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Abstract

Sequence Models and Ranking Methods for Discourse Parsing

A dissertation presented to the Faculty of

the Graduate School of Arts and Sciences of

Brandeis University, Waltham, Massachusetts

by Ben Wellner

Many important aspects of natural language reside beyond the level of a single sentence

or clause, at the level of the discourse, including: reference relations such anaphora,

notions of topic/focus and foreground/background information as well as rhetorical rela-

tions such as Causation or Motivation. This dissertation is concerned with data-driven,

machine learning-based methods for the latter – the identification of rhetorical discourse

relations between abstract objects, including events, states and propositions. Our focus

is specifically on those relations based on the semantic content of their arguments as

opposed to the intent of the writer.

We formulate a dependency view of discourse in which the arguments of a rhetorical

relation are lexical heads, rather than arbitrary segments of text. This avoids the difficult

problem of identifying the most elementary segments of the discourse. The resulting

discourse parsing problem involves the following steps: 1) identification of discourse

cue phrases that signal a rhetorical relation 2) identification of the two arguments of a

rhetorical relation signaled by a discourse cue phrase and 3) determination of the type of

the rhetorical relation.
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To address the above problems, we apply a set of discriminative, statistical machine

learning algorithms and explore the tradeoffs with various sets of features. We demon-

strate how performance can be improved through learning architectures that allow for

multiple co-dependent processing stages to be handled within a single model, rather than

as a cascade of separate models. We capture additional dependencies with the novel

application sequence-structured Conditional Random Fields to the problem of identifying

discourse relations and their rhetorical types. The proposed Conditional Random Field

model is more general than typically utilized in the literature, making use of non-factored

feature functions to arrive at a conditional, sequential ranking model.

Finally, we demonstrate the general applicability of our proposed discourse parsing

model by applying it to the problem of syntactic dependency parsing, itself an important

determinant for discourse parsing. This points towards a layered sequential (re-)ranking

architecture for complex language processing tasks applicable beyond discourse parsing.
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Chapter 1

Introduction

Utterances rarely exist in isolation. Rather, for any body of text there exist various

discourse coherence relations spanning across sentence, clausal and phrasal boundaries

connecting together various entities and eventualities appearing in the text. It is the

nature and configuration of these relations that establish textual coherence and allow for

the discourse to acquire meaning beyond the sum of its constituent utterances.

In this dissertation, we are concerned with a particular class of coherence relations

called rhetorical relations. 1 Rhetorical relations are text structuring relations between

abstract objects [Asher, 1993] (i.e., events, states, facts and propositions). They can be

divided into intentional and informational relations. Briefly, intentional (or presentational)

relations can be viewed as those relations attempting to modify or augment the hearer’s

(or reader’s) belief state. Informational relations, however, aim to make the hearer aware

1Throughout this dissertation, the terms rhetorical relation and discourse relation will be used inter-

changeably.
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Coherence Relation

Reference Relation

...

Rhetorical Relation

Anaphora Bridging ... Informational

...

Intentional

...

Elaboration Cause ... Evidence Motivation ...

Figure 1.1: Coherence relation ontology

of semantic relations such as causality or elaboration that hold between abstract objects.

To illustrate these differences, consider the simple discourse below 2

(1) a George Bush supports big business.

b He’s sure to veto House bill 1711.

At the intentional level, an Evidence relation holds – (a) is providing evidence for

(b) with the aim of increasing the reader’s belief in the claim made in (b). In looking at

the content of the two statements at the informational level, however, a Cause relation

holds – the state of affairs in (a) is a cause for the action described in (b).

Rhetorical relations lie in contrast to identity-based reference relations such as anaphora

(e.g., He referring to George Bush in 1), and meronymy (i.e., part-whole) relations like

bridging and accommodation. Figure 1 provides an overview of coherence relations.

While all types of coherence relations are important for a complete picture of the dis-

course, and both informational and intentional rhetorical relations appear necessary [Moore

& Pollack, 1992], the scope of this dissertation focuses on informational discourse pars-

2This example is from Moore & Pollack [1992].
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ing. In particular, this dissertation addresses the problem of automatically identifying and

classifying the type of informational discourse relations between abstract objects. For

example, in (1) our goal is to establish the Cause relation between (a) and (b).

1.1 Motivation for Informational Discourse Parsing

There are two general motivations for pursuing automatic identification of informational

discourse relations: 1) their use in natural language applications and 2) their use in

facilitating better solutions to other semantic and pragmatic problems in natural language.

We take these two areas in turn.

Discourse-level relations have the potential to benefit a variety of NLP applications.

For example, in question answering, systems could use Cause relations to better answer

questions about the causes or results of particular events. Information extraction systems,

such as those developed for MUC-4, 3 were required to identify complex scenario-level

events 4 which often involved relating various “atomic” events along with their partici-

pants. These atomic events, making up a scenario-level event were frequently scattered

across multiple clauses or sentences. The ability to identify informational discourse rela-

tions was noted as key component technology for performing this level of analysis [Sund-

heim, 1992]. While many of the MUC-4 systems tackled the problem of identifying

informational relations, either directly or indirectly, such systems were very much engi-

3A series of Message Understanding Conferences (MUCs) were sponsored by DARPA in the 1990s.

These challenges involved identifying entities (e.g. Person, Organization), relations between them (e.g.,

Employed-At) as well as more complex events in newswire texts.
4The MUC-4 scenario-events were terrorism related involving arson attacks, kidnapings, bombings, etc.
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neered for a particular task and domain. A task-independent layer of discourse analysis

would likely enable a more rapid transition to new domains by avoiding the need to

rebuild a discourse analysis component from scratch. The utility of discourse relations

has also been established in areas such as automatic summarization [Marcu, 1998] and

generation [Hovy, 1993].

Besides their use in applications, discourse relations are strongly intertwined with

other problems in computational linguistics. In particular, when semantically interpreting

an utterance it can help to understand the discourse relations the utterance is involved

in. The framework of Segmented Discourse Representation Theory (SDRT) [Asher &

Lascarides, 2003], in fact, focuses directly on this problem and formalizes how discourse,

clause-level and lexical semantics interact. Asher & Lascarides [2003] demonstrate the

benefit discourse relations provide for the analysis of: anaphora, temporal structure,

bridging inferences, presuppositions, lexical ambiguity and other important problems in

semantics and pragmatics. With regard to anaphora in particular, considerable work exists

demonstrating how discourse structure can constrain the set of potential antecedents for

anaphoric pronouns [Polanyi & van der Berg, 1999; Hirst, 1981; Hobbs, 1979].

1.2 Modeling Discourse

There are many different levels or granularities at which discourse coherence can be

examined. The highest levels of coherence involve large bodies of text, possibly large

sections or chapters. Texts must cohere at these high-levels (e.g., introductory material

4
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One day after Delmed Inc. made top management changes and disclosed the end of an

important business tie, its stock didn’t trade and the company forecast a “significant” drop

next year in sales of its core product. The disclosure came, a Delmed spokeswoman said,

after the American Stock Exchange alerted the company that trading wouldn’t resume in

its stock until additional information about developments was provided. In addition to

the forecast, the company also said it is examining potential cost cuts and reductions in

overhead.

Figure 1.2: Example excerpt from the Penn TreeBank (file wsj_0970).

before expository material) as well as at middle layers of discourse involving coherence

among scenes or complex events containing many sub-events in the case of narrative-like

texts. Our focus in this work, however, is concerned mostly with low-level discourse

involving relations between “atomic” eventualities, or abstract objects. This level of

analysis arises out of focusing on relations that are lexicalized by discourse connectives

such as but, therefore, and moreover.

The following steps are involved in low-level discourse parsing:

1. Segment the discourse into its most basic, usually non-overlapping, discourse seg-

ments.

2. Determine the structure (usually in a recursive manner) of the discourse by de-

termining which segments and/or segment groups are related to each other at the

discourse level

3. Identify the type of each rhetorical relation

Figure 1.2 provides an example discourse involving three sentences; Figure 1.3 illus-

trates one way in which such a discourse would be segmented — i.e, broken up into its

5
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A One day after Delmed Inc. made top management changes

B and disclosed the end of an important business tie,

C its stock didn’t trade

D and the company forecast a “significant” drop next year in sales of its core product.

E That disclosure came,

F a Delmed spokeswoman said,

G after the American Stock Exchange alerted the company

H that trading wouldn’t resume in its stock

I until additional information about developments was provided.

J In addition to the forecast, the company also said it is examining potential cost cuts and

reductions in overhead.

Figure 1.3: A segmentation of the discourse in Figure 1.2.

atomic discourse units. The discourse connectives, underlined, are the important discourse

cues used to explicitly signal rhetorical relations.

The structure of the discourse is a hierarchical, ordered tree structure where each

rhetorical relation is represented as a node in the tree with the node’s children representing

the relation’s arguments. Figure 1.4 illustrates a potential discourse structure for the

segments in Figure 1.35. Note, however, that it is not strictly an ordered tree as the

two Elaboration relations exhibit crossing dependencies6; further, segment D has two

parents.

1.3 Dissertation Overview

This dissertation is concerned with automatically identifying and assigning a type to

discourse relations holding between abstract objects in English text. In contrast to most

5The rhetorical types shown here for the discourse relations are explained in detail in Chapter 8
6Crossing dependencies occur when the arguments for two different relations are sequentially interleaved.

This phenomenon is discussed further in Section 5.4 and is a motivating case for identifying discourse

relations jointly rather than independently.
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Elaboration Elaboration

Temporal Temporal

Continuation Continuation Condition

A B C D E F G H I J

Figure 1.4: One possible discourse structure implied by the annotations provided in the

Penn Discourse Treebank (WSJ article 0970), together with associated rhetorical relation

types given the spans in 1.3.

approaches to discourse parsing, the approach taken is data-driven using the recently

released Penn Discourse TreeBank (PDTB) [Miltsakaki et al., 2004b] as a source of

gold-standard annotations from which to train and formally evaluate statistical machine

learning methods. Before addressing the proposed work in detail, we first provide some

background on the PDTB, the corpus used throughout this dissertation.

1.3.1 Overview of the Penn Discourse TreeBank

The Penn Discourse TreeBank provides a layer of discourse annotation over the entire

Wall Street Journal portion of the Penn TreeBank [Marcus et al., 1993]. From a birds-

eye view, the PDTB annotation effort aims at describing discourse structure as presented

in Figure 1.4. In fact, the PDTB annotations do not explicitly construct a hierarchical

representation. Instead, arguments are arbitrary text spans that may allow for a hierarchical

interpretation when an argument span subsumes another connective and its two arguments.

For example, the connective and in segment B in Figure 1.3 and its two arguments (in

segments A and B) are subsumed within a single argument of the connective phrase

7
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One day after.

Partly motivated by practical reasons, relations in the PDTB are annotated in just

two cases: 1) when they are lexicalized by discourse connectives and 2) when they hold

between adjacent sentence units not spanning paragraph boundaries. In the first case,

the discourse connective is viewed as a predicate with two arguments, Arg1 and Arg2

(i.e., the two arguments participating in the relation). Connectives may be coordinating

(e.g. and), subordinating (e.g., when) or adverbial (e.g., nevertheless). Subordinating

and coordinating connectives both take their arguments structurally, based on clausal

syntax and/or adjacency [Webber et al., 2003]. Adverbial connectives may, however,

take their Arg1 anaphorically; it may reside anywhere prior in the discourse. The

textual realizations of arguments of discourse relations may consist of arbitrary text spans

(phrases, clauses, sentences and sequences of any of these) and may be overlapping.

Thus, in contrast to most discourse frameworks, there isn’t an explicit, a priori constrained

notion of a discourse segment except the looser notion that the segment denotes an abstract

object, which is typically a clause or clause-like construction.

These properties of the PDTB, while well-justified on methodological grounds, make

the problem less amenable to traditional parsing approaches. Without well-defined, non-

overlapping segments and with the inclusion of anaphoric connectives (e.g., the connec-

tive also in Figure 1.4) a purely tree-like, constituency-based structure is not possible.

8
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made disclosed

and:Cont

trade forcast

and:Cont

after:Temp

came said alerted resume provided said

after:Temp until:Cond

Implicit:Elab also:Elab

A B C D E F G H I J

Figure 1.5: Non-projective dependency representation for the segmented discourse in

Figure 1.3 with nodes in the graph representing the lexical heads of each discourse

segment.

1.3.2 Dissertation Contributions

In this section, the major contributions of this work are summarized.

Dependency-based Representation for Discourse

Rather than confronting the issues just described and trying to augment a constituent

parsing framework to accommodate them, in this dissertation we advocate recasting the

target representation of the discourse to that of a multi-headed, non-projective dependency

structure. Discourse relations are defined to hold between lexical heads, rather than

argument extents. The dependency representation for the discourse in Figure 1.2 is shown

in Figure 1.5. This representation accommodates shared arguments, avoids the problem

of discourse segmentation altogether and also accommodates crossing dependencies in

the discourse (e.g., between the two Elaboration relations shown in Figure 1.5).

9
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Given the target discourse representation described, the discourse parsing problem in

the context of this dissertation can be broken down into three components:

1. Identify discourse connectives among potential connective phrases.

2. Identify the arguments of discourse connectives

3. Ascertain the type of the relation holding over the two arguments for each connec-

tive.7

Statistical Methods for Discourse Parsing and NLP

A common shortcoming of many NLP systems is that they involve a series of components,

often carried out in a sequential fashion with the output of previous stages available to

down stream components. This makes the engineering task simpler, but has the potential

for degraded accuracy since errors in earlier stages may propagate to later stages.

In this dissertation we explore a variety of discriminative, statistical machine learning

methods to learn decision functions for the above problems. Specifically, we explore

different types log-linear models that are especially well-suited to problem of selecting

elements out of a set of candidate elements by viewing the task as a ranking, rather than

classification problem.

The series of models put forth address the overall discourse parsing problem in an

increasingly global manner along two dimensions. The first dimension is the degree to

7The PDTB also annotates relations between adjacent sentence units when there is not an explicit

discourse connective signaling the relation.

10
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which multiple processing stages are incorporated within a single step — e.g., identi-

fication of a discourse connective together with its arguments. The second dimension

is the degree to which individual decisions are influenced by other (nearby) decisions

in the discourse. Specifically, we examine the sequence of discourse connectives within

a document or paragraph and capture dependencies between the arguments of adjacent

discourse connectives within this sequence. This is achieved by generalizing sequence

Conditional Random Fields to include non-factored feature functions.

We also demonstrate how the sequential statistical model developed here for discourse

can be applied to syntactic dependency parsing and discuss interesting possibilities for

future work using this type of model.

Discourse Parser and Analysis

A concrete artifact produced as part of this dissertation is a discourse parser which

automatically annotates arbitrary text with discourse relationships following the three steps

outlined above. As part of developing this parser, we carry out an extensive analysis of the

contributions of various features for the tasks of 1) identifying connectives, 2) identifying

their arguments and 3) ascertaining the rhetorical types of the relations. Additionally, we

provide a detailed analysis of how various features affect performance in the context of the

richer statistical models that capture multiple processing stages and/or capture sequential

dependencies.

11
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1.4 Organization

This dissertation is organized as follows:

• Chapter 2 provides a broad overview computational approaches to handling dis-

course. Many aspects of discourse are less-agreed upon than in syntax, for example,

and this chapter aims to set this dissertation work within this larger context.

• Chapter 3 looks at the problem of identifying the arguments of discourse connectives

within the PDTB 1.0

• Chapter 4 re-examines argument identification with a revised set of features and

underlying syntactic representation, utilizes data from the final release of the PDTB

(Version 2.0), and provides experiments on identifying arguments of implicit dis-

course connectives.

• Chapter 5 considers the full discourse parsing task which does not assume that

the discourse connectives are given, but rather aims to identify the connectives

along with their arguments, arriving at a discourse-level predicate-argument struc-

ture. Experiments in this chapter 1) compare independent predicate and argument

identification vs. a joint model; and 2) present a the sequential ranking model and

experimental results for identifying discourse predicates and arguments sequentially.

• Chapter 6 steps away from discourse and applies the sequential ranking model for

identifying discourse structure introduced in Chapter 5 to syntactic dependency

parsing, an important level of analysis for automatic discourse parsing.

12
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• Chapter 7 returns to the full discourse parsing task, but makes use of automatic

parses produced by the systems introduced in Chapter 6, rather than gold-standard

parses.

• Chapter 8 examines the problem of identifying the rhetorical types of discourse

predicates. Here, too, sequential dependencies are handled discriminatively within

a Conditional Random Field model.

• Chapter 9 summarizes the major contributions of this work and outlines future

directions.

13



Chapter 2

Modeling Discourse

This chapter provides some background on discourse processing. The first section gives

a broad overview and some historical perspective, while the second section reviews more

recent, data-driven methods for automatically identifying discourse structure. Finally,

we introduce the Penn Discourse Treebank in detail and contrast it with other discourse

frameworks.

2.1 Views of Discourse

Discourse theories and frameworks all aim to do roughly the following: explain how

the meaning of text is more than a simple sum (or concatenation) of the meaning of

its individual parts (i.e., clauses or sentences). Our focus here is on approaches that

define coherence relations between units of text (usually clauses) in order to establish

14
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the discourse structure1. Approaches vary along a number of criteria, including: 1) the

inventory and granularity of coherence relations, 2) whether or not and the degree to

which a formal semantics is defined for the coherence relations 3) constraints imposed

on the structure of the established coherence relations (e.g., tree vs. graph) 4) the degree

to which there is a link between the coherence relations and the linguistic signals used

to mark them and 5) the definition of a discourse unit (or argument) – e.g., whether they

are (non-)overlapping text spans, propositions or other semantic abstractions associated

with text spans, whether they can denote entities (or just abstract objects), etc.

We summarize here some important theories of discourse coherence relations, keeping

in mind the criteria above. It is also worth noting that our discussion here emphasizes

work focused on monologic, written text rather than dialog and/or spoken language.

Surface-based Cohesive Relations

One of the earliest influential accounts of discourse coherence relations is that of Hal-

liday & Hasan [1976]. Their approach aims to describe how texts cohere by focusing

on establishing the language-specific (in this case, English) linguistic devices used to ex-

plicitly establish conjunctive relations.2 They only consider entire sentences as the units

of discourse and provide little in the way of a precise semantics for the relations. The

inventory of relations is of moderate detail, including various sub-types of the following

relation categories: additive (i.e. parallel, elaboration), contrastive, causal and temporal.

1Note that other notions besides relations between text units can be useful for analyzing discourse such

as focus, foreground and background, etc.
2Briefly, conjunctive relations are relations linking two units of “equal stature” - i.e., neither unit is

subordinate to the other with its interpretation thusly constrained.

15
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Related to Halliday and Hasan’s approach is that of Martin [1992] which also focuses

on conjunctive discourse relations. He allows for relations between clauses (not just

sentences) and also makes precise the notion of an implicit relation which exists if a

conjunctive discourse connective can be inserted into the text. This notion is revived in

the Penn Discourse Treebank, where implicit discourse connectives are annotated.

Grimes [1975] provides an account of unlexicalized coherence relations where the ar-

guments of the relations consist of propositions (not texts spans). Besides a more detailed

inventory of coherence relations, Grimes introduces the fundamental notions of paratactic

and hypotactic relations later leveraged in Rhetorical Structure Theory (see below), SDRT

and elsewhere. Briefly, paratactic relations are coordinating-like relations between propo-

sitions whereas hypotactic relations are subordinating-like and hold between a primary

proposition which dominates a secondary one.

Coherence Relations of Hobbs

Hobbs [1985] places coherence relations within a larger computational approach to se-

mantics and pragmatics based on abductive reasoning.3 Hobbs defines a set of coherence

relations, each with a relatively precise semantics. For example, Hobbs defines the par-

allel coherence relation roughly as follows:

(2) For two clauses, C1 and C2, infer the proposition p(a1, a2, ..., ) from C1 and

p(b1, b2, ...) from C2 where ∀i.similar(ai, bi) for some definition of similar.

3Abductive reasoning is a form of unsound reasoning that aims to find the best explanation given a set

of observations.
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Within a framework based on abductive reasoning [Hobbs et al., 1988], Hobbs allows

for discourse-level inferences, anaphora and lexical disambiguation to be handled in a

unified way incorporating syntactic information as well as lexical semantics and world-

knowledge. As these different stages of processing clearly influence each other, handling

them simultaneously within a single framework, in this case using abduction, would seem

advantageous.

Hobbs’ inventory of relations and their semantics have strongly influenced other, more

recent efforts at modeling coherence relations, including the Discourse GraphBank [Wolf

& Gibson, 2005], SDRT [Asher, 1993; Asher & Lascarides, 2003] and The Penn Dis-

course Treebank [Miltsakaki et al., 2004b], the corpus of interest in this thesis.

Rhetorical Structure Theory

Another discourse framework emerged in the 1980’s with the work of Mann & Thompson

[1988] in Rhetorical Structure Theory (RST). Rather than focusing on a rigorous model-

theoretic approach to discourse semantics, RST focuses on providing a means to simply

describe the way in which texts are structured. A set of 24 primary rhetorical relations

was defined in the original RST proposal, motivated by careful analysis of a variety of

texts (both dialogue and monologue). A simple piece of text and its corresponding RST

analysis is shown in Figure 2.1.

RST constrains the structure of a discourse to that of a tree. One potential problem

with this has to do with segments that appear in multiple relations. RST accommodates

this to a limited degree by introducing a special ternary schema that operates over three

17
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[Mary is in a bad mood]1A [because her son is ill.]1B 	

Non-volitional Cause

Mary is
in a bad
mood

because her
son is ill.

Figure 2.1: Causal relation with nucleus 1A and satellite 1B.

adjacent segments or instantiated schemas/relations and allows one segment to serve as a

nucleus and the other two as satellites. The constituent structure is preserved by viewing

all the segments within such a structure as siblings with a single parent. Figure 2.2 is an

example of this.

[John went to the store]2A [in order to buy some tomatoes.]2B [He arrived just after it

closed.]2C
		

Purpose

Elaboration

John went to
the store

in order to buy
some tomatoes.

He arrived
just after it
closed.

Figure 2.2: A nucleus 2A with two satellites, 2B and 2C.

RST appears to run into difficulties, however, with discourses involving three segments

where there is a shared argument between the two relations as in Figure 2.3. One remedy

would be to model such cases differently as shown in Figure 2.4. Such an analysis seems

Cause Elaboroation

Mary is in a bad mood because her son is ill Specifically, he has bronchitis

Figure 2.3: Discourse dependency structure indicating a shared argument.

18
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less precise, however, as the content of the embedded Elaboration relation is clearly

not the most minimal unit of information required to establish the causal relation.

A final point which follows from the discussion here is that RST is unable to ac-

commodate non-constituent structure (i.e., anaphoric or dependency structure [Webber,

2006]) in the discourse. For example, the Elaboration relation established between the

segments and in Figure 1.2 cannot be handled.

[Mary is in a bad mood]3A [because her son is ill.]3B [Specifically, he has bronchitis.]3C

	

Non-volitional Cause

Mary is
in a bad
mood

	

Elaboration

because her
son is ill

Specifically, he
has bronchitis.

Figure 2.4: Hierarchical RST discourse structure.

Despite the above issues, RST has shown some potential for applications including

text generation and summarization [Marcu, 1999b].

Linguistic Discourse Model

The Linguistic Discourse Model (LDM) [Scha & Polanyi, 1988; Polanyi & Scha, 1984]

provides a full account of discourse parsing by treating the task as an extension of

sentence-level syntactic parsing. From a computational point of view LDM is appealing.

The discourse segments, roughly clauses, are well-defined in terms of standard syntactic
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constructions. Further, discourses are structured purely as constituent trees making the

target representation amenable to parsing methods designed for modeling sentence-level

syntax.

LDM bears some similarities to RST as both are purely constituency-based. In contrast

to the various schema within RST, however, LDM has three somewhat simpler re-write

rules: coordination (for e.g., lists, narration), subordination and n-ary constructions over

arbitrary rhetorical relations. The resulting structure for LDM is notably simpler than RST.

