrict re-labeling – the 
equivalent of the gene tagger used here.  We also 
have plans to improve classifier calibration. Inte-
grating confidence estimates produced by the gene 
name tagger, following [14], is another avenue for 
investigation. 
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