All of the information regarding relations between segments exists within the constituency

nodes of the resulting structure. In RST, however, a constituent node may serve simply

to aggregate segments in which the actual rhetorical relations are denoted by relations

between siblings.

Grammar-Based Approaches

Along with LDM, other researchers have continued to explore the syntax-semantic inter-

face at the discourse level with a specific aim at preserving compositionality, analogous

to compositionality at the sentence-level present with most Montague-based approaches

to semantics. Such approaches aim to extend grammars beyond the sentence level to the

discourse level.

Gardent [1997] introduces a Feature-based Tree Adjoining Grammar framework for

discourse parsing. Another, somewhat similar approach is the D-LTAG system, based

on Lexicalized Tree Adjoining Grammar (LTAG) [Forbes et al., 2003]. More recent

work in this vein has explored integrating synchronous Tree Adjoining Grammar and
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SDRT [Danlos, 2008].

Wolf and Gibson

Wolf & Gibson [2005] put forward a framework for which discourse is represented as a

chain graph, a graph with both directed and undirected arcs. Interestingly, they arrived

at their representation based on an empirical methodology rather than intuitions or pre-

conceived constraints. Their approach started with a fixed set of coherence relations with

relatively precise semantics. The relations roughly followed those of Hobbs [1985]. They

had two annotators annotate 135 news articles for such relations without any precon-

ceived notions about how the relations are structured. Given a set of guidelines on how

to segment the texts (roughly at the clause level), the annotators carried out the following

steps: 1) segmented the texts into basic discourse units 2) grouped the units into larger

units when such units acted as an argument to a relation 3) identified when two segments

(or segment groups) were connected via a discourse relation and 4) identified the type of

relation.

In their analysis of the annotated texts, they found a surprising degree of non-tree

discourse structure. In fact, when considering all the rhetorical relation types they anno-

tated, they noticed that nearly 12.5% of the relations would need to be deleted to remove

all crossing dependencies. They also report that 41% of all segments have two or more

incoming arcs, indicating that shared arguments is a frequent phenomenon.

Consider the constructed example below from Wolf & Gibson [2005] which exhibits

crossing dependencies:
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a b c d

a-b

Similar

Cause

Elaboration

Figure 2.5: Graphical representation of the discourse in Example 3.

(3) a. Susan wanted to buy some tomatoes

b. and she also tried to find some basil

c. because her recipe asked for these ingredients.

d. The basil would probably be quite expensive at this time of year.

The discourse in 3 contains a crossing dependency but the Elaboration relation

between (b) and (d) is essentially between an entity in the discourse (i.e., basil) rather

than between propositions or facts. Of course, (d) could have stated the following in which

the relation between (b) and (d) holds between abstract objects — i.e., the eventualities

of trying to find basil in (b) and not succeeding in finding basil in (d).4

(4) She didn’t succeed in finding any basil, however.

It does appear, however, that a significant portion of the crossing links in the Graph-

Bank have to do with establishing entity-level coherence. Many other crossing depen-

dencies are due to the attribution relation, which while arguably a discourse relation,

certainly has a different nature than Hobbs’ original relations. Nevertheless, the Graph-

Bank results have provoked additional discussion and research into the structural con-

4Note that this particular example constructed by Wolf and Gibson might best be analyzed at an inten-

tional level. An interesting open question is whether such crossing dependencies occur more frequently

when analyzing discourse structures more naturally analyzed from an intentional view.
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straints on discourse and corroborate other claims regarding the inadequacy of trees for

discourse [Danlos, 2004].

2.1.1 Semantically-Driven Approaches

A variety of theories on discourse interpretation have emerged based on work on model-

theoretic semantics for language [Montague, 1974; Dowty et al., 1981]. Most of these

theories make use of some form of dynamic semantics, including Kamp’s Discourse

Representation Theory (DRT) [Kamp, 1981; Kamp & Reyle, 1993]. Briefly, DRT can

be viewed as dynamically interpreting a discourse, one sentence at a time, along the way

updating a representation of the discourse, known as a Discourse Representation Structure

(DRS). While subsequent approaches (cf. [Groenendijk & Stokhof, 1991]) have removed

the need for an explicit representation (and restored the potential for compositionality not

present with DRT), these approaches are all related by their dynamic nature: the meaning

of an utterance is determined by the grammar and the prior discourse.

Segmented Discourse Representation Theory (SDRT) [Asher, 1993; Asher & Las-

carides, 2003] is a theory that extends DRT to handle discourse relations. Discourse

relations are provided a precise semantics largely stemming from the work of Hobbs

[1985]. In addition, a mechanism is provided for deriving discourse relations using

defeasible reasoning. The simplest example of such default reasoning involves a basic

assumption that a narrative (or temporal) relation holds between two adjacent sentences:

(5) John felt dizzy. He fell on the ground.
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In the above, a causal relation (or result relation, to be precise) also appears to hold

(though it can be argued to be ambiguous). In general, of course, this need not be the

case. However, such interpretations can be overridden based on discourse cues as in:

(6) John felt dizzy because he fell on the ground.

While aiming to identify such relations is an important aspect of SDRT, its goals are

much broader, aiming to integrate semantic and pragmatic interpretation within a single

logical framework. SDRT adopts a rich view of lexical semantics based on Generative

Lexicon (GL) [Pustejovsky, 1995]. An underlying aim of GL is to properly distribute

the meaning of a sentence across its various components, rather than allow for some

word types, verbs in particular, to dominate the meaning derivation. GL, in effect, moves

beyond standard compositionality to allow for richer operations (i.e., beyond function ap-

plication) to reflect the full degree to which context determines meaning. SDRT provides

additional context with the formalisms that can aid in lexical disambiguation [Asher &

Lascarides, 1995] in frameworks such as GL. Lexical semantics as provided in GL, in

turn, also feeds back to the discourse layer and is required for cases such as:

(7) John fell. Max pushed him.

The standard discourse interpretation (i.e. before(‘fall’,‘push’)) is overridden by the

lexical (or perhaps common sense) properties of the events in the two sentences. More

specifically, it is the case that the event structure for push includes “lexical knowledge” to

the effect that “pushing results in some kind of movement”. This, coupled with similar

lexical knowledge about fall can allow for the proper inference to be made.
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While not necessarily related to SDRT, lexical semantics also plays an important

role in discourse verbs [Danlos, 2006], such as cause, lead or precede. These verbs take

abstract objects as arguments and can function in a similar capacity to discourse relations.

Even prepositions can convey discourse relations [Danlos, 2007]:

(8) John died of cancer.

2.2 Data-driven Computational Models of Discourse

In this section we discuss recent approaches towards parsing discourse that have taken a

data-driven, frequently machine-learning based, approach. We first discuss a methods for

identifying discourse structure and subsequently look at approaches for categorizing the

types of rhetorical relations.

2.2.1 Discourse Structure Parsing

Discourse Chunking

Within the framework of RST, rather than tackle the full discourse parsing task, Sporleder

& Lapata [2005] present a framework for identifying the elementary discourse units (i.e.

segments) and labeling each as a nucleus or satellite. While their system removes the

important and difficult step of establishing a relation between two elementary discourse

units (edus), they are able to achieve good performance at this task — 78.4% F-measure

at identifying and labeling edus. They demonstrate the system’s utility on a sentence
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compression task.

Intra-sentential Discourse Parsing

Soricut & Marcu [2003] develop an intra-sentential discourse parser in the style of RST.

They leverage the RST Discourse Bank that contains 385 Wall Street Journal articles from

the Penn Treebank annotated with RST relations. For the sentences in the corpus that

have associated with them a single RST discourse tree, they train and evaluate a statistical

model able to 1) segment the discourse into elementary discourse units, 2) generate the

(binary) discourse parse tree associated with the sentence (with the segments as leaves in

the tree) and 3) associate with each internal node in the tree a rhetorical relation.

The segmentation model is a simple generative probabilistic model. The model es-

timates the conditional probability P (b|wi, t) where b is a Bernoulli random variable

indicating whether or not a segment boundary is present at word wi given the parse tree

t for the sentence. The distribution is estimated using counts over a single feature that

captures the lexical and syntactic context around the word wi. More specifically, the

feature considers the uppermost node in the parse tree t with the lexical head wi (us-

ing standard lexical head projection rules [Magerman, 1994; Collins, 1999]) along with

that node’s children and their lexical heads. Given that single feature, the probability

P (b|wi, t) is estimated by the smoothed ratio of the number of times that feature occurs

with a segment boundary over the total number of times it occurs. The segment model is

able to identify segments with a balanced precision and recall F-measure of 83.1 using

automatic (Charniak) parses and 84.7 with gold-standard parses.
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S

NP VP

NNP VBZ SBAR

[John says] S

NP VP

PRP VBZ NN

[he likes pizza]

Figure 2.6: Syntactic tree for a sentence with a discourse boundary after “says”.

The discourse parsing model is also a simple generative model which computes the

probability of a discourse parse tree based on a feature called the dominance set. Let

DST represent a sentence with a syntactic parse tree together with its discourse segments

derived with the above segmentation model. The dominance set, D, of DST is a set of

pairs (i, N) ≺ (j,M) where i and j denote ith and jth segments within the sentence,

respectively. N denotes the head node of the ith segment (i.e., the highest node within

the tree that has a the head word for the i segment as its lexical head) while M denotes

the parent of N and represents the node within segment j to which segment i attaches.

To make this concrete, given the simple sentence shown in Figure 2.6 the discourse

segment boundary would lie between “says” and “he”. The dominance set would consist

of a single pair (one pair for each boundary) D = {(2, SBAR(likes)) ≺ (1, V P (says)).

The probability for a particular constituent, c, of a discourse tree DT is simply

the product Ps(ds(c)|filters(D, c)) · Pr(rel(c)|filterr(D, c)) where ds(c) denotes the
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discourse segment of the constituent c and rel(c) denotes its relation (or rhetorical)

type and where the filters and filterr functions simply extract the portions of the

dominance set D relevant to the candidate discourse constituent c. These probabilities

are estimated using maximum likelihood estimation on the training corpus with various

smoothing techniques. The parser will identify the discourse parse, DT , that maximizes

P (DT |D) =
∏

c∈DT Ps(ds(c)|filters(D, c)) ·Pr(rel(c)|filterr(D, c)). That parse can be

identified using a bottom-up dynamic programming algorithm.

The resulting parser can identify unlabeled discourse relations with 70.5% accuracy

using fully automatic methods, 73.0% accuracy with gold-standard syntactic parses and

96.2% accuracy with both gold-standard parses and discourse segments. Poor automatic

discourse segmentation quality is thus the primary bottleneck for improved discourse

parsing in this framework.

RST-Style Rhetorical Parsing

Marcu [1999a] presents a machine learning-based approach for building up RST rhetorical

structures. Marcu uses an approach inspired by early work on syntactic and semantic

parsing involving two separate steps. The first stage identifies the elementary discourse

segments. The second stage involves a parser that takes a sequence of discourse segments

from a document and builds a tree using a series shift and reduce operations. shift

operations take an incoming segment and add it to the top of the stack. reduce operations

take the top two elements from the stack (two trees or segments) and combine them into

a new tree that is placed on the stack. Separate reduce operations are employed to handle
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different local structures (e.g. based on nuclearity) and rhetorical types. A decision

procedure for selecting which operation to perform at each step was learned using C4.5

decision-tree induction that considered various structural features (e.g. of the top two trees

in the stack), features regarding the presence of cue-phrases, as well semantic similarity

measures based on lexeme-based cosine-similarity and Wordnet.

Despite being a data-driven approach, the shift-reduce parser approach would seem

vulnerable to cascading errors. While the parser builds up a discourse structure in the

form of a tree, it does so in a greedy fashion and mistakes early on in the process have

the potential to adversely effect subsequent decisions.

Probabilistic Parsing for Discourse

Baldridge & Lascarides [2005] used head-driven probabilistic parsing approaches devel-

oped for sentence-level syntax [Collins, 1999] and applied them to the task of inducing

parsers for discourse. They annotated a set of dialogs from the Redwoods Corpus with a

set of rhetorical relations espoused by SDRT.

There has also been work that has applied maximum spanning tree-based dependency

parsing algorithms [McDonald, 2006] and discriminative training to discourse parsing

with some promising results. Baldridge et al. [2007] present an dependency-based ap-

proach to discourse and appear to improve upon the results in Baldridge & Lascarides

[2005] when evaluating against the task of identifying the lexical head of each discourse

argument. This work bears some similarity to the work in this dissertation in that it uses

a dependency representation as well as discriminative learning methods that can handle
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arbitrary features without the need to consider their interdependencies.

2.2.2 Classifying Rhetorical Relations

We have already discussed data-driven methods for identifying RST-based rhetorical re-

lations. Outside of RST, we have previously leveraged the GraphBank corpus to classify

coherence relations using a maximum entropy classifier [Wellner et al., 2006]. Sporleder

& Lascarides [2005, 2008] and Marcu & Echihabi [2002] both present methods for

identifying unmarked rhetorical relations5 by leveraging discourse connectives to auto-

matically label new examples in order to classify relations into subsets of the rhetorical

relation types within SDRT and RST, respectively.

2.2.3 Temporal Discourse

Very much related to understanding informational discourse coherence relations is under-

standing temporal relations between abstract objects. Temporal relations may be viewed

as a sub-class of discourse coherence relations. In many respects, however, it may be

more natural to view temporal relations somewhat distinct from coherence relations gener-

ally [Mani & Pustejovsky, 2004]. In particular, isolating the temporal aspects of discourse

provides a useful level of abstraction — e.g., it may be easier to infer that event ei oc-

curs before ej , but difficult to determine whether ei caused ej . Conversely, focusing on

temporal aspects alone facilitates a finer level of analysis. For example, the TimeBank

5Unmarked rhetorical relations are those that are not signaled by a discourse connective such as but,

because, etc.
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corpus [Pustejovsky et al., 2003] distinguishes between the case where ei occurs at some

interval before ej and the case where it occurs immediately before ej , a distinction not

likely to be made amongst the relation type inventories of most discourse frameworks.

Data-driven methods for identifying and classifying temporal relations in the Time-

Bank Corpus are presented in Mani et al. [2006], Bethard et al. [2007] and Lapata &

Lascarides [2006].

2.3 The Penn Discourse Treebank

The PDTB, the corpus we use for our experiments, differs from most other discourse-level

annotation efforts in its bottom-up, lexically-driven approach. Rather than identifying all

possible discourse relations, the PDTB focuses first on annotating relations lexicalized

by discourse connectives that explicitly occur in the text along with their two arguments.

These discourse connectives include coordinating conjunctions (e.g., and, or), subordi-

nating conjunctions (e.g., because, when, since) and discourse adverbials (e.g., however,

previously, nevertheless). This aspect of the PDTB, its explicit connectives and their ar-

guments, is somewhat theory neutral — i.e., by identifying such connectives, interpreting

them as predicates and identifying their arguments no statement is being made a priori

about 1) the structure of the discourse (e.g. whether it is tree-like) or 2) the types and

semantics of the rhetorical relations realized as discourse predicates.

Discourse arguments in the PDTB represent abstract objects [Asher, 1993] which

include facts, propositions and events. Each argument must include at least one predicate
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and can be realized as: a clause, a VP within VP coordination, a nominalization (in

certain, restricted cases), an anaphoric expression or a response to a question. Each

connective has two arguments: Arg2 is the argument syntactically connected to the

connective in the same sentence and Arg1 is the other argument which may lie in the

same sentence as the connective or, generally, anywhere prior in the discourse.

2.3.1 Examples

Below are a few examples from the PDTB. Each Arg1 is denoted in italics and each

Arg2 is denoted in bold. The head-words for each argument are underlined. We discuss

and motivate the identification of head-words in Section 3.1.

(9) Choose 203 business executives, including, perhaps, someone from your own staff,

and put them out on the streets, to be deprived for one month of their homes,

families and income.

(9) shows an example of a coordinating connective and and its two arguments. In

this case, the Arg1 lies in the same sentence as the connective. It is also possible for the

Arg1 to lie outside the sentence (usually in the immediately preceding sentence) when

the coordinating connective begins a sentence.

An example of the subordinating connective, because is shown below in (10). This

example brings up some interesting ambiguities that arise quite regularly in the data. An

alternative reading for this example might only include the extent to duck liability for the
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Arg1. That is, the predicate be able could be read to include the discourse relation and

its two arguments as an argument.

(10) Drug makers shouldn’t be able to duck liability because people couldn’t identify

precisely which identical drug was used.

Both coordinating and subordinating connectives are structural [Webber et al., 2003].

Discourse adverbials however, take one argument, Arg2, structurally but the other can be

anaphoric: its Arg1 may be present anywhere in the current running discourse with little

or no restriction. Example (11) shows the case in which the Arg1 lies in the previous

sentence. In many cases, however, it resides in the same sentence as the connective or

many sentences prior in the discourse.

(11) France’s second-largest government-owned insurance company, Assurances Gen-

erales de France, has been building its own Nagivation Mixte stake, currently

thought to be between 8% and 10%. Analysts said they don’t think it is contem-

plating a takeover, however , and its officials couldn’t be reached.

The PDTB, Version 1.0, contains a total of 18505 explicit connectives annotated with

discourse arguments. The annotations are layered on top of the Penn Treebank-II (PTB)

parse trees and cover all 25 Wall Street Journal (WSJ) sections amounting to over 1

million words. The final version of the PDTB, Version 2.0, was released in February

2008 and includes 18459 explicit connectives after refining the annotations in the earlier

version.
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PDTB Relation Category Number of Instances

Explicit 18459

Implicit 16224

AltLex 624

EntRel 5210

NoRel 254

Table 2.1: Frequencies of the various discourse relation categories in the PDTB 2.0

2.3.2 Beyond Explicit Connectives

A core aspect of the PDTB is its annotation of explicit connectives and their arguments.

As apparent when examining any body of text, unlexicalized discourse relations are

present in many cases. That is, informational coherence relations exist without any

particular discourse connective phrase signaling them, such as in Example (7). Rather

than trying to identify all such relations as in Wolf & Gibson [2005], however, the

PDTB 2.0 takes a more constrained approach and annotates relations between adjacent

sentence units within the same paragraph exactly when there is no explicit connective

signaling a relation with one argument in each sentences. These relations include: 1)

implicit relations which are those relations that could be inferred by inserting a discourse

connective phrase6 at the beginning of the second sentence, 2) AltLex relations which

are coherence relations between the two sentences that are signaled by some phrase other

than a discourse connective and where the insertion of a connective phrase (to establish

an implicit relation) would be redundant, 3) EntRel relations in which there is coherence

between two adjacent sentence units but relating entirely to the entities in those sentences

6In fact, the PDTB also allows for multiple implicit connective phrases to be associated with a discourse

relation.

34



CHAPTER 2. MODELING DISCOURSE

and not over abstract objects and 4) NoRel where there is no coherence between the

two sentence units. Below are simple examples of an implicit relation (constructed),

an AltLex relation (from the PDTB) an EntRel relation (constructed), and a NoRel

example, respectively:

(12) John pushed Max. Implicit= As a Result Max fell.

(13) In September, she pleaded guilty and paid a $500 fine. AltLex = Her alternative

was 90 days in jail.

(14) Howard is 89 years old EntRel He turns 90 in a couple of weeks

(15) The new Explorer sport-utility vehicle, set for introduction next spring, will also

have rear-seat belts. NoRel Mr. Leinonen said he expects Ford to meet the

deadline easily.

Table 2.1, taken from [Prasad et al., 2008], provides the frequencies in the PDTB for

the various relation categories.

2.3.3 Annotation of Relation Types

The PDTB 2.0 also annotates the type, or sense, of all explicit, implicit and AltLex

discourse relations. This layer of annotation makes some theoretical commitments: the

types of relations are informational relations as opposed to intentional relations and a

particular inventory of relations was selected.7 The relation types are inspired by those in

7Note, however, that it could easily be argued that the most salient coherence relations in the WSJ texts

that constitute the PDTB are, in fact, better described with informational relations.
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SDRT [Asher & Lascarides, 2003] and Hobbs [1985], but make a number of refinements.

Interestingly, the PDTB relation type categories are hierarchical, including four top-level

categories (or classes), 16 mid-level categories (or types) and 23 low-level categories (or

sub-types).

Explicit and implicit (including AltLex) relations may be assigned one or two senses.

Below is an example of an implicit relation annotated with the implicit connective phrase

“because”:

(16) The government’s construction spending figures contrast with a report issued earlier

in the week by the F.W. Dodge Group. Implicit = Because Dodge reported an

8% increase in construction contracts awarded in September.

This was annotated with both a Reason sense and a Specification sense as the second

sentence both explains why the “spending figures contrast with a report” and elaborates

by providing more specific details on what was reported.

We defer a detailed discussion of the various sense distinctions until Chapter 8.

2.3.4 Inter-annotator Agreement

The PDTB, like many annotated corpora, was designed to try to achieve high inter-

annotator agreement. Clearly, if humans frequently disagree on the presence, structure

or rhetorical type of discourse relations we can not expect automated systems to perform

well. Overall agreement for identifying the arguments (both Arg1 and Arg2) was 90.2%

for explicit connectives and 85.1% for implicit connectives [Prasad et al., 2008], with
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generally lower scores for Arg1 and higher scores for Arg2 [Miltsakaki et al., 2004a].

When considering a partial match metric, which gives credit to arguments that overlap

to a sufficient degree, those agreements move to 94.5% and 92.6% for the arguments of

explicit and implicit connectives, respectively. Agreements for assigning relation types

or senses to connectives were: 94% agreement at the class level, 84% agreement at the

type level and 80% agreement at the sub-type level. These results seem comparable to

other discourse annotation efforts. For example, in the RST Discourse Treebank [Carlson

et al., 2003], agreements for identifying the two spans participating in a relation were

in the range of 78% to 93%. Agreement percentages for assigning rhetorical types to

given relations ranged from 68% to 79% for an inventory of 16 rhetorical types, which

is slightly below the agreement rates in the PDTB.
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Identifying Arguments of Discourse

Connectives

The study of discourse is concerned with analyzing how phrase, clause or sentence-level

units of text are related to each other within a larger unit of text (e.g., a document). Long

recognized as important in dialog and text generation, this level of analysis is important

generally for applications needing to place events and propositions in their proper con-

text such as scenario-level information extraction, question answering, summarization,

sentiment analysis and others.

In line with much of the NLP research agenda, recently a number of annotated corpora

have emerged which encode discourse-level phenomena, making it possible to apply

supervised, empirically-driven techniques to identifying discourse relations. Some of

these corpora were reviewed in the previous chapter. While these corpora differ in many
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ways, they all more or less encode the problems that involve: 1) identifying/segmenting

the basic units of discourse (e.g., clauses, phrases), 2) determining for which pairs of

segments (or segment groups) a discourse relation exists, and 3) characterizing the type

of relation (cause, elaboration, etc.) between segment pairs.

In this chapter we focus on problems (1) and (2) above. However, rather than explicitly

identifying the discourse segments and then deciding for which pairs a relation exists, we

focus on identifying relations between the pairs of head words that represent the discourse

segments. In this sense, the problem resembles that of predicate-argument identification

where the predicates are discourse connectives and the arguments are single words which

serve as anchors for the discourse segments.

To address the problem of identifying the arguments of discourse connectives we

incorporate a variety of lexical and syntactic features in a discriminative log-linear ranking

model. To capture dependencies between the two arguments of a connective we use a

log-linear re-ranking model to select the best argument pair from a set of N-best argument

pairs that are provided by simpler independent argument models. Further, we provide

an analysis of the contribution of the various features demonstrating that features based

on a dependency parse representation outperform features derived from a constituent tree

parse.

Some of the material from this chapter was reported in Wellner & Pustejovsky [2007]

and was carried out on Version 1.0 of the PDTB.
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3.1 Head-Based Representation of the PDTB

In contrast to other annotations layered on the PTB such as PropBank [Palmer et al.,

2005] and NomBank [Meyers et al., 2004], the arguments of a discourse connective

frequently do not correspond to a single parse tree constituent. Arguments consist instead

of a set of non-overlapping constituents from the parse tree. This target representation

makes the process of identifying the arguments to discourse connectives difficult since the

space of candidate arguments extents is considerably larger than for PropBank parsing,

for example. Even without this added difficulty, discourse segmentation is one of the

most difficult stages in discourse parsing [Soricut & Marcu, 2003]. While the segments

themselves may be useful in certain contexts, for many applications, if not most, it will

still be necessary to interpret these segments (e.g. at the predicate-argument level). As

such, we argue that, in general, identifying the lexical heads of these discourse segments

is sufficient and perhaps even preferable for this stage of processing. A problem arises,

however, with arguments that consist of sequences of abstract objects represented as

coordinated or subordinated sequences of VPs, clauses or sentences. What should the

head be in such cases? By convention we designate the extent head as the head of the first

element in the sequence for multi-clause arguments. In (4), the head of the Arg2 would

be went, but its implicit scope includes the second VP coordinate headed by caught.

(17) Mr. Dozen even related the indignity suffered when he and two colleagues went

on an overnight fishing expedition of the New Jersey shore and caught nothing.
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The problem then becomes how to determine the end of the sequence of abstract

objects. In many cases, there is a “natural end” to such sequences based on the syntax.

In (4), the natural end is simply the end of the VP coordination. Difficult cases remain,

however, particularly with multi-sentential Arg1s of anaphoric connectives. Determining

the end of the these arguments seems non-trivial. Nevertheless, identifying the beginning

of the argument (via its head) is an important step in modeling these difficult cases.

3.1.1 Head Identification

Identifying the head of a discourse argument given its extent (as described by a set of

constituent sub-trees in the PTB) consists of two steps. First, we construct a single

syntactic tree formed by taking all of the sub-trees in the extent, finding their least

common ancestor (LCA) node and including all intermediate nodes from the subtrees to

the LCA node. Note that none of the other children of the intermediate nodes other than

the subtrees that span the argument extent are included. So, for example, in Figure 3.1

if an argument extent included the entire sentence except the phrase “the Commerce

Department said”, the NP “the Commerce Department” as well as the verb “said” would

be pruned from the syntactic tree.

After the diminished tree is identified that spans just the argument extent, a slight

variation of the head finding algorithm in [Collins, 1999] is applied to it in order to

identify the head. Briefly, the head finding algorithm consists of a set of rules that

indicate how to traverse a parse tree from a constituent phrase internal node to a leaf
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S

PP NP VP

After S the Commerce Department said S

VP VP

adjusting PP NP didn’t VP

for NP spending change PP

inflation in NP

September

Figure 3.1: Syntactic structure and discourse arguments for the connective “After”. The

lexical heads of each argument are underlined.

node, where the leaf node represents the “head” of the original constituent specified. So,

for example, a rule such as PP → Left → IN,TO,VBG,VBN,RP,FW indicates that for a

PP internal node, select the child node to traverse by first identifying the first word with

part-of-speech IN (i.e., a proposition according to Penn Treebank conventions) from the

left. If no such word is found, look for the first word with part-of speech TO from the

left, etc. The elements on the right hand side of a rule may be terminal nodes specified

with parts-of-speech or other internal constituent nodes (e.g. VP, NP). Rules are then

applied recursively until reaching a terminal node.

Figure 3.1 provides an example indicating the arguments to the connective “After”

and the derived argument heads, which are underlined. Note that the rules used here

identify the “semantic heads”, which correspond to the verb most carrying the meaning

for VPs and for predicate nominals and adjectives in copula constructions.

42



CHAPTER 3. IDENTIFYING ARGUMENTS OF DISCOURSE CONNECTIVES

3.2 Discourse Argument Identification

Identifying the arguments of discourse connectives can be naturally formulated as a bi-

nary classification task where separate classifiers are trained for each type of argument

— i.e., Arg1 and Arg2. First, a set of candidate arguments, αi is gathered for each con-

nective, π. Training instances, 〈αi, π〉, are then created for each candidate with respect

to the connective. A training instance is positive if αi is the true argument for π and

negative otherwise. At decoding time, the candidate classified positively with the highest

probability (or score) compared to the other candidates is selected as the argument.

An alternative to using a standard classification approach is to use a ranking model.

The advantage of the ranking model is that candidate instances are compared against

each other during training as well as during decoding. In contrast, with a standard

classifier, separate instances (i.e. candidates) are trained and classified as if they were

completely independent. We use a log-linear ranking model. Such models have been used

for a variety of other tasks including co-reference [Denis & Baldridge, 2007], question

answering [Ravichandran et al., 2003] and parse re-ranking [Charniak & Johnson, 2005].

Appendix B provides further details on how the parameters are estimated for such models.

For a given Arg1 candidate, αi, the probability of that candidate being the argument

given the connective, π, and the document, x, is defined according to the model as:

P1(αi|π, x) =
exp (

∑

k λkfk(αi, π, x))
∑

αj∈C1(π,x)

exp (
∑

k λkfk(αj, π, x))
(3.1)

where the fk are feature functions, the λk are their weights and C1(π, x) is the set of
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candidate Arg1 arguments for the connective π in the document x. The model for Arg2 is

defined analogously, but may in fact use a different set of features or a different candidate

generation function. Note that the function C2 will denote the candidate generation

function for Arg2 arguments and βj will refer to a specific Arg2 candidate.

At training time, all potential candidates of a particular type for a given connective

are provided to the ranking model as a distribution: the correct gold-standard candidate

receiving a probability mass of 1.0 and the other candidates receiving masses of 0.0.

During decoding, we select candidates in the same way as for training and produce

a distribution over these candidates according to Equation 3.1, selecting the candidate

assigned the highest probability by the model as the argument.

We compared both the above ranking model and a standard binary Maximum Entropy

model (i.e., logistic regression) and found the ranking model to have a small but consistent

edge over the classifier. Accordingly, we only report results here using the ranking model.

3.2.1 Candidate Selection

Identifying the candidate arguments, αi ∈ C1(π, x), βj ∈ C2(π, x), is an important aspect

of the problem. For Arg1 candidates in particular, there are conceivably very many

possible candidates for a given connective stretching back from the sentence containing

the connective to the beginning of the document. We employ two simple criteria to

reduce the space of candidate argument head words. First, we only consider argument

candidates that have an appropriate part-of-speech (all verbs, common nouns, adjectives).
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Second, we only consider candidates that are within 10 “steps” of the connective where a

single step includes a sentence boundary or a syntactic dependency link within a sentence

(see Figure 3.2). Only candidates lying within the same sentence as the connective are

considered for Arg2.

3.2.2 Features

We used a variety of features for identifying the discourse arguments of a connective.

Baseline Features. Our baseline features included simply the connective and argu-

ment words, where the connective appears in the sentence, whether the argument precedes

or follows the connective and whether the argument is in the same sentence as the con-

nective or not.

Constituent Path Features. As noted in work on semantic role labeling, features

derived from the constituent parse of the sentence can be very helpful for deriving the

argument structure of predicating verbs [Toutanova et al., 2005] and nouns [Jiang & Ng,

2006]. Syntax plays a strong role in identifying discourse arguments, too, though even for

structural connectives it by no means “aligns” with the discourse structure [Dinesh et al.,

2005]. We introduced a feature capturing the constituent tree path from the connective

to the candidate argument as well as variants in which repeated nodes and part-of-speech

nodes are removed from the path. If the argument lies in a different sentence, the path

from the connective to the argument consists of the path from the connective to the top

node of its sentence, followed by a series of virtual SENT nodes for the intervening
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sentences and then ending with the path from the top node of the sentence containing the

argument to the argument head itself.

Dependency Path Features. We experimented with a number of syntactic features

based on a dependency parse representation. The primary motivation here is that it

provides for a more compact and natural representation of the syntax, providing for better

syntactic features with less data sparseness than constituent path features. The dependency

representation we use is that put forth in de Marneffe et al. [2006] and we apply their

approach to deriving the dependency structure from the constituent parse. The features

used here include the (shortest) dependency path from the connective to the prospective

argument and two collapsed versions removing coordination links as well as repeated

links of the same type. For argument candidates in prior sentences, we introduce SENT

links for each intervening sentence.

Connective Features. Different discourse connectives behave differently depending

on their type. A potentially important feature then involves capturing the connective

type: (coordinating, subordinating or adverbial). We use the categorized lists of discourse

connectives found in [Knott, 1996]; further, any connectives not appearing in these lists

are considered discourse adverbials. As we would expect different syntax associated with

different connectives we introduce conjunctive features such as the connective type and

syntactic path.

Lexico-Syntactic Features. One of the prime difficulties in identifying the correct

non-anaphoric argument has to do with attribution. In this situation the argument is the
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said
prep

subj
ccomp

After
pcomp

Department
det ncmod

change
subj

aux
prep

adjusting
prep

the Commerce spending didn’t in

pobj

for

pobj

September

inflation

Figure 3.2: Dependency structure.

complement of a verb indicating attribution of the proposition denoted by the complement

to an individual other than the writer. Figure 3.1 provides an example of this where the

Arg1 of “After” is the complement of the verb “said” being attributed to “the Commerce

Department”. To model this situation we introduce features capturing whether the ar-

gument is a potentially attribution-denoting verb, whether it has a clausal complement,

whether it is the clausal complement of another verb and whether the complementing

verb is attributing.

A full listing of the features used for identifying arguments is shown in Table 3.1.

3.3 Experiments with Independent Argument Identifica-

tion

For all of our experiments, we use sections 02-22 for training, sections 00-01 for devel-

opment and sections 23-24 for testing. The development data was used to customize our

features and to tune the Gaussian prior used to prevent over-fitting in the log-linear mod-
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Baseline Features

A Where in the sentence (beginning, middle, end) the connective resides

B Whether the argument is in the same sentence as the connective (yes,no)

C Connective phrase

D Down-case connective phrase

E Argument head word

F Argument head prior or after connective

G A & B

Constituent Features

H Path from argument to connective through the constituent tree

I Length of path

J Collapsed path without part-of-speech

K Collapsed path removing repetitions of the same node type (e.g. VP-VP-VP → VP)

L C & H

Dependency Features

M Dependency path from argument to connective

N Path + head word of first link from connective

O Collapsed path removing coordinating links

P Collapsed path removing repetitions of links

Q C & M

Connective Features

R coordinating, subordinating or adverbial connective

S A & R

T M & R

Lexico-Syntactic Features

U Argument is an attributing verb

V Argument has a clausal complement

W U & V

X Argument is a clausal complement of a verb

Y X & governing verb is an attributing verb

Table 3.1: Feature types for discourse connective argument identification

els ( at σ = 0.25 for both the local and the re-ranking models). All results are reported

on the testing data, sections 23-24.

We report results using both gold-standard parses and automatic parses using the

Charniak-Johnson parser [Charniak & Johnson, 2005]. At training time, for simplicity, we

used the gold-standard parses in the Penn Treebank. Ideally, the argument identification
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Accuracy

Feature Set Arg1 Arg2 Conn.

A-G 32.7 60.7 21.6

A-L 60.6 85.5 53.6

A-G;M-Q 73.7 94.2 70.2

A-Y 75.0 94.2 71.7

A-Y(auto) 67.9 90.6 62.7

Table 3.2: Results for argument identification on the testing data (WSJ sections 23-24)

gold standard parses (with various feature sets) and Charniak-Johnson parses (auto) for

the full feature set A-Y.

system should be trained on automatic parses representative of the parsing performance

on the evaluation data, by, for example, performing n-fold jackknifing (i.e., cross-fold

application) over the training data. Thus, these results using the automatic parses should

be viewed here as lower-bounds.

For evaluating Arg1 and Arg2 argument identification performance we report accu-

racy — i.e., the percentage of arguments correctly identified. An argument is correct if

and only if it is the same head-word as derived from the argument extent as annotated in

the PDTB (as described in Section 3.1.1). We also report Connective Accuracy which is

the percentage of connectives for which both arguments were correctly identified.

Our results for the task of identifying arguments are shown in Table 3.2 for various

feature combinations. It is interesting to compare the performance of the constituent

parse features (A-L) vs. the dependency parse features (A-G;M-Q). The dependency

parse features perform markedly better: 70.2 vs. 53.6 Connective Accuracy with gold-

standard parses. Likely, this discrepancy can be explained in part by the better ‘alignment’

of the dependency parses to the target discourse argument representation. In particular,
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the dependency representation used here directly links semantic head words (which are

the target discourse argument heads), making syntactic heads subordinate, obviating the

need to follow the VP chain from the syntactic to the semantic head. Figure 3.2 provides

an example of this where the ccomp dependency link directly links “said” with “change”

which is the content-bearing, semantic head of the complement clause.

3.4 Experiments With Re-ranking

A drawback to the above approach is that the two arguments are identified independently.

Ideally, one would like to consider both arguments and the connective simultaneously,

taking into account global properties such as the pattern of the argument structure (e.g.

Connective ≺ Arg2 ≺ Arg1 vs. Arg1 ≺ Connective ≺ Arg2) or properties of com-

patibility between the two arguments (e.g. agreement in tense). Considering all pairs

of arguments outright, however, presents scalability issues as the number of such pairs

can be very large (especially with anaphoric Arg1s). Indeed, a huge advantage of the

lexicalized approach taken with the PDTB is that we can identify arguments indepen-

dently using the connectives as anchors. Nevertheless, there is obvious potential gain

from modeling pairs of arguments jointly.

One way to model these dependencies in a tractable fashion is to use re-ranking [Collins,

2000] which has proven successful in a variety of NLP tasks. The basic idea is to use

a model with strong independence assumptions, GENN(π), in this case based on the

independent Arg1 and Arg2 models described above, to generate N candidate argument
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Accuracy

N Arg1 Arg2 Conn.

1 74.5 94.5 71.4

5 83.1 97.4 81.8

10 90.5 97.9 89.2

20 93.8 97.9 92.1

30 94.6 97.9 92.9

Table 3.3: N -best upper-bounds for different values of N according to a product of

independent argument ranker probabilities with the full feature set (A-Y)

pairs for a given connective, π. The re-ranking model is then used to re-rank these

candidate pairs; the top-ranked pair is selected as the argument pair for the connective.

In our setting for a given connective, π, we define the local probability for a candidate

argument pair, 〈αi, βj〉 as:

Ploc(αi, βj|π, x) = PArg1(αi|π, x) · PArg2(βj|π, x) (3.2)

Thus, GENN(π) generates the top N argument pairs according to the Ploc. In practice,

we also assert that Ploc(αi, βj|π, x) = 0 when αi = βj since it is never the case that the

true Arg1 is the same as the true Arg2 for the same connective.

Table 3.3 shows the oracle upper bounds on performance - the performance achieved

by selecting the correct argument pair from GENN(π) if it is in the list of argument

pairs and otherwise selecting the first pair with one correct argument if such a pair exists.

Note that performance on Arg2 plateaus at 97.9. This is due to 2.1 percent of the Arg2s

not being reachable because they are not considered candidates (they are more than 10

“parse steps” away or an invalid part-of-speech).
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3.4.1 Modeling Inter-Argument Dependencies

The model for re-ranking pairs of arguments is given by

Pr(αi, βj|π, x) =
exp (

∑

k λkfk(αi, βj, π, x))
∑

αi,βj∈GENN (π) exp (
∑

k λkfk(αi, βj, π, x))
(3.3)

Following previous work [Collins, 2000; Toutanova et al., 2005], we mix the local

model into the final score along with the re-ranking model as:

P (αi, βj|π, x) = Ploc(αi, βj|π, x)
γ · Pr(αi, βj|π, x) (3.4)

where γ indicates the degree to which the local model influences the final score.

Tuning γ on the development data, we set γ = 0.4 for all our re-ranking experiments.

The re-ranking model is able to accommodate features over both candidate argu-

ments. For example, we can test whether the two arguments are the same predicate

or whether they are both reporting verbs. Another set of features consists of triples

denoting the relative order of the arguments and the connective. For example, the fea-

ture CONN_Arg2_Arg1 indicates the connective and both arguments lie in the same

sentence with the connective first, followed by Arg2 and then Arg1. The feature

Prev_CONN_Arg2 indicates Arg1 is in the previous sentence and the connective pre-

cedes Arg2 within the sentence containing the connective. Other slight variations capture

configurations where the Arg1 candidate lies further back in the discourse. Finally, we

found some utility in comparing the syntactic arguments (e.g., subject, direct object) of

the candidate argument pairs. For example, the arguments of the discourse adverbial
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also not only frequently involve the same predicate but also involve the same entities

that appear as arguments to the predicate. Currently, we simply introduce features testing

whether the argument strings are identical as a proxy for full co-reference.

Table 4 shows the results incorporating the re-ranking model for the different feature

sets described earlier. The re-ranking models in each case are constructed from the

features that would naturally be available to the re-ranker. For example, the re-ranking

model for feature set A-Y uses a feature testing whether both candidate arguments are

reporting verbs, whereas the re-ranking model for A-L doesn’t.

Accuracy

Features Arg1 Arg2 Conn Indep. Conn Err.

A-G 44.1 59.6 30.6 21.6 11.5%

A-L 64.7 85.6 58.1 53.6 9.6%

A-G;M-Q 74.2 94.4 71.8 70.2 5.4%

A-Y 76.4 95.4 74.2 71.7 8.8%

A-Y(auto) 69.8 90.8 64.6 62.7 5.4%

Table 3.4: Re-ranking results for argument identification on the testing data using gold-

standard and Charniak-Johnson parses for the full feature set, A-Y (auto). The error

reduction (Err.) is relative to the results in Table 2.

3.4.2 Discussion and Error Analysis

Not surprisingly, performance at identifying Arg2s is much higher than for Arg1s as

the former are syntactically bound to the connective. Indeed, performance for identifying

Arg2s may be at or very close to human levels of performance using gold-standard

parses. Miltsakaki et al. [2004a] indicate 94.1% inter-annotator agreement for Arg2,

86.3% on Arg1 and 82.8% agreement per discourse connective with respect to the full

53



CHAPTER 3. IDENTIFYING ARGUMENTS OF DISCOURSE CONNECTIVES

Connective Type Frequency Indep. Acc Joint Acc Err. Reduction

Coord. 662 75.5 78.3 11.4%

Subord. 547 87.2 86.8 -3.0%

Adv. 386 42.2 49.0 11.8%

Total 1595 71.7 74.2 8.8%

Table 3.5: Frequency of each connective type and connective accuracy for the independent

(Indep.) and re-ranking (Joint) approaches using gold-standard parses and features (A-Y).

argument extents for a set of 10 connectives. The disagreement rates, however, would

likely be reduced considerably using our head-based representation since almost half of

the disagreements reported were due to argument extent disagreements.

Many of the Arg2 errors we found had to do with attribution, such as:

(18) ..“We pretty much have a policy of not commenting on rumors, and I think(?)

that falls in that category.

where the system proposed “think” as the Arg2 and the annotated argument was

“falls”.

The Arg1 errors were much more diverse with many involving arguments in previous

sentences, such as the following case in which the system proposed owned as the argument

yet the correct argument was completed found three sentences prior in the discourse.

(19) ..Quantum completed in August an acquisition of Petrolane... Petrolane is the

second-largest... The largest, Suburban Propane, was already owned(?) by Quan-

tum. Still , Quantum has a crisis to get past right now.

An examination of the errors by connective type is shown in Table 5. The re-ranking

model provides considerable improvement for coordinating and adverbial connectives,
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but slightly lowers performance for subordinating connectives. One hypothesis for this

is that the arguments subordinating connectives are more strongly determined by the

syntactic relationship between the connective and each argument and that re-ranking

argument pairs simply introduces unnecessary additional features that are superfluous

for identifying arguments of subordinating connectives and appear as noise and/or cause

model overfitting. For discourse adverbials, overall performance remains below 50%

despite the improvement from re-ranking.

3.5 Related Work

Given the formulation of discourse relations as predicate-argument structures anchored

on discourse connectives, our work here bears some resemblance to work in semantic role

labeling that has focused on identifying semantic frames for verbs [Toutanova et al., 2005].

The task of identifying discourse relations is simpler in that there are only and exactly

two arguments for each predicate; yet it is more difficult due to the fact that candidate

arguments for certain connectives must be identified outside of a single sentence.

Within discourse parsing, our work bears some similarity to that of Soricut & Marcu

[2003], which we described briefly in the previous chapter. However, they focus only

on identifying (and labeling the type of) all intra-sentential discourse relations whereas

we attempt to identify discourse relations spanning multiple sentences, provided they

are lexicalized by a connective. While not directly comparable to our results, they report

73.0 F-measure at identifying intra-sentential discourse relations and segments using gold-
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standard parses. With gold-standard discourse segments provided, their system achieves

human-levels of performance (96.2 F-measure), broadly comparable to our near-human

levels of performance on identifying Arg2s with gold-standard parses. Sporleder &

Lapata [2005] address intra-sentential discourse modeling with a chunking approach.

They achieve 88.7 F-measure on identifying discourse segment boundaries and 76.3 F-

measure when also labeling each segment as a nucleus or satellite.

3.6 Summary

We have presented a fully automated system capable of identifying the arguments of

discourse connectives. Rather than identifying the full argument extents in the PDTB,

we have proposed here an alternative problem formulation: that of identifying the heads

of discourse arguments.

With such a representation our system achieves 74.2% accuracy using gold-standard

parses and 64.6% accuracy using automatic parses on the task of correctly identifying

both arguments of discourse connectives. We found that syntactic features based on a

dependency parse representation provide more discriminative features over those based

on a constituent tree representation. Additionally, we found a notable improvement by

exploiting joint features over argument pairs in a re-ranking model in comparison to

modeling the arguments independently.
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Identifying Arguments in PDTB 2.0

The results described in the previous chapter were carried out on Version 1.0 of the

PDTB. Subsequent to the completion of those experiments, the final version of PDTB,

Version 2.0, was released. The PDTB 2.0 [Prasad et al., 2008] includes the annotation

of implicit discourse connectives for the entire WSJ portion of the Penn Treebank, rather

than just for sections 08, 09 and 10 as in Version 1.0. It also includes rhetorical types

(or senses) for all implicit relations as well as for all the explicit discourse connectives.

Additionally, some of the annotations were modified and refined to improve consistency.

This chapter provides some revised results on the argument identification task using

this new version of the data; additionally, important modifications have been made to

the target representation and the underlying system and features used to identify the

arguments. We also present results in this section on identifying the arguments of implicit

discourse connectives, which are fully annotated across all WSJ sections in PDTB 2.0.
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4.1 Revised Argument Identification of Explicit Connec-

tives

This section describes revised results at identifying the arguments of explicit connectives

using the PDTB 2.0. Besides using this newer, and final, version of the PDTB, the primary

differences between the results discussed here and in Chapter 3 can be summarized as

follows:

• Rather than using the semantic head of each discourse argument as the target

representation, the syntactic head is used. 1 So, for example, in Figure 3.1 the

syntactic head of the Arg1 spending didn’t change in September would be did rather

than the content-bearing verb change as in the representation used in Chapter 3.

• A new dependency parse representation is used based on the representations de-

veloped for the CoNLL 2007 Shared Task on Dependency Parsing [Johansson &

Nugues, 2007; Nivre et al., 2007a]. This contrasts with the earlier dependency

representation that followed the approach in [de Marneffe et al., 2006].

• Some additional feature types were used that aim to take into account additional

discourse-level properties. These are discussed below in detail.

• We have taken a different, more standard, approach to re-ranking in which n-best

lists of argument pairs are generated by 2-fold jackknifing over the training data.

1Briefly, the syntactic head is the lexical item directly attached to the highest VP node within a complex

VP phrase, while the semantic head is typically the highest lexical item that is not a modal or auxiliary in

the complex VP.
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It is worth noting that some of the these changes were motivated in part by practical

considerations in developing a more robust and simpler piece of software that could

operate over real data. For example, the new dependency parsing representation employed

makes it possible to leverage any of the parsers that have been built for the recent CoNLL

dependency parsing tasks.

We discuss each of these changes in detail below.

4.1.1 Target Representation

In our prior work with discourse argument identification described in the previous chapter,

we identified the argument with its semantic head. This representation was driven, in part,

by the particular syntactic dependency representation we employed which was modeled

after that in de Marneffe et al. [2006]. Additionally, the semantic head of an argument

is generally a source for more useful features than the syntactic head (which may be an

auxiliary verb).

The primary reasons for changing the target representation to target the syntactic

head are: 1) the syntactic head is more straightforward to identify consistently, 2) it more

readily facilitates extraction of the full argument extent in a dependency representation by

simply following the transitive closure of the syntactic head, and 3) the syntactic head fits

more naturally with features based on constituent-based syntax (since the modal auxiliary

verb chain need not be traversed) and/or dependency representations that use the syntactic

head for VPs.
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ADJP ← NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS DT FW RBR RBS SBAR RB

ADVP → RB RBR RBS FW ADVP TO CD JJR JJS IN NP JJS NN

CONJP → CC RB IN

FRAG → (NN | NP) W* SBAR (PP | IN) (ADJP | JJ) ADVP PP

INTJ ← **

LST → LS :

NAC ← NN NP NAC EX $ CD QP PRP VBG JJ JJS JJR ADJP FW

PP → IN TO VBG VBN RP FW

WHPP → IN TO VBG VBN RP FW

PRN → S* N* W* (PP | IN) (ADJP | JJ) (ADVP | RB)

PRT → RP

QP ← ($ | IN | NNS | NN | JJ | RB | DT | CD | NCD | QP | JJR | JJS)

RRC → VP NP ADVP ADJP PP

S → VP *-PRD S SBAR ADJP UCP NP FRAG SINV PP

SBAR → S SQ SINV SBAR FRAG IN DT

SBARQ → SW S SINV SBARW FRAG VP

SINV → VBZ VBD VBP VB MD *-PRD VP SQ FRAG S SINV SBAR SBARQ

SQ → VBZ VBD VBP VB MD *-PRD VP SQ FRAG S SINV SBAR SBARQ

UCP → **

VP → VBD VBN MD VBZ VB VBG VBP VP *-PRD ADJP NN NNS NP S SINV SBAR SBARQ SQ

WHADJP ← CC WRB JJ ADJP

WHADVP → CC WRB

WHNP ← NN WDT WP* WHADJP WHPP WHNP

X ← **

Table 4.1: Rules for assigning heads to constituent phrases.

4.1.2 Revised Dependency Representation

The largest change to the argument identification system involved revising the syntactic

dependency representation. For the most part, we followed the constituent to dependency

conversion method described in Johansson & Nugues [2007] to arrive at our target de-

pendency structure. Briefly, that method involves the following steps:

Identify the Head Words For each constituent the head-word is identified using the set

of head-finding rules in Table 4.1. For a given non-terminal, n, the rule whose

left-hand side matches n is applied. The ordered children of n are traversed in the

direction specified by the arrow until a child matches the first node label expression

on the right-hand-side. If such no child matches the node label expression, then

the next node expression is tried and so forth until a match is found. The rules
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Algorithm 1 LabelLink(w, l)
Require: A word, w, with incoming link, l, to label

Ensure: A label, lab, for link l

C ← highest phrase with w as its head

P ← parent of C

if C is the root node return ROOT

else if P matches N-L where member(L,[ADV,DIR,EXT,LGS,LOC,MNR,PRD,SBJ,TMP]) return L
else if C is an object return OBJ

else if C is PRN return PRN

else if C is RRC or SBAR and P is NP return RCMOD

else if w is punctuation return P

else if C is PP, ADVP or SBAR and P is VP or S* return ADV

else if C is PRT return PRT

else if P is a phrase containing coordination

{ if C is CC return CONJ else return COORD }

else if C is VP and P is VP, SQ, SINV, SBAR, S or SBARQ return VC

else if C is S-TPC-* return CCOMP

else if C is S* and P is VP return CCOMP

else if P is S* or VP

{ if C is CC return CONJ else if C is DT return NMOD else if C is WHNP-* return SBJ else

return VMOD }

else if P is UCP

{ if C is CC return CONJ else return COORD }

else if P NP or QP return NMOD

else if P is ADJP, ADVP, WHADJP or WHADVP return AMOD

else if P is PP or WHPP return PMOD

else return DEP

are then recursively applied to the selected child. For example, the rule CONJ →

CC RB IN in Table 4.1 indicates that the first CC from the left should be selected

as the child; if no such CC is found, then the first RB from the left is selected.

If none of the elements on the right-hand side of a rule match, the first non-

punctuation element is selected (in the direction indicated by the arrow). A small

set of special cases surround handling of coordination within NP, ADJP and ADVP

phrases to identify the left-most conjunct as the head. For example, in the NP:
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NP

NNP , NNP CC NNP

John , Bill and Fred

The head would be identified as the NNP John.

Assign Governor Links This is done for each word, wi, in a sentence by first identifying

the highest non-terminal node, n in the tree that has wi as its head. A link is then

established between wi and the head of the constituent that immediately dominates

n, pi where the link is from pi to wi.

Label Dependencies Each link in the dependency graph is then assigned a label accord-

ing to Algorithm 1.

This process differs from the approach in Johansson & Nugues [2007] in a few ways.

First, we added a link type RCMOD, which denotes relative clauses - these link types

are annotated in the Penn Treebank (via RRC nodes) and appeared to us a useful syn-

tactic distinction for reasons not confined to discourse parsing. We also added a clasual

complement link CCOMP. Secondly, we did not exploit the secondary edges in the Penn

Treebank or the explicative, cleft or gapping constructions. These constructions are what

result in non-projective dependencies. Thirdly, we did not add additional structure to

complex, non-coordinated noun phrases as was done in Johansson & Nugues [2007], but

left the dependency structure of the NP ’flat’, if it was so annotated in the PTB. Finally,

the head percolation rules are slightly modified here compared to their approach. For

example, we changed the rule direction for clausal non-terminals (S, SBAR, etc.) so that
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ADV General adverbial

AMOD Adjectival modifier

CCOMP Clausal complement

CONJ Conjunction (dependent of first conjunct)

COORD Coordination

DEP Unspecified dependency

DIR Adverbial denoting direction

EXT Adverbial denoting extent

LGS Logical subject of passive voiced verbs

LOC Locative modifier (adverbial or nominal)

MNR Adverbial of manner

NMOD Modifier of nominal

OBJ Object

P Punctuation

PMOD Modifier of preposition

PRD Predicative complement

PRN Parenthetical

PRT Particle

RCMOD Relative clause modifier

ROOT Root

SBJ Subject

TMP Temporal modifier

VC Verb chain

VMOD Verb modifier

Table 4.2: List of dependency labels

clausal constructions coordinate in the same manner as verb phrases — i.e., with the left

conjunct always being the head.

The full set of dependency labels is shown in Table 4.2. An example parse is provided

in 4.1. It is worth emphasizing that the representation and set of dependency link types

used here is somewhat arbitrary and that many different representations are used in the

literature and within the recent dependency parsing shared tasks, in particular. This

particular representation was chosen because it is projective2 and the inventory of link

2The primary benefit of a projective dependency parse in the context of discourse parsing is that it is

possible to trivially pull out the extent of a discourse argument given just its lexical head.
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Because he could run and swim , he was recruited by the team for the triathalon

VMOD

SBJ

ADV

VC CONJ

COORD

P

SBJ VC ADV

LGS

NMOD

VMOD

PMOD

NMOD

Figure 4.1: Dependency parse example.

types appears to be appropriate for the task of discourse parsing. It is left as future work

to determine which syntactic representations and inventories of grammatical relation types

are “optimal” with regard to discourse parsing.

4.1.3 Feature Additions and Modifications

Most of the features for the revised system are the same as described in Chapter 3 (cf.

Table 3.1). We describe here a few additional features we found useful. Note that these

features are described here in the context of the independent argument identification

rankers; similar features were used within the re-ranking framework that considers Arg1-

Arg2 pairs.

Before discussing the new features, recall that our features are broken down into

various feature classes. We slightly reorganize the feature classes from Table 3.1 here

as follows: The Baseline features (A-G) and the Connective features (R-T) constitute the

Base class of features, while the Constituent features, Dependency features and Lexico-

Syntactic features map to classes ConstParse, DepParse, and LexSyn, respectively.

Paragraph Boundary Features Paragraph boundaries provide important clues for the

identification of distant Arg1s, in particular. We used paragraph information in two ways.
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First, we included features such as a) whether the argument was in the same paragraph as

the connective; b) within the same paragraph, but different sentence; c) if the argument

is in the first sentence of a paragraph; d) distance of the argument from the connective

in terms of paragraphs and e) various conjunctions of (a)-(d) based on the connective

phrase and connective type. Secondly, we used paragraphs to define a different set of

dependency relations at the discourse level. The head-word for each sentence is linked

to the head-word of the previous sentence, just as before via a Sent link, except for

the sentences which are the first sentence within a paragraph. For those sentences, the

head-word is linked by a Para dependency link to the head-word of the first sentence in

the preceding paragraph, if one exists. This representation is based on observation that

distant or multi-sentence Arg1 arguments have a tendency to have their heads in the first

sentence of a preceding paragraph. These features form a new feature class: Para.

Intervening Features These features include the distance in tokens between the con-

nective and candidate argument (or argument pairs, for re-ranking) as well as all interven-

ing parts-of-speech. Conjunctions of distance and intervening parts-of-speech are also

used. These features are modeled, in part, on features used for syntactic dependency

parsing. These features form a new feature class: Intervening.

Additional Context Features Following the recent work in Elwell & Baldridge

[2008], we added features such as the previous and subsequent word to the candidate

argument head and connective as well as features regarding whether a) the candidate

argument is within quotes, b) the connective is within quotes and c) whether they appear
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within the same quotation. These features are added to the Base class of features.

4.1.4 Jackknifing To Create Representative N -best lists

Key to achieving good performance with re-ranking methods is providing them with N -

best lists at training time that are representative of the N -best lists that will appear at

decoding time. In the the re-ranking approach taken in Chapter 3, the N -best lists for

the entire set of training were generated by the local Arg1 and Arg2 models which were

trained on the same data. The result of this is that the N -best lists generated are of

much better quality than would be generated on unseen data. To compensate for this, the

re-ranking model is trained on these artificially high-quality N -best lists, but the final

probability for an argument pair is defined as a mixture over the local and re-ranking

probabilities (cf. Equation 3.4).

A more standard approach is to generate N -best lists using local models that haven’t

been trained on the same data to which they are applied. This is done by jackknifing.

The data are split into a set of M even-sized folds. N -best lists are generated for each

mi ∈M by training local Arg1 and Arg2 models on all mj , where j 6= i, and applying

those models to mi. For simplicity, we used just two folds across the training data. Based

on evaluation on the development data, we found this setup to provide somewhat better

performance and did not require specialized tuning of the γ parameter from Equation 3.4

to optimally weight the local and re-ranking probabilities. Thus, the probability for an

argument pair is described as:
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P (αi, βj|π, x) =
exp (

∑

k λkfk(αi, βj, π, x))
∑

αi,βj∈GEN ′
N

(π) exp (
∑

k λkfk(αi, βj, π, x))
(4.1)

This differs from Equation 3.3 in that the function GEN ′N generates N best lists

according to Equation 3.2 but where we ensure that the conditional probabilities for

the Arg1 and Arg2 candidates of a connective are produced by models estimated from

different connectives, using the 2-fold jackknifing method.

4.2 Revised Argument Identification for Explicit Connec-

tives

We describe here essentially the same set of experiments as in Sections 3.3 and 3.4,

but with the PDTB 2.0 data, the syntactic heads as representatives for argument spans,

the modified dependency representation and the augmented feature set. One other minor

experimental difference is that we have chosen to move section 22 from the training data

into the development data set, which now consists of sections 00, 01 and 22.

4.2.1 Heuristic Baseline

We found it insightful to look at the performance of a simple heuristic-based approach

to identifying the arguments of discourse connectives. For subordinating connectives,

adverbials and all sentence initial connectives, the Arg2 is identified as the governor of

the head-word of the connective phrase in the dependency representation; the Arg1 is
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then simply the syntactic governor of the Arg2 or the root word of the previous sentence

if the Arg2 is the root word in the sentence containing the connective. For sentence-

medial coordinating connectives, the syntactic governor of the connective is identified as

Arg1 and the Arg2 is identified as the dependent of a COORD syntactic link from the

Arg1.

4.2.2 Results

The results are summarized in Table 4.3 for independent argument identification as well

as joint identification using re-ranking. The heuristic baseline performs respectably, and

provides insight into the degree to which the discourse structures in the PDTB align with

syntax [Dinesh et al., 2005]. The overall results represent a slight improvement over the

previous argument identification results [Wellner & Pustejovsky, 2007] and are due to the

newly introduced properties of the system. This last point is clear since the new system

performs at essentially the same level of accuracy on the PDTB 1.0 data — also at 75.6%

for the joint model and slightly lower at 72.8% on independent argument identification.

The re-ranking model achieves a 10% error reduction over separate identification of

the Arg1 and Arg2 arguments.

Results per connective type for the Re-rank ArgID system are shown in Table 4.4.

Some connectives, sentence-initial coordinating connectives, specifically, behave in some

aspects as a discourse adverbial. A full list of results broken down by individual connec-

tives can be found in Appendix A.
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Accuracy

System Arg1 Arg2 Conn Old Conn

Heuristics 70.2 89.2 65.8 65.9

Indep. ArgID 76.6 94.4 72.9 71.7

Re-rank ArgID 78.2 94.7 75.6 74.2

Table 4.3: Revised argument identification results for explicit connectives. For compar-

ison, earlier results reported in [Wellner & Pustejovsky, 2007] and in Section 3.4 (Old

Conn) are provided.

Accuracy

Connective Type Arg1 Arg2 Conn

Subordinating 89.2 98.4 88.5

Coordinating 82.7 93.0 78.1

Adverbial 54.8 92.2 53.0

Table 4.4: Connective type accuracies with the Re-ranking model.

Accuracy

Feature Set Arg1 Arg2 Conn

Full 78.2 94.7 75.6

NoConstParse 77.0 93.5 74.2

NoDepParse 76.0 92.8 72.5

NoLexSyn 78.3 94.4 75.8

NoIntevening 77.8 93.9 75.0

NoPara 77.7 95.0 75.3

NoBase 77.7 94.1 75.0

NoSyntacticFeatures 69.6 89.1 64.3

Table 4.5: Argument identification results with various feature subsets. The set of features

for NoSyntacticFeatures consists of the intersection of NoConstParse, NoDepParse

and NoLexSyn.
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Finally, we provide some additional insight into the utility of the various feature sets

through a set of ablation experiments in which each feature set is separately removed

from the union of all the features. The results of these experiments are summarized in

Table 4.5. As made clear by the table, the removal of dependency parse-based features

(NoDepParse) hurts performance the most of any single feature type. At the other end

of the spectrum, removal of lexical compatibility (NoLexSyn) features actually slightly

improves overall performance. The bottom row in the table is the result of a system

that makes no use of features that require a full parse to compute — i.e., dependency

and constituent path features as well as lexico-syntactic features that look at the verbal

predicate-argument structure.

4.3 Argument Identification for Implicit Connectives

As discussed briefly in Section 2.3, Version 2.0 of the PDTB contains annotations for

implicit connectives. Frequently, discourse relations are not realized with explicit dis-

course connectives, but rather must be inferred by the reader. In general, the arguments

of such relations may reside anywhere in the discourse [Wolf & Gibson, 2005], possibly

at opposite ends of a document. A class of such relations, however, parallels the relations

exposed by explicit connectives - namely relations between arguments in adjacent sen-

tences that could be realized by inserting a discourse connective phrase at the beginning

of the second sentence, as in:
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(20) In July, the Environmental Protection Agency imposed a gradual ban on virtually

all uses of asbestos. Implicit= As a Result By 1997, almost all remaining uses

of cancer-causing asbestos will be outlawed.

In the PDTB, the Arg1 must reside in a prior sentence to the Arg2, though in general

it may consist of multiple sentences and/or not the immediately preceding sentence. For

practical reasons, however, both arguments must reside within the same paragraph. Note

also that the arguments need not be entire sentences, but may be clausal complements,

subordinating clauses or adjuncts just as with explicit discourse connectives. Below are

a couple of examples illustrating these types of cases.

(21) According to the Audit Bureau of Circulations, Time, the largest newsweekly, had

average circulation of 4,393,237, a decrease of 7.3%. Newsweek’s circulation for

the first six months of 1989 was 3,288,453, flat from the same period last year.

Implicit = And U.S. News’ circulation in the same time was 2,303,328, down

2.6%.

(22) Judge Curry ordered the refunds to begin Feb 1. and said that he wouldn’t enter-

tain any appeals or other attempts to block his order by Commonwealth Edison.

Implicit= In other words “The refund pool... may not be held hostage through

another round of appeals, ” Judge Curry said.

Besides implicit connectives, in some cases it was observed by the PDTB annota-

tors that there was no clear discourse relation between adjacent sentence units. Such
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instances are annotated with the label NoRel (with the two arguments in these cases

always consisting of full sentences adjacent to each other). In some cases, annotators

found alternative lexicalizations of discourse connectives, such as:

(23) In many other instances, there is almost no difference between the real test and

Learning Materials. AltLex = What’s more, the test and Learning Materials

are both produced by the same company ...

Finally, in a large number of sentence pairs there was a coherence relation between

pairs of adjacent sentences where the arguments of such a relation were not abstract

objects, but entities. These were assigned the label EntRel as in the following example:

(24) John R. Stevens, 49 years old, was named senior executive vice president and chief

operating officer, both new positions. EntRel He will continue to report to

Donald Pardus, president and chief executive officer.

Identifying the arguments of implicit connectives can be carried out in the same

manner as was done for explicit connectives. The only difference is that there isn’t a

particular phrase associated with the implicit connective. One approach would be to

simply add the implicit connective to the discourse, just prior to the first word of each

sentence and connect it to the sentence’s root word using an existing or, perhaps, special

dependency link type.

An alternative is to designate a particular word within a sentence as a proxy for

the implicit connective. We have taken this approach and have designated the final
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punctuation within a sentence as the proxy for the implicit connective. This is done

purely in order to coerce the task of identifying the arguments of implicit connectives

into the same problem structure as for identifying arguments of explicit connectives. The

final punctuation marker also has the advantage of always linking to the root word of the

sentence. Syntactically it is similar to sentence initial connectives such as But or And

which are linked via a Conj dependency link to the root word of the sentence, whereas

final punctuation is linked to the root via a P link.

Results are shown in Table 4.6 using the same set of final features as was used

for argument identification of explicit connectives. Interestingly, the overall connective

accuracy is nearly identical to that for identifying explicit connectives. However, the Arg2

results are considerably worse. Another observation from the table is that the Arg1 and

Arg2 independent argument accuracies are quite comparable to the re-ranker, but the

re-ranking model has a a considerably higher Conn accuracy. This demonstrates clearly

the advantage the re-ranking approach has for ensuring consistency between argument

pairs, while not necessarily improving Arg1 or Arg2 individually across the test set.

While the results here for implicit connectives are roughly equal to the results for

explicit connectives, the results in the case of implicits may in fact be better since there is

more inter-annotator disagreement with regard to argument spans for implicit connectives.

Prasad et al. [2008] indicate that exact match agreement was 90.2% for the arguments

(both Arg1 and Arg2) of explicit connectives but only 85.1% for implicit connectives.

While identification of the lexical head of the arguments would certainly have higher
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Accuracy

System Arg1 Arg2 Conn

Indep. ArgID 82.1 87.5 72.9

Joint ArgID 82.7 87.1 75.1

Table 4.6: Results for identifying the arguments of Implicit, AltLex, NoRel, and EntRel

connectives.

agreement, it seems likely that identifying the argument heads of implicit connectives is

at least as difficult as identifying the argument heads for explicit connectives.

It’s worth noting that these results are not too different from the results obtained at

identifying the arguments of explicit coordinating connectives shown in Table 4.4. This

correspondence seems intuitive since the implicit relations are, essentially, coordinating-

type relations. Implicit relations introduce some added difficulty in that their arguments

lie in difference sentences, which may explain the results for implicit connectives be-

ing slightly lower than for explicit coordinating connectives, which have a fair number

of sentence-medial coordinating connectives where both arguments reside in the same

sentence.

4.3.1 Identifying Both Explicit and Implicit Connectives with a Single

Model

Explicit and implicit connectives are qualitatively different; though, as mentioned, im-

plicit connectives might be viewed as “hidden” sentence initial coordinating connectives.

A natural question that arises is whether a single model that identifies arguments for

both connective types performs better than separate models for implicit and explicit con-
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Accuracy

System Arg1 Arg2 Conn

Indep. ArgID 79.0 90.9 72.7

Joint ArgID 80.0 90.2 74.8

Table 4.7: Results for identifying the arguments both explicit and implicit connectives

(including AltLex, NoRel and EntRel) relations.

nectives. A single model may be able to capture some generalizations across the two

connective types. For example, some of the features look at attribution or consider the

compatibility of the predicate-argument structure for the two discourse arguments; we

might expect such features to generalize well across the arguments of both implicit and

explicit connectives. On the other hand, separate models have the potential to provide

more discriminative power for cases where the statistics are different across the two con-

nective types.

Using the same set of features as for explicit and implicit connectives separately, the

results using a single model for both connective types are shown in Table 4.7. The re-

ranking model identifies both arguments correctly for 74.8% of the connectives, which

is slightly below the combined accuracies for the two separate models that identify the

arguments correctly for 75.3% of the connectives.
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Chapter 5

Discourse Parsing

In this chapter we examine the full discourse parsing task which in the context of this

dissertation involves identifying discourse connectives as well as their two arguments

according to the Penn Discourse Treebank. First, we examine the task of identifying

discourse connectives and their arguments separately and then propose a joint model for

identifying connectives and their arguments. The joint model is a natural extension of the

re-ranking model used for identifying argument pairs described in the previous chapter.

5.1 Discourse Connectives

In this section we examine the problem of determining whether a potential discourse

connective word or phrase is, in fact, acting as a discourse connective. Many connective

words/phrases can act as discourse connectives or serve in a different capacity depending

on the context. The simplest example of this involves the connective and which can serve
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to coordinate two clauses (and thus abstract objects):

(25) John called Bill with news and he did not take it well.

or two simple noun phrases:

(26) The man and the tiger faced each other in the ring.

The task of identifying connectives is further complicated due to some particulars of

the annotation scheme used for the PDTB. The first issue has to due with the requirement

that arguments for connectives be abstract objects. This is a semantic distinction, not

a syntactic one. An abstract object, according to the PDTB guidelines, is generally

any clause or VP within VP coordination, though it may also be a nominalization or

pronominal reference to an event. In only two cases are nominalizations allowed to

serve as arguments to discourse connectives. The first involves a nominalization with an

“extensional reading”. Below is an example from the PDTB annotation manual [Prasad

et al., 2006].

(27) .. and many are hoping for major new liberalizations if he is returned firmly to

power.

The above Arg1 can be read as “that there will be liberalizations”. The second case

is exemplified with:

(28) .. the court permitted resurrection of such laws, if they meet certain procedural

requirements.
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In this case, the nominalization is clearly derivable from an equivalent verb phrase -

e.g. “such laws to be resurrected”.

The second issue complicating identification of discourse connectives is that coor-

dinating conjunctions within VP coordinations are not annotated. This makes the task

somewhat more difficult than it might be otherwise since VP coordination surface con-

structions are similar to clausal coordination.

The important point here is that in order to determine whether a phrase is acting as

a discourse connective, it may require examining the potential arguments of that phrase.

This indicates that the problem of identifying discourse connectives and their arguments

are very much co-dependent. An analogous situation can be found in co-reference where

the problems of identifying the referent of an anaphor and determining the anaphoricity

of a potential anaphor are co-dependent. [Denis & Baldridge, 2007].

5.2 Identifying Discourse Connectives

The first stage in identifying discourse connectives is to select a set of candidate discourse

expressions. Using the training data sections we set aside (WSJ Sections 02-21), we

compiled a lexicon of potential discourse connective phrases. As shown in Knott [1996],

the set of valid discourse connective expressions is unbounded when considering adverbial

modifications of the connectives. Accordingly, we remove such adverbial modifiers from

the connective lexicon. For example, the connective phrase only because is removed as it

is compositional. Multi-word connectives such as in addition or on the contrary, however,
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are non-compositional and remain as distinct entries in the lexicon. In a few cases, one

phrase may be a substring of another. For example, as is a valid connective on its own,

but also forms part of other connective phrases such as as a result and as though.

Given the lexicon of connectives, candidate connectives are identified by simply scan-

ning an input text for all phrases up to length four (the longest connective phrase in the

lexicon) and creating candidate phrases from the longest match against the lexicon.

The final step performed when identifying candidate discourse phrases is to designate

the head word of the phrase. The head-word is defined as the left-most preposition if

one is present. Otherwise, the head word is the right-most word in the phrase.

We describe two approaches to identifying connectives based on their syntactic con-

text, one based on syntactic constituency structure and another on dependency structure.

5.2.1 Constituency-based Features for Connective Identification

We found a relatively simple set of features to be quite effective at identifying whether

a phrase was, in fact, acting in a discourse capacity. These features make use of the

constituent parse tree as well as properties of the candidate connective itself.

The features include:

Connective Features The entire connective phrase as well as the connective type: coor-

dinating, subordinating or adverbial.

Path Features For a connective head word, n0, let the sequence of non-terminals path =

n1 ≺ ... ≺ nm denote the non-terminals that dominate n0, where n0 ≺ n1 . The
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path features introduced consist of n1, n2, n3 as well as the bi-grams n1n2 and

n2n3 and the trigram n1n2n3. We also included the entire collapsed path from n0

to nm - i.e. the path where sequences of the same non-terminal label are collapsed

to a single non-terminal.

Syntactic Context Features These include:

• SimpleNP True if the first NP appears in path before the first VP and an

SBAR doesn’t appear in path.

• ComplexNP True if the first NP appears in path before the first VP, and an

SBAR appears before the first NP.

• VPCoord True if two or more of the sister nodes to n1 are VPs.

• SOnly True if path contains no VPs or NPs.

• VPBeforeNP True if the first VP appears before the first NP in path

• SBAROnly True if path contains no VPs or NPs, but contains an SBAR

Conjunctive Features A final set of features involved conjunctive predicates of the con-

nective phrase and connective type together with various path features. Specifi-

cally, we included the features of the cross product of: (connective type, connective

phrase) ⊗ (n2, n1n2, n2n3).
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5.2.2 Dependency-based Features

A corresponding set of dependency-based features was used to identify discourse con-

nectives. These include:

Connective Features As above for the constituent-based features.

Contextual Features We used the previous word; the previous part-of-speech; the con-

nective phrase and previous word; and the connective phrase and previous part-of-

speech. Similar bi-grams were used for the subsequent word and part-of-speech.

Syntactic Features These features involve properties of the parts-of-speech for various

siblings of the candidate connective within the dependency graph. These include:

1) part-of-speech triple including the connective part-of-speech, its parent’s part-

of-speech and the sibling’s part-of-speech, 2) the part-of-speech triple and the de-

pendency link type from the parent to the sibling, 3) the connective part-of-speech,

parent part-of-speech and the link type to the sibling (without part-of-speech) 4)

same as (3) but coarse parts-of-speech used (e.g. NN∗ ⇒ N , V ∗ ⇒ V ).

Clause Detection Features Whether the parent of the connective has a syntactic subject

and/or whether a sibling of the connective has a syntactic subject.

The task is more naturally modeled by a constituent-based syntactic analysis since

clauses are identified explicitly. This is important since coordinating conjunctions within

VP-coordination are not (supposed to be) annotated. Identifying whether a potential

81



CHAPTER 5. DISCOURSE PARSING

Evaluation Data

Constituent Dependency Both

Rec Prec F1 Rec Prec F1 Rec Prec F1

Coord 75.20 96.83 84.65 73.16 97.80 83.70 74.18 97.57 84.28

Subord 90.84 97.44 94.02 97.07 98.14 98.06 96.88 97.96 97.42

Adv 96.25 98.71 97.46 97.32 99.09 98.20 96.96 99.09 98.01

Overall 87.94 97.77 92.59 89.83 98.41 93.92 89.96 98.29 93.94

Development Data

Constituent Dependency Both

Rec Prec F1 Rec Prec F1 Rec Prec F1

Coord 94.21 95.48 94.84 91.81 96.63 94.16 92.17 96.64 94.35

Subord 92.39 97.77 92.00 96.14 98.09 97.11 95.90 97.85 96.86

Adv 95.73 98.44 97.07 96.69 98.87 97.77 96.55 99.01 97.76

Overall 93.97 97.39 95.65 95.19 97.98 96.56 95.14 97.93 96.51

Table 5.1: Overall and per connective type accuracies for the task of identifying discourse

connectives using constituent-based and dependency-based features.

argument for a coordinating conjunction is an actual clause is less straightforward with a

dependency analysis.

Using the above features, we trained a binary Maximum Entropy (logistic regression)

classifier to determine for each candidate discourse connective phrase whether or not

the phrase is acting as a discourse predicate as determined by the PDTB annotation

scheme. Maximum Entropy classifiers typically employ a Gaussian prior penalty over the

parameters to avoid overfitting. We tuned the value for the Gaussian prior to 1.0 based

on performance observations on the development data set.

5.2.3 Results and Analysis

Table 5.1 provides results at identifying discourse connectives using the constituent-
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based features, the dependency-based features and their union. The constituent-based

features have a natural tendency to do a better job of identifying coordinating con-

nectives. This is due to the fact that the distinction between clausal coordination and

VP-coordination is articulated clearly in the phrase-structure. Determining whether the

conjuncts of a coordinating connective are clauses is not as straightforward using a depen-

dency representation, hence the heuristic features above that attempt to identify whether

the potential VP arguments of the connective have an external argument (via the SBJ

link).

Another observation from these results is that recall for coordinating connectives is

much lower on the evaluation data than on the development data. This appears to be due

to coordinating connectives within VP-coordination appearing frequently as discourse

predicates in Section 24, whereas according to the PDTB 2.0 guidelines such connectives

should not be annotated.

It may be surprising that the accuracy numbers are not higher. There appear to be a

few sources of difficulty: 1) inconsistent annotation of coordinating connectives within

VP coordination - sometimes these are annotated and other times not; 2) some difficulties

in identifying multiple adjacent discourse connectives such as “And so” or “But then”; and

3) difficulties with connectives whose arguments are nominalizations. It remains unclear

how well humans perform/agree on this task. The results here for identifying discourse

connectives are higher than those found in Litman [1996] in which the error rate remained

above 10%. However, the results are not directly comparable due to different guidelines
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about what constitutes a discourse connective as well as different data sets.

5.3 Joint Connective and Argument Identification

Having presented statistical models for 1) identifying discourse connectives and 2) iden-

tifying the arguments of discourse connectives, in this section we visit the full discourse

parsing problem using a joint statistical model to identify discourse connectives and their

arguments in a single step.

There are two primary motivations for taking this approach:

1. Determining whether a potential connective phrase is, in fact, acting in a discourse

capacity in some cases requires identifying what its arguments would be. More

specifically, only abstract objects may serve as arguments; further, not all nom-

inalizations are allowed to serve as arguments even if they are, in fact, abstract

objects.

2. In general, one would prefer a system to fail to recognize a relation (i.e. a connective

and its arguments) altogether rather than to posit a spurious relation. The former

amounts to a recall error whereas the latter introduces both a recall and precision

error. Accordingly, if there is great uncertainty about what the arguments of a

connective are, it may be preferable to “punt” on the connective altogether even

when there is positive evidence for the connective acting in a discourse capacity.
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5.3.1 Model Overview

The joint model is a natural extension of the argument identification re-ranking model

discussed in Chapters 3 and 4 — cf. Equation 4.1 It makes two primary additions.

First, rather than a ranking instance for each true discourse connective (according to

the gold-standard), there is now a ranking instance for each candidate discourse phrase.

The second change is that for each ranking instance, in addition to the top N argument

pairs as determined by GEN ′(π) via the independent local models, there is one additional

outcome Null indicating that this candidate connective phrase is not acting as a discourse

connective.

The re-ranking model is formalized below in Equation 5.1.

P (〈αi, βj〉|π, x) =
exp (

∑

k λkfk(〈αi, βj〉, π, x))
∑

αi,βj∈GEN ′(π)∪Null exp (
∑

k λkfk(〈αi, βj〉, π, x))
(5.1)

where Null indicates the outcome associated with the connective not being a discourse

connective. This additional outcome event includes as features the same exact features as

derived for this instance using the connective identification classifier (cf. Section 5.1).

The ability for the model to accommodate different features for different outcomes is

a particularly strong advantage of the log-linear ranking model. The features are non-

factored in that the choice of features is not only dependent on the observed data, but

also on the predicted or dependent variable.

As an example of this, consider the task of part-of-speech tagging — i.e, assigning a

part-of-speech to each word in a sentence. This task can be formulated as a classification
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problem where there are N classes, one for each part-of-speech and each word is a

classification instance. Typically, with a multinomial (i.e., N -way) classifier, the same

features are used over all the different outcomes. For example, if one of the features is to

consider the last 2 characters of the word, this feature is used for all N outcomes. This

treatment of features is very much common-place within supervised learning, including

decision trees, neural networks, Bayesian modeling, Maximum Entropy modeling, etc.

Within a ranking model (or any model incorporating non-factored feature functions),

however, it would be possible to only consider the aforementioned feature for some

subset of the class outcomes. For example, for all verb parts-of-speech classes the last

two characters could be used as features, while for noun classes, the last four characters

could be used. As different features may have greater discriminative power for different

sub-sets of the class labels, such a model provides more flexibility and potential for better

classification accuracy.

An additional property of ranking, non-factored model formulations is that they appear

to be more robust to data skew. For example identifying the arguments of a single

connective could be carried out using a binary classifier that considers each candidate

argument and labels each candidate as Yes or No. The candidate that receives the highest

score for Yes could be selected as the argument using probability for probabilistic models

such as Maximum Entropy or distance from the margin for margin-based classifiers like

Support Vector Machines to assign a score. When training such a model, however, for

each connective there may be many candidate arguments, but only one correct argument
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resulting in many instances labeled No and considerably fewer labeled Yes. A large skew

in the class distribution is known to cause problems for machine learning methods.

5.3.2 Results

We report results here for the joint connective and argument identification system de-

scribed above. It is interesting to compare this system with a two-stage system that 1)

identifies discourse connectives and 2) identifies the two arguments for the identified

connectives.

The primary metric used to evaluate these systems is Predicate-ID which is the re-

call, precision and balanced F-measure for the task of identifying connectives and their

two arguments - i.e., the entire predicate. A recall error is introduced if a discourse

connective is not identified; a precision error is introduced for each spurious discourse

connective; finally, if a connective is properly identified, but one or both of its arguments

are incorrectly identified, this results in both a precision and a recall error.

Two other metrics are Connective-ID which is the precision, recall and F-measure for

identifying only the connectives (as in Table 5.1) and the Arg ID Precision which shows

the accuracies for identifying arguments for just the correctly identified connectives.

Predicate-ID and Connective-ID results on the task of jointly identifying connec-

tives and their arguments are shown in Table 5.2. Additionally, the table shows the

Argument-ID Precision which is the argument identification accuracies for those connec-

tives correctly identified. As the table indicates, the Full Joint model improves the overall
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Evaluation Data

Connective-ID Predicate-ID ArgID Precision

Rec Prec F1 Rec Prec F1 Arg1 Arg2 Conn

Cascade+Indep 89.83 98.41 93.92 62.96 69.99 66.29 75.2 94.1 71.6

Cascade+Joint 89.83 98.41 93.92 65.22 72.51 68.67 76.3 95.2 74.1

Full Joint 89.52 98.21 93.66 67.23 73.76 70.34 77.6 95.0 75.1

Development Data

Connective-ID Predicate-ID ArgID Precision

Rec Prec F1 Rec Prec F1 Arg1 Arg2 Conn

Cascade+Indep 95.19 97.98 96.56 70.15 72.70 71.40 77.2 95.5 74.7

Cascade+Joint 95.19 97.98 96.56 72.26 74.87 73.54 78.9 95.1 76.9

Full Joint 94.82 97.32 96.05 73.56 75.50 74.52 79.5 94.9 77.6

Table 5.2: Results comparing independent (explicit) connective and independent argument

identification (Cascade+Indep), independent connective and joint argument identification

(Cascade+Joint) and simultaneous identification of both arguments and the connective

(Full Joint) over the DevTest data (WSJ sections 00,01 and 22) and the Eval data (WSJ

sections 23 and 24).

Predicate-ID score over a Cascade+Joint which first identifies the connectives and then

identifies the two arguments for each identified connective, jointly. On the Eval Data,

the Predicate-ID F-measure error reductions of the Full Joint over the Cascade+Indep

model, which identifies arguments separately as well as the connective, are on the order

of 12% with a comparable error reduction on the Development Data. Given that the Full

Joint model doesn’t improve Connective-ID performance, it seems fair to conclude that

Full Joint model does a better job of selecting connectives for which it is more likely to

be able to identify the arguments correctly. This is reflected in the higher Argument-ID

precision scores for the Full Joint model.
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5.4 Sequence Re-Ranking

In this section, we develop a discourse parsing model that takes yet more global infor-

mation into account. Specifically, we consider the sequence of discourse connectives and

identify the arguments for the sequence of connectives jointly. As is frequent in sequence

modeling, we make the Markov assumption and allow the probability distribution over

argument pairs for a connective πi at position i to be conditionally independent of the

argument pairs πj where j < i − 1 and j > i + 1 given πi−1 and πi+1. We utilize a

general form of Conditional Random Fields to capture these Markov dependencies while

allowing for rich non-independent features.

5.4.1 Background on Random Fields

Markov Random Fields (MRFs) are undirected graphical models in which each random

variable in a complex probability distribution is represented as a vertex in a graph. Two

vertices are connected in the graph if they are directly dependent. 1 Conditional Random

Fields (CRFs) are a common special case of MRFs in which some of the variables are

given (i.e. fixed or observed) and will always be conditioned upon.

Let Y be a set of output variables and X be a set of observed variables with y and x

denoting particular assignments to those variable sets. In their most general form, CRFs

model the conditional distribution of a set of output variables y given a set of observed

1More precisely, two variables xi and xj are not connected if and only if there exists a set of random

variables Y , where xk /∈ Y, xj /∈ Y s.t. xi and xj are conditionally independent of each other given Y .

Note that Y may be the empty set.
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variables x as:

p(y|x) =
1

ZX

∏

A∈G

ψA(yA,xA) (5.2)

where G is a set of subsets A ⊂ X ∪ Y with xA denoting an assignment to the

variables A ∩ X and yA denoting an assignment to the variables in A ∩ Y . Each ψA

is a non-negative function (called a factor or compatibility function) over the subset of

variables A. The term ZX above is known as the partition function and is computed by

marginalizing over all possible assignments to Y and X:

ZX =
∑

y,x

∏

ψA∈G

ψA(yA,xA) (5.3)

Frequently, the compatibility functions take on an exponential form:

ψA(xA,yA) = exp

(

∑

k

λkfk(xA,yA)

)

for a parameter vector Λ = {λi} and corresponding feature functions, fk.

The graphical structure of CRFs may be arbitrary, in general. Many instantiations of

CRFs, however, restrict the graphical structure to linear chain-structures. Such a restricted

structure offers the possibility for more efficient statistical inference in the model while

remaining useful for a wide variety of applications.

Sequence structured Conditional Random Fields(CRFs) [Lafferty et al., 2001] have

become one of the primary tools for modeling a wide-range of phenomena in natural

language, including part-of-speech tagging [Wellner & Vilain, 2006], chunking, named
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entity tagging, string-similarity [Wellner et al., 2005; McCallum et al., 2005], citation

extraction [Peng & McCallum, 2004], word-alignment [Blunsom & Cohn, 2006] and a

variety of other applications.

Sequence structured CRFs model the conditional distribution of a sequence of labels,

y given a sequence of observations, x as:

p(y|x) =
1

Zx

exp

(

∑

i

∑

k

λkfk(yi−1, yi,x, i)

)

(5.4)

where i ranges over the positions in the sequence, k ranges over the model’s features,

the λk are the model parameters and the fk are real-valued feature functions over an

output variable (i.e., a label) yi, its predecessor, yi−1 the observation sequence, x and the

index i.

The normalization term, Zx sums over over all possible labelings of the sequence:

Zx =
∑

y′

exp

(

∑

i

∑

k

λkfk(y
′
i−1, y

′
i,x, i)

)

5.4.2 CRFs for Sequence Ranking

CRFs are standardly employed to label sequences with a small, fixed class of labels, such

as part-of-speech tags (e.g., dt, nn, etc.) or states that encode a set of entity types (e.g.,

person, organization, etc.). For such tasks with fixed categories, the features of a CRF

are often factored as: fk(yi−1, yi,x, i) = p(x, i)q(yi−1, yi) where p is a predicate over

the observation sequence and current position only and q is a predicate over the output
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label pair, yi−1, yi. With such a factoring, it is natural to view a feature as correlating a

predicate of the observation sequence (at position i) with a particular label or label pair as

defined by q. In particular, the correlation will be “triggered” only when q(yi−1, yi) = 1.

Thus, for any given property of the observations, there may be multiple features in the

model associating this predicate with a different labels or label pairs, each of which will

receive a different learned weight. For example, let p(x, i) = 1 if and only if “the word

is man at position i and the at position i − 1”. For part-of-speech tagging2 , then, with

the above predicate p, we might expect the weight for

fk(yi−1 = dt, yi = nn,x, i) = p(x, i)q(yi−1 = dt, it = nn)

to be higher than the weight for the feature:

fk(yi−1 = vbd, yi = in,x, i) = p(x, i)q(yi−1 = vb, yi = in)

5.4.3 Non-Factored Feature Functions: An Example from Word Align-

ment

While the above feature factorization is typical for most applications of CRFs, there is no

requirement that the features predicate over the value of an output variable assignment.

More general features could view the output variable assignment as an index (or pointer)

to some additional part of the problem structure. Feature functions of this type can then

2dt denotes a determiner (e.g. “the”), nn denotes a common noun, vbd denotes a past-tense verb and

in denotes a preposition.
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consist of predicates over the referenced structure (along with the observation sequence,

x and position i). A simple, but powerful, example of this view of features is the use of

CRFs for discriminative word-alignment [Blunsom & Cohn, 2006].

The word-alignment problem (or sequence-alignment problem, more generally) is

an important component problem in statistical machine translation (SMT) and other ar-

eas. For SMT, word alignment models are used to align the words of sentence-aligned

bi-lingual parallel corpora. Statistics (such as word/phrase translation tables) are then

gathered over the predicted word-aligned data and used for decoding (translating) source

language sentences into the target language.

Given a foreign language sentence s (known as the source) and an English (or target)

language sentence t, the word-alignment problem can be formulated in CRFs to model

many-to-one alignments, where each source word is aligned with zero or one target words.

Given s and t, an alignment, a is a sequence of indices where ai = j indicates that the

source word at position i, si is aligned with the target word at position j, tj. When

ai = null the source word si is not aligned to any target word.

The following CRF thus defines the conditional probability of an alignment given

source and target sentences:

p(a|s, t) =
1

Zs,t

exp

(

∑

i

∑

k

λkfk(ai−1, ai, s, t, i)

)

(5.5)

As the values of the output variables (i.e. the “labels”) for the alignment CRF are

simply word-indices, they do not denote a category and cannot be meaningfully compared.
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Further, each sentence has a different number of possible output variable values as the

number of possible index values is equal to the length of the source sentence. Features

that predicate directly on the output variable values are therefore entirely inappropriate.

Instead, features are defined as predicates over the source-target word match implied by

the output variable value. An example feature where the source language is Norwegian

and the target language English might be:

fk(ai−1, ai, s, t, i) =

{

1 if sai
= ‘on’ ∧ti = ‘på’

0 otherwise

5.4.4 CRFs for Sequential Re-Ranking

In this section, we use the non-factored feature representation described above to arrive at

a CRF model for sequential re-ranking. Before doing so, it is worth noting that the non-

factored, non output-predicating features (described above) offer a very flexible modeling

framework that extends beyond re-ranking.

Non-stationary Variable CRFs and Non-Factored Feature Functions

Non-factored features allow for modeling tasks involving the selection of a single outcome

out of a set of possible outcomes (at each time-step in the sequence), but where the set

of outcomes is different (and possibly of varying size) at each time-step. This flexibility

is perhaps best illustrated with a concrete problem.

Consider the task of disambiguating mentions of entities in a body of text by mapping

them to some sort of canonical unique identifier. This task could be word sense disam-
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biguation (in which the unique identifiers would correspond to word senses) or a task

such as gazetteering (where the identifiers would correspond to entries in a gazetteer).

Each such mention will have a different set of potential unique identifiers so there is not

fixed alphabet of output labels. Moreover, different mentions may very well have different

numbers of possible identifiers.

Such models contain what might best be termed index multinomial variables. The

variables are simply serving as indices to possible outcomes. The nature of the outcomes

is determined entirely by the choice of features. In sequential models, when different

numbers of outcomes are possible at each time step, the model is non-stationary3 with

respect to the type of random variable.

Sequential Ranking CRFs

We first describe Sequential Re-Ranking CRFs with a general notation, and then formalize

the models for sequentially re-ranking argument pairs of discourse connectives.

Let x = x1, ..., x|T | be a sequence of observations. Assume a function which generates

an ordered set of K outputs,GENK(xt), for a particular observation xt. A sequential

re-ranking of x is a sequence of indices, y = y1, ..., yn where yt = i indicates that output

corresponding to xt is the ith element of GENK(xt). When the model is stationary with

respect to the number of outcomes (i.e. when K is fixed for all t), sequential re-ranking

CRFs are defined as:

3A sequential model is stationary when features and parameters are tied across time-steps — i.e., their

values are independent of the position in the sequence.

95



CHAPTER 5. DISCOURSE PARSING

π(1) π(2) . . . . . π(n)

Arg1 Arg2 Arg1 Arg2 Arg1 Arg2

α1 β1 α1 β1 α1 β1

α2 β2 α2 β2 α2 β2

α3 β3 α3 β3 α3 β3

... ... ... ... ... ...

αn βn αn βn αn βn

Figure 5.1: Argument re-ranking as a sequence modeling problem.

p(y|x) =
exp

(

∑|T |
t=1

∑

k fk(yt−1, yt,x, t)
)

∑

y′∈N
|T |
K

exp
(

∑|T |
t=1

∑

k fk(y
′
t−1, y

′
t,x, t)

) (5.6)

where N |T |K denotes the set of all possible index sequences of length |T | with index

values ranging from 1 to K.

5.5 Capturing Bi-Connective Argument Dependencies

5.5.1 Motivation

We propose using CRFs to identify the arguments of connectives, and to, in particular,

model dependencies between the arguments of adjacent connectives. The motivation for

this is based, in part, on established analyses that have examined the degree to which

adjacent relations overlap and interact with each other [Lee et al., 2008] [Lee et al.,

2006]. It is demonstrated, for example, that shared arguments occur 7.5% of the time

but that crossing dependencies (e.g., where the Arg1 of a connective πt occurs between
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Count

6486 α(1) π(1) β(1) α(2) π(2) β(2)

1362 α(1) π(1) β(1)/α(2) π(2) β(2)

1264 α(1) π(1) β(1) π(2) β(2) α(2)

1023 π(1) α(1) β(1) α(2) π(2) β(2)

880 α(2) α(1) π(1) β(1) π(2) β(2)

714 α(1)/α(2) π(1) β(1) π(2) β(2)

341 π(1) β(1) α(1)/α(2) π(2) β(2)

316 α(1) π(1) π(2) β(2) α(2)/β(1)

Table 5.3: Histogram indicating the relative order of adjacent explicit discourse connective

pairs and their arguments across the entire PDTB corpus. The two adjacent connectives

are denoted π(1) and π(2) with their arguments indexed accordingly. Shared arguments

are denoted with a slash (i.e., ’/’). Only the 8 most frequent patterns are included here.

a connective πt−1 and the Arg2 of πt−1) occur very infrequently (less than 1%) among

adjacent connectives4.

Table 5.3 provides a histogram of how adjacent discourse connectives and their argu-

ments are ordered in the text throughout the PDTB. The histogram makes clear that there

is considerable interaction among the arguments of adjacent connectives, the statistics of

which could be utilized to constrain the potential arguments of discourse connectives. In

particular, shared arguments occur quite frequently, such as in the following sentence :

(29) When 1 demand is
1,2 stronger than suppliers can handle and 2 delivery times

lengthen, prices tend2 to rise.

The Arg2 for When is shared with the Arg2 for and5.

4Counting crossing dependencies among non-adjacent connectives may result in higher frequencies of

interleaved arguments.
5It is worth noting here that interaction among lexical heads is different than interaction among argument

spans. For example, examining the patterns of heads conflates the case where there is a shared argument

that is a matrix clause and the case where an argument for one connective subsumes both arguments of a

different connective.
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Crossing dependencies rarely occur among adjacent connectives. One such case is

the following example taken from Lee et al. [2006]:

(30) Mr. Meek said1 the evidence pointed2 to wrongdoing by Mr. Keating “and others,”

although 1 he did1n’t allege any specific violation. Richard Newsom, a California

state official who last year examined Lincoln’s parent, American Continental Corp.,

said he also 2 saw2 evidence that crimes had been committed.

The Arg1 for the connective also, headed by ’pointed’ appears between the connective

although and its Arg1 headed by ’said’.

Since crossing dependencies are rare, we might expect a model that captures depen-

dencies among the arguments of adjacent connectives to assign lower probabilities to such

configurations.

5.5.2 A Conditional Sequence Model for Identifying Arguments

The approach taken for modeling these dependencies based on adjacency can be viewed

as a generalization of the joint argument identification system described in Section 5.3.

Rather than re-ranking the arguments for each connective independently, the CRF allows

for arguments to be selected in a co-dependent manner among adjacent connectives.

Instead of having a fixed set of output labels as with a standard CRF formulation, however,

here the output value at each position in the sequence corresponds to an index that refers

to a particular argument pair in the set of candidate argument pairs for the connective at
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that position. More specifically, the feature functions in the model are non-factored —

they do not predicate separately over the output variable assignments and the observations.

Let ~π = π1, ..., π|T | be a sequence of connectives within a document. Assume a

function which generates a candidate set of K argument pairs, GK(πt), for a particular

connective πt. Let ~〈α, β〉 = 〈α, β〉(1), ..., 〈α, β〉(|T |) denote a sequence of argument pairs,

one pair for each connective. The probability of such a sequence is defined as:

p( ~〈α, β〉|~π) =
1

Z~π
exp





|T |
∑

t=1

∑

k

λkfk(〈α, β〉
(t−1), 〈α, β〉(t), ~π, t)



 (5.7)

where the partition function, Zπ, sums over all possible sequences of argument pairs

for each connective:

Z~π =
∑

〈α,β〉(t−1)

∈GK(πt−1)

∑

〈α,β〉(t)

∈GK(πt)

exp





|T |
∑

t=1

∑

k

λkfk(〈α, β〉
(t−1), 〈α, β〉(t), ~π, t)



 (5.8)

The main strength of the above formulation is that the feature functions, fk, now have

access to the candidate argument pairs at position t and the candidate pairs at t − 1.

Figure 5.1 provides an illustration of this. Additionally, feature functions have access to

the connectives themselves at adjacent time steps within the sequence (i.e., πt−1 and πt).

Accordingly, features can capture properties and relations between “nearby” arguments

and connectives. Back in Example 29, features can capture, for example, that the Arg2

of the first connective in the discourse, When, is the same as the Arg1 of the subsequent

connective, and.
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5.5.3 Inference and Parameter Estimation

For any probabilistic model, two key questions are: 1) how can the model be used to

make inferences (or predictions) given some observations, and 2) how can the model

parameters be estimated from the data. In the context of identifying discourse arguments,

the goal of inference is to solve:

arg max
~〈α,β〉

(p( ~〈α, β〉|~π) = arg max
~〈α,β〉





|T |
∑

t=1

∑

k

λkfk(〈α, β〉
(t−1), 〈α, β〉(t), ~π, t)



 (5.9)

This can be carried out with a slight variation of the Viterbi algorithm to identify

the most likely sequence of argument pairs. The Viterbi algorithm provides a solution

in time quadratic in the number of states and linear in the data size despite the fact that

there are an exponential number of such sequences.

The problem of estimating the parameters of CRFs has received considerable atten-

tion over the last few years, not least of which is because training these models is often

computationally expensive. Discriminative, conditional learning is generally more com-

plicated than with generative models which frequently estimate parameters by maximum

likelihood estimation that can be achieved by simply counting occurrences of events in the

training data (and optionally smoothing). For conditional models, the optional parameters

according to the model can not be identified in closed form and must be estimated in an

iterative fashion by repeatedly carrying out inference. That is, at each iteration inference

is applied to determine the difference between the model’s predictions and the training
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data labels (along with the expected values of the various features) and this difference is

used to update the parameters arriving at a model better able to predict the training data.

Most forms of parameters estimation employ batch learning whereby each iteration

involves updating parameters only after performing inference over the entire data set.

More recently, online learning methods in the form of stochastic gradient descent have

gained attention as they offer much faster convergence rates. Many of these methods, such

as Voted (or Averaged) Perceptron [Collins, 2002], however, tend to produce slightly less

accurate models [Sha & Pereira, 2003] and are also very sensitive to the learning rate

(speed at which parameters are adjusted).

Recently, Huang et al. [2007] have proposed a robust method for dynamically ad-

justing the learning rate separately for each parameter that works very well in practice.

The method, called Periodic Step-size Adaptation (PSA), works by keeping a history of

the degree to which adjustments to the parameter values for a particular parameter have

fluctuated over the last n updates. Parameters that have fluctuated more will have their

learning rates slowed down more rapidly while parameters that appear to be “headed in

one direction” will maintain higher learning rates for a longer period of time.

In this dissertation, we use online PSA training throughout for estimating the param-

eters of CRFs. In many cases, the number of parameters is well into the millions and

there are tens of or hundreds of thousands of data instances. Accordingly, conventional,

batch learning methods take considerable time (from days to even weeks) to converge,

depending on the task. Furthermore, PSA training seems to consistently produce mod-
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els that are as accurate as those obtained with batch learning methods based on convex

optimization such as L-BFGS [Nocedal & Wright, 1999].

5.6 Results using Sequential Ranking for Argument Iden-

tification

Here we present results using the sequential ranking model to identify the arguments of

explicit, and both explicit and implicit connectives.

5.6.1 Features

The sequential ranking model makes use of all the features described thus far for selecting

arguments for each connective independently (as described in Section 4.1). In addition,

Markov features are introduced to capture bi-connective dependences. Specifically we

performed experiments with four feature classes Constraints, Patterns and Dominates

and SynPath which are predicate sets of the current connective π(t) and the previous

connective, π(t−1), along with their candidate argument pairs.

The Constraints features included a number of indicator features that checked for

whether π(t−1) and π(t) were immediately adjacent to each other in the text, whether any

of the candidate arguments for the two connectives are shared, along with a more specific

feature that indicates which arguments were shared (e.g. Arg2-Arg1 would denote that

the Arg2 of π(t−1) is shared with the Arg1 of π(t). Finally, we also introduced a feature
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when the adjacent connectives’ arguments form crossing arcs.

The Patterns features take into account the order in which the connectives and each

of their two arguments appear in the text. Re-using the shared argument example from

Section 5.5.1:

(31) When π(t−1)
demand isβ

(t−1)/α(t)
stronger than suppliers can handle and π(t)

delivery

times lengthenβ
(t)

, prices tendα
(t−1)

to rise.

The pattern would be 〈π(t−1) ≺ β(t−1)/α(t) ≺ π(t) ≺ β(t) ≺ α(t−1)〉 where α(t) and

β(t) denote the Arg1 and Arg2, respectively, of the connective at position t within the

sequence and β(t−1)/α(t) indicates that those two arguments share the same head.

The Dominates features include predicates that check for whether an argument of

π(t) syntactically dominates an argument of π(t−1) or vice-versa. In the example above

two features would fire indicating that α(t−1) dominates both α(t) and β(t).

The SynPath features include the syntactic dependency paths between all com-

binations of the arguments of adjacent connectives: α(t−1)
; α(t) , α(t−1)

; β(t),

β(t−1)
; α(t) and β(t−1)

; β(t)

5.6.2 Experiments

We performed a set of experiments to gain insight into the potential utility of these Markov

features that capture dependencies between adjacent connectives and their arguments. The

experiments look at combining these Markov features along with various subsets of the

standard (non-Markov) connective and argument features. A simpler set of non-Markov
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ConnectiveAccuracy

Feature Set None Constraints Patterns Dominates SynPath All

Base 54.36 55.76 57.35 56.00 57.12 58.63

+Intervening 63.47 63.61 64.78 64.26 65.02 65.67

+Para 65.25 65.29 66.60 66.74 67.16 67.21

+ConstParse 69.45 70.20 71.22 70.29 70.85 71.60

+DepParse 74.82 75.01 75.43 74.96 74.87 75.33

All 76.55 76.50 76.36 76.56 76.22 75.80

Avg. Reduction 0.0% 1.1% 3.6% 2.2% 3.2% 4.5%

Table 5.4: Effects on connective accuracy (i.e., the percentage of connectives with both

arguments identified correctly) using different sets of discourse Markov features with

various subsets of the original non-Markov argument selection features. Results here are

reported on the Development Data. The Avg. Reduction is the average error reduction

for the various Markov feature sets over None - i.e., no Markov features.

features allows us to see how useful the Markov features are “on their own” rather than

in addition to an already elaborate set of features. We explore sequence models over only

the explicit connectives as well as over both implicit and explicit connectives.

Explicit Connectives

Table 5.4 considers various subsets of the argument identification features (cf. Sec-

tion 4.1) along the rows with combinations of different Markov features along the columns.

A clear pattern emerges showing that modeling Markov dependencies tends to help per-

formance. However, when using all of the standard argument identification features, the

Markov features provide no additional benefits and can actually hurt performance slightly.

Looking deeper into these results we can see that the SynPath Markov features,

unsurprisingly, help considerably when the argument identification features do not in-

clude any features that make use of syntactic information. There is enough regularity
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ConnectiveAccuracy

Feature Set None Constraints Patterns Dominates SynPath All

Base 50.81 51.88 53.62 51.83 54.64 55.77

+Intervening 56.74 57.88 58.41 57.99 60.12 60.52

+Para 60.56 62.85 63.96 62.58 66.50 67.07

+ConstParse 65.05 65.83 66.20 65.61 66.48 66.59

+DepParse 75.12 75.28 75.01 75.32 75.19 75.28

All 75.79 75.93 75.64 75.90 75.82 75.82

Avg. Reduction 0.0% 2.3% 3.4% 2.2% 5.9% 6.8%

Table 5.5: Same results as in Table 5.4 but for both Explicit and Implicit connectives and

discourse relations.

between the syntactic relationships of the arguments of adjacent connectives to provide

some discriminative power for identifying arguments. However, when constituent and/or

dependency parse features are added the Markov syntactic features between arguments

may be somewhat redundant.

Another observation is that the Patterns features tend to be the most discriminative

single source of Markov features. This is important because these features do not rely on

syntactic information, but simply the natural orderings of the various arguments within

the text, and might therefore be more robust when using automatic parses, as we explore

in Chapter 7.

All Connectives

Considering all connectives in a sequence within a paragraph, both explicit and im-

plicit, results in more elements per sequence with a greater potential for discourse con-

straints and tendencies to influence argument selection. Using the same set of features

as for the sequential models considering only explicit connectives, the results for argu-
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Predicate-ID F-measure

Feature Set None Constraints Patterns Dominates SynPath All

Base 53.91 54.85 54.84 55.03 55.40 55.76

+Intervening 62.71 62.75 62.75 62.50 62.87 63.14

+Para 64.68 65.29 65.77 65.48 65.96 65.54

+ConstParse 70.93 71.14 71.80 71.31 71.50 72.17

+DepParse 74.48 74.41 74.56 74.40 74.46 74.83

All 75.31 75.35 75.16 75.33 75.52 75.28

Avg. Reduction 0.0% 0.8% 1.3% 0.9% 1.7% 2.2%

Table 5.6: Effects on Predicate ID F-measure for explicit connectives using different sets

of discourse Markov features with various subsets of the original non-Markov argument

selection features. Results here are reported on the Development Data. The Avg. Reduc-

tion is the average error reduction for the various Markov feature sets over None - i.e.,

no Markov features.

ment identification are shown in Table 5.5. In general, we can see that the accuracy

improvements due to the various sets of Markov features are stronger when considering

all connectives. This is not surprising given that the “density” of connectives is higher

and there is more opportunity for bi-connective dependencies to influence the selection

of arguments. In particular, the SynPath Markov features show a marked improvement

in increasing argument identification accuracy in comparison to modeling only explicit

discourse connectives.

5.7 Results using Sequential Ranking CRFs for Discourse

Parsing

In this section we carry out an analysis of the sequential ranking model based on CRFs

for the full discourse parsing task: connective identification and argument selection.
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Predicate-ID F-measure

Feature Set None Constraints Patterns Dominates SynPath All

Base 51.56 52.05 52.97 51.76 53.22 54.24

+Intervening 57.12 57.53 56.82 57.13 59.07 59.60

+Para 60.58 61.91 64.02 61.86 64.90 65.04

+ConstParse 68.13 68.99 68.98 68.82 69.78 70.09

+DepParse 74.46 74.23 74.34 74.23 74.29 74.44

All 75.26 74.90 75.05 75.22 75.05 75.22

Avg. Reduction 0.0% 1.0% 2.1% 0.8% 3.8% 4.8%

Table 5.7: Same results as in Table 5.6 but using for both explicit and implicit connectives.

The key difference in the model compared with the previous section is that we need

to consider all potential connectives within each paragraph and the model needs and

additional Null alternative to designate a candidate connective as not acting in a discourse

capacity. This is completely analogous to the difference between the non-sequential

ranking models in Equation 5.1 and in Equation 4.1. As with the non-sequential model,

the features associated with the Null outcome are those features used for connective

identification. Markov features related to the Null outcome include just four features: 1)

a feature capturing the case where the outcome for the connective πt−1 is Null and the

outcome for πt is not Null, 2) where the outcome for πt−1 is not Null and the outcome for

πt is, 3) where the outcomes for both πt−1 and πt are Null, and 4) where the outcomes for

both πt−1 and πt are non-Null. Exactly one of these features will fire for each consecutive

pair of potential connectives with a sequence.

Table 5.6 presents an analysis of the various contributions of Markov features for

different groups of non-Markov features for the task of identifying explicit discourse

predicates. Results in a corresponding table, Table 5.7, show results for the same set
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Evaluation Data

Connective-ID Predicate-ID ArgID Precision

Rec Prec F1 Rec Prec F1 Arg1 Arg2 Conn

Cascade+Indep 89.83 98.41 93.92 62.96 69.99 66.29 75.2 94.1 71.6

Cascade+Joint 89.83 98.41 93.92 65.22 72.51 68.67 76.3 95.2 74.1

Full Joint 89.52 98.21 93.66 67.23 73.76 70.34 77.6 95.0 75.1

Full Joint Seq 87.45 98.30 92.55 66.66 74.87 70.50 78.5 95.3 76.2

Development Data

Connective-ID Predicate-ID ArgID Precision

Rec Prec F1 Rec Prec F1 Arg1 Arg2 Conn

Cascade+Indep 95.19 97.98 96.56 70.15 72.70 71.40 77.2 95.5 74.7

Cascade+Joint 95.19 97.98 96.56 72.26 74.87 73.54 78.9 95.1 76.9

Full Joint 94.82 97.32 96.05 73.56 75.50 74.52 79.5 94.9 77.6

Full Joint Seq 93.18 97.65 95.21 73.61 77.14 75.33 80.6 96.4 79.0

Table 5.8: Recapitulation of the discourse parsing results for explicit connectives in

Table 5.2with the addition of results for identifying discourse predicates in sequence

(Full Joint Seq).

of experiments using the exact same features but for both explicit and implicit connec-

tives. As we saw with argument identification, the effect of the Markov features is most

pronounced when considering both explicit and implicit connectives, presumably due to

greater density of interaction between the arguments of nearby connectives.

5.7.1 Full Results for Discourse Parsing

The full results comparing the four different approaches for discourse parsing on

both the evaluation data and development data are summarized in Table 5.8 for explicit

connectives and in Table 5.9 for both explicit and implicit connectives.
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Evaluation Data

Connective-ID Predicate-ID ArgID Precision

Rec Prec F1 Rec Prec F1 Arg1 Arg2 Conn

Cascade+Indep 94.64 99.17 96.85 68.53 71.82 70.14 78.9 90.7 72.4

Cascade+Joint 94.64 99.17 96.85 69.73 73.07 71.36 78.9 90.0 73.7

Full Joint 94.45 99.00 96.67 70.68 74.09 72.34 79.7 90.8 74.8

Full Joint Seq 93.15 99.26 96.11 70.71 75.34 72.96 80.7 91.5 75.9

Development Data

Connective-ID Predicate-ID ArgID Precision

Rec Prec F1 Rec Prec F1 Arg1 Arg2 Conn

Cascade+Indep 97.41 98.98 98.19 71.62 72.78 72.19 79.7 91.0 73.5

Cascade+Joint 97.41 98.98 98.19 73.60 74.79 74.19 75.6 91.4 75.6

Full Joint 97.36 98.72 98.03 74.47 75.51 74.99 81.0 91.6 76.5

Full Joint Seq 96.04 98.85 97.42 74.18 76.37 75.26 81.3 92.4 77.2

Table 5.9: Discourse parsing results for both explicit and implicit connectives.

5.8 Summary

In this chapter, we have provided two novel problem formulations for parsing discourse.

The first formulation, described in Section 5.3, involves jointly identifying whether a

potential discourse connective phrase is, in fact, a discourse connective phrase along with

its two arguments. We compared this approach to first identifying discourse connec-

tives and subsequently identifying the arguments for those connectives (either jointly or

independently). The fully joint model, which identifies both arguments and the connec-

tives simultaneously, provided a 10-12% error reduction on both the development and

evaluation data over the model which identified all three elements separately.

The second formulation captures additional global information by identifying the ar-

guments for discourse connectives according to the sequence of connectives as they appear

across each paragraph. This is carried out using a sequential ranking model based on
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Conditional Random Fields with non-factored feature functions — this model is an aug-

mentation of “standard” CRFs that parallels the difference between a conditional log-linear

classifier and a log-linear ranker. Various feature sets that capture dependencies between

the arguments of adjacent discourse connectives were developed. The results made clear

that identifying the arguments of the connectives in sequence, offers the potential for

improved performance, especially when identifying the arguments of explicit and implicit

connectives within the same model. However, little improvement was made with Markov

features when the full set of non-Markov argument identification features was used. We

hypothesize that this is due to a combination of 1) a “saturated” model where the remain-

ing errors are difficult cases not likely to be remedied by incorporating Markov features,

2) the use of gold-standard parses means that there is a large number of easy cases where

arguments can be identified straightforwardly from the syntax and non-Markov features,

and 3) the relative sparsity of discourse predicates — i.e., many discourse predicates in

the PDTB have no overlap with nearby discourse predicates, especially when considering

only explicit connectives.

Nevertheless, we will see better improvements with Markov features when utilizing

automatic, rather than manual, parses in Chapter 7. We have established fairly clearly

that Markov features and the proposed sequence model are beneficial. Additional feature

engineering may be required, however, to achieve markedly better results over using a

“local” model with rich features based on gold-standard syntactic analyses.
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Dependency Parsing

Earlier chapters have demonstrated the utility syntactic dependency parsing provides to-

wards identifying the arguments of discourse connectives. So far, we have leveraged

gold-standard dependency and parses derived from the Penn Treebank for discourse pars-

ing. This chapter discusses a method for syntactic dependency parsing that again uses a

CRF-based sequential ranking model similar to that discussed in the previous chapter for

identifying the arguments of discourse connectives. Besides demonstrating the general

applicability of our sequential ranking model, a robust syntactic dependency parser is

required for fully automatic discourse parsing, which we explore in Chapter 7.

6.1 Background

Data-driven dependency parsing is an active area of research, being the subject of the

last two CoNLL Shared Tasks [Nivre et al., 2007a; Buchholtz & Marsi, 2006] and a key
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component of the most recent CoNLL Shared Task [Surdeanu et al., 2008]. Dependency

approaches to syntax benefit from extensibility across different languages due to their

being somewhat easier to specify for free-word order languages. Additionally, for many

NLP applications, a dependency representation is more appropriate or convenient than

a phrase-structure representation; or, as demonstrated in earlier chapters, offer improved

performance over constituent parses for a particular task.

Most approaches to data-driven dependency parsing fall into two camps: 1) graph-

based approaches and 2) transition-based approaches. Briefly, graph-based methods learn

a function that assigns scores to potential dependency parses for a given sentence. The

process involves searching the space of possible dependency parses for the highest-scoring

one. Scores are assigned to entire parses by decomposing the score into a sum of the

scores for each edge between governor and dependent pairs. Maximum spanning tree-

based algorithms can be used to efficiently find the maximum scoring parse tree given

these edge scores. Typically, each edge score is computed based on the features that hold

for that pair of words and the learned parameters associated with each feature. More

expressive approaches exist that allow for larger factorizations beyond simple word pairs.

For example, McDonald & Pereira [2006] provides a method to capture “second-order”

dependencies over pairs of edges that have the same parent and Carreras [2007] provides

an algorithm that considers child↔ parent and parent↔ grandparent edge-pairs.

In contrast to graph-based methods, transition-based approaches do not explore the

entire space of possible parses during training or decoding. Instead, these methods build
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up a parse incrementally by performing a sequence of actions made over a single left-to-

right pass over the words in a sentence. The approach is to train a classifier that decides

which action to perform at each stage in the process. At decoding time, these methods

generally operate using a deterministic (greedy) search in which parsing decisions are

made by a classifier based on the current state of the parse and its history. The classifier

has access to a much richer set of features than graph-based methods since it has access

to the entire partial parse that has been constructed so far. The primary disadvantage with

these approaches is that mistakes made early on can lead to a cascade of errors. This can

be ameliorated, however, by using a beam-search rather than a deterministic search.

6.2 A Sequential CRF for Dependency Parsing

This section presents our approach to dependency parsing using a CRF-based sequential

ranking approach. In the context of dependency parsing, this approach can be considered a

graph-based method. However, rather than employing maximum spanning tree algorithms

for inference, Viterbi inference is used within the context of sequential ranking.

6.2.1 Model Overview

Consider a sequence labeling problem where each word in a sentence, wi ∈ ~w, is an

observation and the corresponding label pi ∈ ~p for each word is an integer referencing

the position of the wi’s parent in the dependency graph. This structure defines a graph

where the maximum incoming edge degree is 1; the graph can be viewed as a dependency
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parse, though it may be non-projective and may include cycles.

Note that the problem structure here is essentially the same as for sequentially re-

ranking discourse argument pairs described in the previous chapter. With dependency

parsing, however, rather than selecting an argument pair at each position in a sequence

of discourse connectives, we are selecting a parent for each word in a sequence of words

constituting a sentence. The set of candidate parents consists of all the other words in the

sentence, which, of course, varies in number from sentence to sentence. This contrasts

with the discourse parsing situation in which only the top N argument pairs are ranked

at each step in the sequence of discourse connectives and N was fixed across the entire

data set.

The model for dependency parsing is simply an instance of the general sequential re-

ranking model described in Equation 5.7, which we re-write here for dependency parsing

as:

p(~p|~w) =
1

Z
exp





|~w|
∑

t=1

∑

k

fk(pt−1, pt, ~w, t)



 (6.1)

Each feature function, fk, can consider features over the entire sentence, ~w, and for

a particular wt can consider features over its candidate parent pt as well as the candidate

parent, pt−1, for the previous word wt−1.

Being a CRF, decoding with this model is known to have O(s2t) complexity using the

Viterbi algorithm where s is the number of states and t is the length of the sequence. For

the dependency parsing model, sequences are of length n and the number of states is n -
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i.e, the number of words in the sentence. This amounts to O(n3) asymptotic complexity.

This framework has some advantages over maximum spanning tree methods in that

it accommodates more expressive features without resorting to approximate inference

[McDonald & Pereira, 2006] or methods with high computational complexity [Carreras,

2007] in order to incorporate higher-level information. The downside to our approach

is that the higher-order features that can be considered are restricted to capturing the

interactions between edges where the dependent words are adjacent in the original sen-

tence. This doesn’t allow the model to capture features over siblings in the graph where

those siblings are far apart in the sentence, such as, for example, identifying compatibility

between subject and objects (that both have the same parent verb).

Nevertheless, in section 23 of the WSJ, nearly 40% of siblings that are adjacent

to each other in the dependency graph have dependents that are immediately adjacent

to each other in the text. Thus, a sizeable percentage of the siblings are captured by

our model, for English at least. Note also that the CRF-based method can capture

other constraints/features that McDonald’s second-order MST method can not model.

Specifically, rich features over adjacent dependents that do not share a governor can

be incorporated in our method that indicate, for example, that the adjacent dependents

have their governors both to the left, both to the right or split. It’s also possible to

capture violations of projectivity between the two edges that have adjacent dependents.

For two adjacent dependents, wi−1, wi projectivity is violated if wi ≺ pi−1 ≺ pi or if

pi−1 ≺ pi ≺ wi−1 where ≺ denotes the natural ordering of words within the sentence.
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Because he could run and swim , he was recruited for the triathalon

Figure 6.1: A non-projective dependency graph with a cycle: {could → run → swim →
could.}

One other potential downside with our approach is that it is much restricted that

maximum spanning tree-based methods. Not only does it allow non-projective parses, it

allows cycles. We describe below a simple algorithm for finding the approximate most

likely parse that conforms to a tree structure - i.e., a single root word with all other words

in the sentence having a single parent and no cycles.

6.2.2 Approximation Algorithm for Finding the Maximal Dependency

Tree

At a high-level, the algorithm for finding a maximal dependency parse that corresponds

to a tree works by: 1) identifying cycles, 2) considering all potential root words which

consist of parent-less words or words within a cycle, 3) identifying a single parse for

each potential root word using a simple heuristic (described below), and 4) scoring each

of these candidate parses by identifying its likelihood with respect to the CRF model.

Figure 6.1 provides an example parse containing containing a cycle, a pair of crossing

arcs that introduce non-projectivity ( could → , and swim→ could) as well as two disjoint

sub-graphs (to the left and right of the ’,’).
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Cycle Identification

Given a set of learned parameters for dependency parsing, Λ, and a sentence (i.e., a

sequence of words), x, the probability of a dependency parse, y is PΛ(y|x). The Viterbi

algorithm is used to search for the dependency parse with the highest probability, yθ =

argmaxyPΛ(y|x) .

There is a one-to-one correspondence between cycles in yθ and its strongly connected

components as made precise by the following proposition.

Proposition 6.2.1 Let g be a directed graph where all vertices, vi ∈ g have a maximal

incoming degree ≤ 1. c ∈ g is a strongly connected component if and only if the nodes

in c form a (simple) cycle.

Proof Note that the left directed implication is trivial - a cycle clearly forms a strongly

connected component. For the right directed implication, let us assume the implication

is false and that there exists a strongly connected component, c′ ⊆ g where c′ does not

form a simple cycle. Note that if c′ is not a simple cycle then there must exist vi, vj ∈ c
′

such that there there are two (or more) distinct paths p1 : vi ≺ ... ≺ vj , p2 : vi ≺ ... ≺ vj

connecting vi and vj . But clearly some shared vertex in the two paths - either vj or some

vk ≺ vj must have an incoming degree > 1, violating an assumed condition on g.2

The strongly connected components (and therefore cycles) can be detected in O(|V |+

|E|) time where |V | is the number of vertices and |E| is the number of edges in the graph

using Tarjan’s algorithm [Tarjan, 1972]. As our graphs are restricted such that there is

one edge for each vertex, this step has complexity linear in the length of each sentence.
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Identifying Candidate Parses

Consider first the case where the graph g corresponding to the most likely parse yθ

consists of a single cycle and no root. Note that each word corresponding to a vertex in

the cycle is a candidate to be the root word of a sentence, as the cycle must be broken

(by removing the incoming edge for one of its vertices) to produce a dependency tree.

The word whose incoming edge is removed would be the root word. In the more general

case, there may be multiple cycles in g and/or multiple roots.

Let the graph g, contain M disjoint sets of vertices, d1, ..., dM , where each di contains

a single cycle or a single root1. Let Ri correspond to the set of candidate root words

in di. If di contains a single root, then Ri will consist of only this root; if di contains

a cycle, the candidates in Ri will consist of each element in the simply cycle within di.

The set of all candidate parses can be formed from the sets Ri in two steps:

1. First, the cross product (R1 ⊗ ... ⊗ RM) is computed. This is simply the set of

tuples representing combinations of candidate roots.

2. For each tuple in the cross product, (r1, ..., rM ) ∈ (R1 ⊗ ... ⊗ RM), M candidate

parses are formed where the root of the parse is ri and all rj , where j 6= i have ri

as their parent. Put another way, the process works by selecting each word from

the tuple, identifying it as the root and attaching all other words in the tuple to the

root children. All combinations of roots and sub-roots are formed over the Ri.

Finally, the score for each candidate tree parse is produced. The time required to

1Note that a root vertex may be best viewed as a vertex whose parent is itself.
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compute these scores is O(n3 + nC) where C is the number of candidate parses. O(n3)

time is required to compute the state transition lattice after which each candidate parse

can be scored in linear time, resulting in O(nC). In the worse case, the cardinality of

C is actually exponential in the length of the sentence.2 Typically, however, the number

of candidate parses using this method is small and less than O(n2) meaning that it does

not affect the O(n3) asymptotic complexity of the sequential CRF-based parsing model.

And in practice, we have noticed only very slight increases in parsing times, on the order

of 1-3% when using the approximation algorithm to restrict parses to tree structures.

6.3 Feature Definitions

This section describes the space of features used by the CRF-based dependency parser.

The features can be broken down into single-edge features which operate over the current

word, wi and it’s candidate parent pj , and Markov features which involve features over the

current word and the previous word along with their candidate parents. For computational

reasons, as well as to avoid overfitting, these Markov features are restricted to operate

over a fixed size window surrounding the current word, which we discuss below. Further,

for the single-edge features we restricted the models to features that are supported in the

training data. That is, only those features that “fire” for dependent-head links that actually

belong to the correct parse for a sentence. There is some possibility that performance

could be improve using unsupported features, however, the number of features is that

2The extreme worst-case is when the Viterbi parse, yθ, consists of a series of cycles of length 3, in

which case there would be O(n
n

3 ) candidate parses.
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Uni-gram Bi-gram Context

pi-word wi-word, wi-pos, pi-word, pi-pos wi-pos, wi-pos+1, pi-pos-1,pi-pos

pi-pos wi-pos, pi-word, pi-pos wi-pos-1, wi-pos, pi-pos-1,pi-pos

pi-word, pi-pos wi-word, pi-word, pi-pos wi-pos, wi-pos+1, pi-pos,pi-pos+1

wi-word, wi-pos, pi-pos wi-pos-1, wi-pos, pi-pos,pi-pos+1

wi-word, wi-pos, pi-word

wi-word, pi-word

wi-pos, pi-pos

Table 6.1: Summary of the single-edge features. wi is the dependent word and pi is its

governor.

case is on the order of 100 million which introduces computational difficulties.

For the most part, the features we used followed the features in McDonald [2006],

which are based on uni-gram, bi-gram and other contextual features of tokens and part-

of-speech tags. Table 6.1 summarizes the features.

6.3.1 Markov Features

The Markov features in our model can be divided into two types: 1) sibling features and

2) window features. Sibling features involve properties of a word wi, the previous word

wi−1 and their shared candidate governor pi = pi−1 - i.e., these features only fire when

both their candidate governors are the same token. Window features include properties of

wi, wi−1 as well the candidate governors of these two tokens which need not be the same,

pi, pi−1. Computing all such features requires time O(n3) where n is the length of the

sentence since for each word wi there are n candidates to consider for it and n candidates

to consider for wi−1. To avoid this, we restrict these features to only fire when both

candidate parents for wi and wi−1 are within a pre-specified window. We experimented
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Observation Properties Sibling Window

wi-pos, wi−1-pos, pi-pos

wi-pos, pi-pos

wi−1-pos, pi-pos

wi-pos, wi−1-pos

Any

NonProj

Table 6.2: Summary of the Markov observation features and their inclusion as sibling

and/or window features. The special features Any and NonProj fire for all cases where

wi, and wi−1 have the same parent and when their candidate parents result in crossing

(i.e., non-projective) arcs, respectively.

with a few different window sizes and found a window size of 5 to be optimal on the

development data, however the variance between different window sizes was small. The

specific Markov features we employed are summarized in Table 6.2. For the Sibling

features, each a version of each feature was constructed with the distance and direction to

the parent. Similarly, for the Window features, a version of each feature was introduced

that also considered the distance and direction between the two governor words, pi and

pi−1.

6.4 Experiments and Results

We performed a series of experiments to determine overall performance of the parser

as compared with the state-of-the-art as well as to specifically ascertain the utility of

features that predicate over pairs of edges with adjacent dependents - i.e., the Markov

features. The ability to incorporate such features is what sets the CRF-based ranking

model apart from a Maximum Entropy ranking-type model that doesn’t take into account
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dependencies between adjacent elements.

For training a dependency parser, using the feature sets outlined above, there are

typically on the order of 5-10 million features in the resulting model. There are nearly

40,000 instances (i.e., sentences) in the data set and each sentence requires O(n3) time to

compute feature expectations (required for gradient-based learning methods). We found

batch learning to be somewhat impractical with training times on the order of 5-10 days,

even using the best available convex optimization methods. To improve training times

here, as with discourse parsing, we used the stochastic gradient descent method, PSA, to

learn the weights of the model [Huang et al., 2007].

6.4.1 Experimental Details

Dependency parsing systems have flourished in the last few years, largely driven by the

CoNLL Shared Tasks. Two of the most competitive systems, which are also available

(and quite usable) for research purposes are Ryan McDonald’s MSTParser and the Malt-

Parser [Nivre et al., 2007b]. We downloaded these two parsers and trained them on the

same data as our CRF-based parser, CRFParser, sections 02-21 of the WSJ. Additionally,

we trained Dan Bikel’s implementation of the Collins parser and applied the same head-

finding heuristics used to generate the dependency representation to its constituent output

over the test data. Results are reported on section 23 of the WSJ.

We trained first and second-order MSTParser models using the default parameters.

Second-order models introduce features over pairs of edges that share the same parent

122



CHAPTER 6. DEPENDENCY PARSING

in the graph. This is achieved at the expense of exact inference/search - i.e., with the

second order model, it is possible that the optimal parse will not be found. In practice,

second-order or higher-order factorizations often improve performance.

The MaltParser implements a variety of parsing algorithms, though the parsing algo-

rithm most widely used is Nivre’s algorithm [Nivre, 2003]. The algorithm makes a single

left-to-right pass over a sentence, maintaining a stack of partially processed tokens and

performing one of four actions while incrementally building up a parse for the sentence:

1) Shift - push the next token onto the stack, 2) Reduce - pop the stack, 3) Right-Arc

- add an arc from the top token on the stack to the next word and push the next word

onto the stack and 4) LeftArc - add an arc from the next token to the top token on the

stack and then pop the stack. We trained the MaltParser on sections 02-21 using the same

parameters as provided with the pre-trained model that comes with the parser trained on

the English CoNLL 2007 Shared Task data.

For the CRFParser, we experimented with the full feature set, including Markov

features with a window range of [−5, 5], which we refer to as CRFParser-M and the

system without any Markov features, CRFParser-Base.

The results comparing the MSTParser and MaltParser with the CRFParser are shown

in Table 6.3. First, note that CRFParser-M improves performance by over three tenths a

percent over CRFParser-Base, which is statistically significant. Note also that the CRF-

Parser is competitive with existing state-of-the-art dependency parsers. The MSTParser

performs slightly better than CRFParser-M when it is restricted to projective parses.
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Since this particular dataset is projective in nature, this is to be expected. Note, how-

ever, the significant drop in performance for MSTParser using non-projective training and

decoding methods. All the language datasets from the CoNLL 2007 Shared Task were

non-projective (including English) except for Chinese [Nivre et al., 2007a].

Finally, we can see that the 2nd-order MSTParser marks a significant improvement

over other methods on this dataset, including the CRFParser. This is not surprising

since the 2nd-order MSTParser introduces considerably richer features capturing more

global properties of potential parses. Carefully incorporating additional Markov features

within the CRFParser beyond what we have introduced here may help to close this gap.

Alternatively, parse re-ranking has the potential to greatly improve parsing accuracy by

incorporating more global parse features. We discuss the potential for parse re-ranking

below.

A final point to draw from Table 6.3 is that the CRFParser is very efficient, with pro-

cessing times notably faster than MSTParser and MaltParser, the latter of which actually

has linear asymptotic complexity. 3 The parsing times here amount to about 14 sen-

tences/sec. (or 328 words/sec.) when using Markov features and over 16 sentences/sec.

(or 380 words/sec.) without the more expressive features. This makes the CRFParser a

viable choice as general-purpose parsing tool. Further investigation is required to look at

performance of the CRFParser across languages besides English.

3MSTParser and MaltParser are both implemented in Java, while the CRFParser is implemented in

Objective CAML, an ML dialect with static typing that tends to offer slightly better runtime performance

than Java. The experiments were carried out on 1861MHz, 64-bit Linux machine with 6GB of memory.
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System Attach. Acc. Comp. Acc. Root F1 Time

MSTParser-NonProj 90.85 34.0 95.1 397 sec.

MaltParser∗ 91.30 39.7 88.0 1038 sec.

Collins 91.30 38.4 96.9 5622 sec.

MSTParser-Proj† 91.58 39.4 94.9 451 sec.

MSTParser-NonProj (2nd-ord)∗ 92.13 41.7 96.2 549 sec.

CRFParser-Base 91.11 34.6 94.7 149 sec.

CRFParser-M∗ 91.46 36.8 95.1 173 sec.

Table 6.3: Overall results on Section 23 of the WSJ comparing the MSTParser, Malt-

Parser, Collins and CRFParser attachment accuracies (Attach Acc.), percentage of sen-

tences parsed completely correctly (Comp. Acc.), balanced F-measure for finding the root

word of the sentence (Root F1) and running times (Time). These results make use of the

gold-standard part-of-speech tags. † indicates the attachment accuracies are significantly

different from those on the row above it using McNemar’s test p < 0.05; ∗ indicates the

differences are significant at p < 0.01.

6.4.2 Labeled Dependency Parsing

The labeled dependency parsing task involves not only identifying the dependent-governor

relations that constitute a dependency graph, but assigning grammatical functions to those

relations. The set of labels for the target dependency representation here was presented

in Table 4.2.

Some approaches to labeled dependency parsing try to jointly model the parsing and

labeling tasks. This allows for shared information from the two decision sets to help

resolve ambiguities. The downside is that to maintain tractability, just as with the parsing

task, these models are restricted to looking at local aspects of the parse such as single

edges or pairs of “nearby” edges in the case of 2nd-order MSTParser or the CRFParser,

for example. A two-stage approach, however, in which the labeling task takes in an

entire unlabeled parse as input can take advantage of richer features over the entire parse
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Label Acc. LAS

MaltParser 91.57 88.58

CRFParser-M 92.60 89.05

MSTParser-Proj 92.51 89.17

Table 6.4: Label accuracy and Labeled Attachment Score (LAS) for the MaltParser, the

CRFParser with Markov features and the projective, first-order MSTParser. Dependency

labels for the CRFParser and MSTParser were derived using a second-stage CRF.

structure when making labeling decisions.

The approach to labeling edges in the CRFParser largely follows the approach outlined

in [McDonald et al., 2006]. Rather than labeling each edge independently, however,

using a classifier we use a CRF to assign edge labels that capture adjacent contextual

dependencies. We used the following set of features:

Dependent-Governor Features These include the various combinations of the dependent

and governor parts-of-speech and tokens along with information on the distance and

direction of attachment.

GrandParent Features These features involve combinations of the grandparent’s part-

of-speech and token along with the properties of the dependent.

Context Features All the parts-of-speech of the words between the dependent and gover-

nor conjoined in various ways with parts-of-speech of the dependent and governor.

Whether all the words between the dependent and governor have the same governor

– i.e., the intervening parse structure is flat.

Dependent Features The number of children and the number of siblings the dependent
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has. Whether the dependent is the left-most or right-most sibling. Number of

siblings to the right and left.

The results are shown in Table 6.4 for the CRFParser and MaltParser. The Label

Accuracy metric captures the percentage of dependents whose incoming link is labeled

with the correct dependency label regardless of whether it was attached to the correct

governor. The Labeled Attachment Score measures the percentage of dependents who

are attached to their correct governor and for which the label was assigned correctly.

Labeling parse edges within the MSTParser can be carried out jointly with parsing,

though McDonald et al. [2006] indicate that equal or better performance can be obtained

using a separate labeling mechanism.

6.4.3 Towards Parse Re-ranking

One advantage of a sequence-model approach to parsing is that existing state-sequence

decoding algorithms can be leveraged such as beam search decoding and k-best decoding.

By using k-best decoding to identify the top k parses, it is possible to employ re-ranking

to select a parse from this list of k parses. This technique has been exploited for phrase-

structure parsing [Collins, 2000; Charniak & Johnson, 2005] and more recently with

dependency parsing [Hall, 2007].

The latter work bears some similarity to our approach here. Briefly, a log-linear

ranker model is used to develop an edge-factored model — that is, a model which for a

particular word, wi in a sentence of length n associates a score with each of the n possible
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candidate parent/governors for wi, including the possibility that wi is the root. Given the

n2 edge scores, the k-best maximum spanning trees can be calculated (cf. [Hall, 2007]).

Given the k-best parses, a re-ranking model is trained which learns to select the best

parse from the top k parses. As the re-ranker takes entire parses as input, features may

operate globally over the parse, capturing sub-categorization information, the branching

factor for the parse, its depth, etc.

The CRFParser can be viewed as a generalization of the model put forth in [Hall,

2007]. Rather than a single-edge factorization, the CRF-based parser can take into account

pairs of edges with adjacent dependents. In addition, it produces a proper probability

distribution over all possible parses, rather than a score determined by the product of

locally normalized probabilities over individual edges. As the CRF-based model explicitly

estimates a distribution over parses, there is reason to believe that the probability scores

will be well-calibrated - i.e., that the probability associated with a parse for a given

sentence is positively correlated with a high attachment score for a given sentence. A

well-calibrated model should produce higher quality k-best parse lists.

The results in Table 6.5 show the oracle accuracies for different values of k for the

CRFParser (with and without Markov features) and for the approach in [Hall, 2007].

Since these systems, the k-best MST system in particular, start from different baseline

accuracies, it is perhaps useful to look at the relative error reductions in oracle accuracy

scores for different pairs of values of k as shown in Table 6.6. Relative reductions are

highest with the CRFParser using Markov features, providing better potential for parse
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System Oracle Accuracy

k = 1 k = 2 k = 5 k = 10 k = 50 k = 100 k = 500
k-best MST 85.04 89.04 91.12 91.87 93.42

CRFParser 90.99 92.12 93.28 94.05 95.35 95.84 96.71

CRFParser-M(notree) 91.33 92.50 93.78 94.59 95.98 96.45 97.34

CRFParser-M 91.46 92.59 93.85 94.62 96.04 96.48 97.40

Table 6.5: Oracle attachment accuracies for different k-best lists of parses generated by

the CRFParser and the results reported in [Hall, 2007].

System Relative Oracle Error Reductions

k = 10 : 1 k = 50 : 10 k = 100 : 50 k = 500 : 100
k-best MST 26.74% 18.98% 8.45% 19.04%

CRFParser 33.96% 21.85% 10.54% 20.91%

CRFParser-M 37.00% 26.39% 11.11% 26.14%

Table 6.6: Relative error reductions comparing the MST k-best oracle parse scores of Hall

[2007], the CRF-based k-best oracle parse scores with Markov features (CRFParser-M)

and without (CRFParser).

re-ranking methods. The CRFParser without Markov features still arrives at better k-best

lists than the k-best MST approach. While these systems use different features, it seems

reasonable to hypothesize that the CRFParser is providing better k-best lists due to better

calibration.

It is also worth noting that with approaches to re-ranking, typically the most important

feature is the probability (or score) produced by the k-best generating model [Charniak

& Johnson, 2005]. With well-calibrated probabilities, this important feature will have

greater discriminative power for parse re-ranking.
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6.5 Summary and Future Directions

In this chapter we demonstrated the applicability of the CRF-based sequential ranking

model to dependency parsing, demonstrating its generality beyond discourse parsing. As

the model does not preclude cycles, we provided an approximation algorithm for finding

the most likely tree-structured parse which, besides generating tree-structured output also

slightly improved the parser’s accuracy. The overall results indicate that the model is

competitive with the state-of-the-art, efficient and is qualitatively different than existing

methods. Further, it allows for the construction of high-quality k-best parse lists using

k-best Viterbi decoding, which leaves the door open for further accuracy improvements

via parse re-ranking.

Besides parse re-ranking, an interesting area for future work is to explore the notion

of pruning the set of candidate governors for each word in the sentence. Rather than

considering all other words in the sentence as candidates, it would be possible to restrict

the set of candidate governors to a fixed number N , just as we did for sequential discourse

argument identification in Chapters 5 and 7. For many word classes, such as determiners,

simple heuristics may be able to greatly reduce the number of candidate governors. Also,

words of a particular part-of-speech are rarely or never governed by certain other parts-

of-speech (e.g., verbs are not governed by determiners). A statistical ranker, as was

employed for independent Arg1 and Arg2 identification could be used to generate a list

ofN candidate governors for each word in the sentence. Note that this requires O(n2) time

and could likely be done with very high oracle accuracies for a small N . Given a fixed
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N , the CRF-based sequential ranking model in this context would actually have linear

complexity. The entire process would thus have O(n2) complexity; further, the O(n2)

process of generating candidate governors would likely require only a small feature set

(much small than the full set of features for parsing), resulting in a small constant factor for

that computation. This approach therefore has great potential for further improvements in

runtime performance. Accuracy improvements may also be possible since a considerably

smaller set of candidate governors for each dependent may reduce data sparsity.
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Chapter 7

Fully Automatic Discourse Parsing

This chapter revisits the discourse parsing task using fully automatic systems rather than

relying on gold-standard syntactic analyses. Additionally, we explore how syntactic depen-

dency errors are correlated with drops in performance, provide learning curves indicating

how performance correlates with the amount of training data, and perform a detailed anal-

ysis of the effect for different classes of Markov features using the CRF-based sequential

ranking model.

7.1 Argument Identification

We have already presented some results for argument identification using automatic parses

produced by the Charniak-Johnson parser in Sections 3.3 and 3.4. In this chapter we use

automatic parses with the updated dependency representation described in Section 4.1.2.

These parses are generated using the CRFParser, described in the previous chapter, while
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Accuracy

System Arg1 Arg2 Conn Conn (Gold)

Heuristics 53.0 78.8 45.4 65.8

Indep. ArgID 71.2 92.2 66.8 72.9

Re-rank ArgID 72.2 91.9 68.9 75.6

Table 7.1: Argument identification results for explicit connectives using automatic parses

from the CRFParser and Bikel parser. Results using gold-parses (reported in Section 4.2)

are also provided for comparison.

the constituent parses are produced using Dan Bikel’s implementation of the Collins

parsing model [Bikel, 2004].

7.1.1 Parser Development

Chapter 6 described in detail the CRFParser which we use as a dependency parser. In

order to apply the CRFParser as well as the Bikel parser for constituent parses we require

that the discourse training data be parsed with automatic parses that are representative of

parser performance on the test data. We again employ 2-fold jackknifing. The training

data is partitioned into two portions; we train both the CRFParser and Bikel parser on one

portion and apply each to the other portion and vice-versa to produce a fully automatically

parsed training corpus. Since both parsers rely on part-of-speech tags, we used the same

2-fold jackknifing procedure to tag the entire training corpus with part-of-speech tags. We

used the CRF-based part-of-speech tagger described in Wellner & Vilain [2006], which

provides state-of-the art accuracies.

7.1.2 Results
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Table 7.1 shows results for identifying the arguments of (given) connectives using

automatic parses from the CRFParser and Bikel parser. Again the re-ranking model

performs better than identifying the two arguments separately, providing 6.3% reduction

in error from a Connective Accuracy of 66.8% up to 68.9%.

7.1.3 Effect of Automatic Parses and Comparison with Semantic Role

Labeling

For the full re-ranking system, the error term for argument identification increases by

over 21% when using automatic parses compared with the gold-standard parses. While

considerable, the error term introduced by automatic parsing is actually smaller than for

tasks such as semantic role labeling (SRL). SRL involves identifying shallow semantic

arguments for verb predicates as annotated by a resource such as PropBank [Palmer et al.,

2005] or for nouns with NomBank [Meyers et al., 2004]. A PropBank argument identi-

fication system quite similar to our discourse argument identification system is presented

in Toutanova et al. [2005]1 in which the error rate from using automatic (Charniak) parses

increases 57% for Core arguments (subject, object, indirect object, etc.) and 47% for

ArgM adjunct modifiers (e.g. temporal, causal modifying adjuncts). 2 Arguably, the

Core SRL arguments rely on aspects of the automatic parses that are more accurate than

those aspects required for discourse. Identifying the arguments of discourse connectives

1The system presented in Toutanova et al. [2005] uses log-linear models to identify the arguments of

verb predicates and also uses a log-linear re-ranking model to jointly identify all arguments of a given verb

predicate.
2Note that these error rate increases are on section 23 of the WSJ and our results are carried out on

sections 23 and 24.
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(and identifying ArgM for SRL) relies more heavily on capturing the correct inter-clausal

syntactic relationships such as subordination and coordination which are more prone to

error than establishing many intra-clausal syntactic relationships.

The fact that SRL suffers more from automatic parses than discourse argument iden-

tification is probably due to the fact that for discourse parsing the syntax is less varied

for the arguments of certain connectives - especially, subordinating and coordinating con-

nectives. The primary non-alignment between discourse arguments and syntax has to do

with attribution [Dinesh et al., 2005]. Thus, discourse arguments may be more aligned

with syntax than most SRL arguments, but they rely on aspects of syntax that are harder

for current statistical parsers to capture. This second point is made clear by the dramatic

drop in performance for the heuristic-based system using automatic parses produced by

the CRFParser: the error term introduced is 39% (over the independent argument sys-

tem, which with which it is most comparable). One further insight is that when looking

only at subordinating relations, the heuristic system with gold standard parses achieves

80% accuracy for Arg1 and 91% accuracy for Arg2 while with automatic parses the

accuracies are 62% and 86% for Arg1 and Arg2, respectively. These differences corre-

spond reasonably well with the results from Dinesh et al. [2005] where a tree-subtraction

heuristic was used to identify the arguments of subordinating discourse relations. That

work demonstrated that Arg1 accuracy drops from somewhere between 76-82% accuracy

down to 65% and from 92-93% down to 84% for Arg2 when using automatic parses

generated by the Bikel parser’s emulation of the Collins parser.
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Accuracy

AutoParses Gold Parses

Connective Type Arg1 Arg2 Conn Arg1 Arg2 Conn

Subordinating 83.6 95.7 82.1 89.2 98.4 88.5

Coordinating 73.4 89.3 68.0 82.7 93.0 78.1

Adverbial 53.7 90.9 51.7 54.8 92.2 53.0

Table 7.2: Argument identification performance by connective type for the re-ranking

ArgID system using automatic CRFParser and Bikel parses and comparison with the

connective type accuracies using gold standard parses.

Path Freq. CRFParser MSTParser MaltParser Collins

CONJ 1170 79.3 80.4 79.7 77.8

VMOD 1044 92.2 92.3 92.0 93.5

CONJ_COORD 722 57.6 60.1 59.1 58.1

ADV 654 80.0 81.5 82.9 83.7

VMOD_TMP 386 71.8 71.5 72.2 75.9

VMOD_ADV 332 73.7 75.3 76.3 77.6

TMP 144 77.8 77.6 80.7 81.2

Table 7.3: Dependency parser attachment percentage accuracies for the most frequent

dependency relation paths connecting discourse connectives to their arguments. Two-step

paths here receive accuracies equal to the product of their constituent dependency label

accuracies. The frequencies listed are the number of syntactic paths of the listed type

that connective discourse connectives to their arguments in the evaluation data.

Table 7.2 shows the Arg1, Arg2 and connective (Conn) accuracies for the three

connective types, comparing automatic parse results with those using gold-standard syn-

tactic parses. Discourse adverbials are affected relatively little due to inaccuracies in the

underlying syntactic parse; in particular, this is the case with Arg1s. Of course, these

arguments are frequently anaphoric, often appearing in prior sentences and are generally

less correlated with particular syntactic constructions. For both subordinating and coor-

dinating connectives, the additional error term introduced by using automatic parses is

around 30%.
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To gain better insight into the errors introduced by the introduction of automatic

parses, it is helpful to look at the syntactic parsing errors most relevant for identifying

discourse arguments. Table 7.3 provides a breakdown of syntactic dependency attachment

accuracies for various dependency label types for the four dependency parsers considered

in Chapter 6. The accuracy scores for the CONJ row in the table, for example, are the

percentages of words whose governor was identified correctly whose label was CONJ in

in the gold-standard data for each of the different parsers.

The table provides some indication as to why performance degrades as it does. Poor

handling of coordination, a known source of difficulty for parsers, contributes to the

30% increase in the error for identifying the arguments of coordinating connectives. The

relevant syntactic paths are CONJ which is frequently the dependency relation between

the connective and its Arg1 and the pair CONJ_COORD which links the connective

to its Arg2. These paths have dependency accuracies in the 78-80% accuracy range

for CONJ and in the range of 58-60% accuracy for the two step CONJ_COORD paths

across the four different syntactic parsers. It is also worth noting that the accuracies here

are across all instances of the stated syntactic paths, not only those instances involved

in discourse relations; likely, the performances for those dependency links involved in

discourse relations are lower, since they will tend to involve more difficult cases of

clausal coordination rather than the easier instances of NP and VP coordination.

7.1.4 Feature Analysis
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Accuracy

Feature Set Arg1 Arg2 Conn

Full 72.2 91.9 68.9

NoConstParse 70.8 91.0 67.4

NoDepParse 71.4 90.7 66.9

NoLexSyn 70.6 91.3 66.9

NoIntervening 69.0 91.0 65.9

NoPara 72.0 92.2 68.6

NoBase 71.3 91.5 68.3

NoSyntacticFeatures 67.2 87.7 62.0

Table 7.4: Argument identification results with various feature subsets.

In order to examine the effects of various feature classes, we again perform an ablation

analysis carried out by removing various feature classes individually from the full feature

set. The results of the ablation study are shown in Table 7.4. Note that these results

mostly parallel the ablation analysis with gold-standard parses (cf. Table 4.5). It is

also important to keep in mind that the argument candidates are selected based on the

dependency relations. Accordingly, the candidate sets are of lower quality when automatic

parses are used. That is, a greater number of candidates must be selected when automatic

parses are employed to help ensure that the correct argument is included in the set of

candidates since there may be errors in the dependency parse. Specifically, we expanded

the number of path lengths traversed to 10 for selecting Arg1 candidates (up from 7

with gold-standard parses) and to 6 for selecting Arg2 candidates (up from 3 with gold-

standard parses). This results in more candidate arguments, which help to prevent the

correct argument from not being included in the candidate set, but makes the job more

difficult for the statistical models. This is shown most clearly by comparing the results

without any use of syntactic features: for gold-standard parses the connective accuracy
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Figure 7.1: Argument identification connective accuracies for gold-standard parses (top

curve) and automatic parses (bottom curve).

is 64.3, but drops to 62.0 with automatic parses. These systems are using the exact same

set of features but the automatic system has a larger set of candidates to consider for each

connective.

7.1.5 Learning Curve Analysis

Machine learning methods have many advantages over handcrafted grammars, heuristics

or rules and have become a key component in the modern paradigm for approaching

many tasks in NLP: 1) annotate 2) train, and 3) test. 3 This paradigm, however, requires

annotated data which is often expensive to produce. Thus, an active area of computa-

3Note that formulation of NLP tasks is typically driven by some underlying theory. Thus, theoretical

accounts of various linguistic phenomena have, for the time being, played a lesser role in the development

of systems than in past years, but instead play a central role in defining what those components should do.
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tional linguistics and machine learning, more generally, involves trying to learn with less

data using semi-supervised learning (i.e., learning with some annotated data and lots of

unannotated data) as well as areas such as transfer learning (i.e., learning with small

amount of annotated data for a target task but a larger amount of data for a different, but

related task).

While applying these ideas to discourse parsing is outside the scope of this dissertation,

it is useful to examine how much annotated data is required to reach a certain level of

performance. Figure 7.1 provides learning curves that track the connective accuracy

performance with varying amounts of training data using automatic parses as well as

gold-standard parses. These curves are relatively steep — using just over 10% of the full

amount of training data provides accuracies within around 15% of the accuracies achieved

with the full training data set. At the same time it is unclear if the learning curves have

flattened out or whether additional training data will continue to provide substantive gains

in performance.

Based on our intuitions of language and the nature of discourse, one might expect

that discourse parsing may be very sensitive to genre and/or domain. That is, discourse

parsing may have greater variance across different data sets than syntactic parsing, for

example. Establishing this empirically will require annotation of additional data, such as

the Brown corpus, for example. For syntactic parsing, McClosky et al. [2006] show that

models tested on the Brown corpus perform at 87.4% when trained on Brown data and at

85.8% when trained on the WSJ portion of the Penn Treebank, despite the fact that the
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Evaluation Data

Connective-ID Predicate-ID ArgID Precision

Rec Prec F1 Rec Prec F1 Arg1 Arg2 Conn

Cascade+Indep 85.94 97.29 91.26 57.68 65.31 61.26 71.1 93.1 67.1

Cascade+Joint 85.94 97.29 91.26 59.26 67.09 62.93 71.9 92.8 69.0

Full Joint 86.19 96.69 91.13 61.20 68.66 64.70 73.8 94.0 71.0

Full Joint Seq 85.62 97.22 91.05 61.51 69.85 65.42 74.3 94.3 71.8

Development Data

Connective-ID Predicate-ID ArgID Precision

Rec Prec F1 Rec Prec F1 Arg1 Arg2 Conn

Cascade+Indep 89.82 97.07 93.30 61.61 66.58 63.99 72.2 94.1 68.6

Cascade+Joint 89.82 97.07 93.30 63.29 68.40 65.74 73.2 93.3 70.5

Full Joint 91.87 96.80 94.27 67.95 71.60 69.73 76.3 94.7 74.0

Full Joint Seq 91.27 96.78 94.20 68.19 72.28 70.18 76.6 95.2 74.7

Table 7.5: Results using automatic parses comparing various methods for identifying

explicit discourse connectives and their arguments.

latter training set was considerably larger. In semantic role labeling, the degradation is

typically worse: in the 2005 Semantic Role Labeling shared task [Carreras & Marquez,

2005], all participating systems saw a roughly 30% increase in the error rate when testing

on the Brown corpus vs. testing on the WSJ corpus (all were trained on just the WSJ

data). The degree to which discourse parsing will degrade across genres is an interesting

open research question.

7.2 Joint Connective and Argument Identification

In this section we turn to the full problem of identifying discourse connectives along

with their arguments. This initially explored in Chapter 5. Here, however, we examine

the results using automatic parses.
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7.2.1 Explicit Connectives

We first take a look at identifying explicit discourse connectives and their arguments.

Table 7.5 provides an overall picture of discourse parsing with fully automatic methods

on the PDTB development and evaluation data. The Cascade+Indep method identifies

the connective and both arguments separately; Cascade+Joint identifies the connectives

in a first pass and then jointly identifies the two arguments for each connective; Full Joint

identifies connectives and their arguments jointly; Full Joint Seq considers the sequence of

connectives within a paragraph taking into account dependencies between the arguments

of adjacent (candidate) discourse connectives.

The CRF-based sequential ranking model (Full Joint Seq) which identifies sequences

of connectives and their arguments jointly provides the best overall performance on both

the evaluation and development data, with Predicate-ID F-measure error reductions of

11% and 17%, respectively, over the Cascade+Indep approach on those data. Note that

the Connective-ID F-measure is slightly degraded on the evaluation data with the Full Joint

and Full Joint Seq models, but that the Predicate-ID scores are still improved due to better

selection of the arguments of connectives that are identified. That is, the Full Joint and

Full Joint Seq models appear to do a better job of selecting discourse connectives whose

arguments are “easier” to identify, and avoiding the selection of a discourse connective

when there is uncertainty about what the arguments of the connective would be were that

connective to be selected.

Another point to be made is with regard to the differences between the evaluation
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Figure 7.2: Precision and recall curves for Connective-ID (SeqConnective) and Predicate-

ID with the sequential joint re-ranking model with a CRF (SeqReRankArg) and Predicate-

ID using the non-sequential joint re-ranking model (ReRankArg).

and development results. Recall that the evaluation data includes annotation of discourse

relations over VP coordination, which is generally not found in the training data. This

explains the relatively low Connective-ID recall on the evaluation data. It would appear

that this skew due to what appear to be annotation false positives in the data, removes

some of the potential gains for the Full Joint and Full Joint Seq models. The results

on the development data may in fact reflect a more realistic evaluation of the system,

showing that the Full Joint and Full Joint Seq models can actually result in improved

Connective-ID F-measure by considering the arguments jointly with the connective.
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Trading Off Recall for Precision

One additional analysis we explore here is the ability of the different models to trade

off recall for precision. This capability is useful since in certain application contexts, it

may be preferable to have a system that operates at a low level of recall, but with high

precision. That is, the model may return a relatively sparse set of discourse relations, but

those returned have a high likelihood of being correct.

The non-sequential Full Joint re-ranking model can easily trade off precision and

recall since for each candidate connective and its selected arguments, the model produces

a probability score according to Equation 5.1. The Full Joint Seq model that uses a

CRF, on the other hand, specifies a probability distribution over sequences of connectives

(and their arguments). The confidence scores for individual discourse connectives can be

obtained by marginalizing over the entire sequence. A simpler method to trade off recall

for precision (or vice-versa) using this model is to follow a method outlined by Minkov

et al. [2006] and adjust the weight of a single feature: the feature that fires only for the

outcome Null - i.e, where the candidate connective is not a connective. If the weight

of this feature is increased, then the probability for the connective not being a discourse

connective goes down, whereas if it is decreased then the probability scores assigned to

the outcomes where the connective is a discourse connective go up.

Figure 7.2 shows the results of adjusting the feature associated with Null as well as

the results using the non-sequential model when precision and recall are computed by

selecting different probability thresholds. The Full Joint model, despite not being able
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to quite match the Full Joint Seq model in terms of F-measure is able to achieve high

Predicate-ID precision. For example, at a Predicate-ID recall of level of 40% (i.e., with

60% of discourse predicates failing to be identified) the precision is well over 90%. With

even lower recall rates below 20% the precision is well into the upper 90’s.

The precision rates for the sequential model fail to increase anywhere near as dramat-

ically. This would appear to be due to the fact that simply modifying the value of the

Null feature does not at all take into account the model’s degree of certainty with regard

to the connective’s arguments. So, for example, the model may be somewhat uncertain

about whether a particular candidate connective is indeed a connective but is confident

about what its arguments should be. On the other hand, some connectives are easy to

identify (e.g. “also”) but there may be lots of uncertainty about its arguments. The Full

Joint model curves, in contrast, are generated by ranking each connective based on the

entire joint probability score, taking into account uncertainty about the connective itself

and its arguments.

Note that there are other possibilities to produce precision recall curves with the

sequential models. One possibility would be to rank entire sequences by their probability

score [Wellner et al., 2007] which would capture the uncertainty over the connective

arguments but over an entire sequence of connectives, rather than individually as in the

Full Joint model.

Analysis of Markov Features

The overall contributions of the CRF-based sequential ranking model, Full Joint Seq,
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ConnectiveAccuracy

Feature Set None Constraints Patterns Dominates SynPath All

Base 47.83 48.72 49.88 48.76 49.65 51.10

+Intervening 59.04 58.88 59.27 59.17 59.51 59.77

+Para 62.26 62.85 63.70 62.82 63.42 63.80

+ConstParse 65.34 65.30 65.90 65.25 65.29 65.95

+DepParse 68.05 68.19 68.23 68.29 67.77 68.10

All 70.99 71.32 71.60 70.88 71.18 71.51

Avg. Reduction 0.0% 0.7% 2.1% 0.6% 1.2% 2.6%

Table 7.6: The effect of various Markov feature sets measured in terms of Connective

Accuracy with different sets of argument identification features using automatic parses.

beyond the Full Joint model are rather modest when considering the full feature set.

On the Evaluation data, the Predicate-ID F-measure improves from 64.70 up to 65.42.

Despite this, being able to consider features that capture dependencies across the sequence

of connectives opens up new possibilities for rich features which may very well lead to

better improvements with additional careful feature engineering. We carry out the same

kind of analysis here to ascertain the contributions of Markov features in the context of

different non-Markov feature sets.

Table 7.6 shows the effect of the various Markov feature sets in combination with

various local argument identification feature sets for the argument identification task (i.e.,

when the discourse connectives are provided) in terms of Connective Accuracy. We can

see that on average the Patterns Markov features provide the best performance of any

single set of Markov features rather than the syntactic based Markov features. This may

well be due to high-levels of noise in the SynPath features due to parser errors and the

fact that the Patterns features simply capture sequential information unaffected by parse

quality. Also notable, is that the overall error reductions provided by Markov features are

146



CHAPTER 7. FULLY AUTOMATIC DISCOURSE PARSING

Predicate-ID F-measure

Feature Set None Constraints Patterns Dominates SynPath All

Base 45.27 46.10 46.92 46.45 46.60 47.65

+Intervening 56.99 57.37 57.06 57.24 57.44 57.46

+Para 60.53 60.98 61.45 61.05 61.68 62.05

+ConstParse 66.74 66.82 67.22 67.00 66.36 67.50

+DepParse 66.29 66.53 65.58 66.47 66.23 66.36

All 69.66 69.77 70.01 70.02 69.87 70.18

Avg. Reduction 0.0% 0.1% 0.1% 1.1% 1.0% 2.3%

Table 7.7: The effect of various Markov feature sets with different argument identification

features using automatic parses on the full task of identifying connectives and their

arguments for explicit connectives.

lower than those reductions obtained with gold-standard parses (cf. Table 5.4).

Table 7.7 looks at the the full task of identifying connectives and their arguments in

terms of Predicate-ID F-measure. The picture here is different, the Patterns features

provide little discriminative power. This is likely due to the fact that the for the full

connective identification and argument identification task, the sequences consist of all

candidate connectives, not just the actual discourse connectives. Thus, there are many

non-discourse connectives interspersed between actual discourse connectives. The Pat-

terns features which include the relative order of adjacent (candidate) connectives and

their arguments are thus diluted. For example, consider the sentence:

(32) Some dealers said the dollar was pressured slightly because a number of market

participants had boosted their expectations in the past day and were looking for an

index above 50, which indicates an expanding manufacturing economy. But most

said that the index had no more than a minimal effect on trade.

Between the actual discourse connectives, because and But lies a candidate connec-
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Evaluation Data

Connective-ID Predicate-ID ArgID Precision

Rec Prec F1 Rec Prec F1 Arg1 Arg2 Conn

Cascade+Indep 93.03 98.56 95.71 63.14 66.90 64.96 76.4 87.8 67.9

Cascade+Joint 93.03 98.56 95.71 65.47 69.37 67.40 76.1 89.3 70.4

Full Joint 92.75 98.39 95.49 66.61 70.67 68.58 77.7 89.6 71.8

Full Joint Seq 92.06 98.85 95.33 67.09 72.04 69.47 78.0 91.1 72.9

Development Data

Connective-ID Predicate-ID ArgID Precision

Rec Prec F1 Rec Prec F1 Arg1 Arg2 Conn

Cascade+Indep 95.43 98.67 97.02 66.09 68.34 67.20 77.2 88.6 69.2

Cascade+Joint 95.43 98.67 97.02 68.85 71.19 70.00 77.4 89.9 72.1

Full Joint 95.77 98.36 97.05 69.35 71.23 70.28 77.5 90.0 72.4

Full Joint Seq 95.01 98.55 96.75 70.62 73.25 71.92 78.9 91.5 74.3

Table 7.8: Results using automatic parses comparing various methods for identifying

discourse connectives and their arguments. The results here are over both explicit and

implicit connectives.

tive and which is not considered a discourse connective here due to its role in VP

coordination. The Pattern features for the argument identification task where connec-

tives have already been identified or are given will operate over candidate arguments for

〈πt−1:because, πt: But〉, while for the joint task of connective and argument identifica-

tion, those pattern features will operate over the for the pairs 〈πt−1:Because, πt: and 〉

and 〈πt: and ,πt+1:But〉.

This indicates that while we have shown that it is advantageous to identify connectives

and their arguments jointly, it may be preferable to consider sequence effects only over

identified discourse connectives, rather than all candidate connectives.

7.2.2 Incorporating Implicit Connectives

148



CHAPTER 7. FULLY AUTOMATIC DISCOURSE PARSING

ConnectiveAccuracy

Feature Set None Constraints Patterns Dominates SynPath All

Base 43.18 43.22 44.72 42.69 44.94 46.44

+Intervening 50.64 51.57 51.69 51.53 53.38 53.55

+Para 58.08 59.67 60.91 58.80 64.07 64.85

+ConstParse 65.34 66.90 67.44 66.31 68.12 68.24

+DepParse 68.05 69.27 69.53 69.35 69.33 69.70

All 71.82 72.14 72.18 72.42 72.10 72.12

Avg. Reduction 0.0% 2.5% 4.6% 1.9% 6.0% 7.1%

Table 7.9: The effect of various Markov feature sets with argument identification features

using automatic parses.

In this section we provide results for identifying the arguments of all connectives,

including implicit connectives, using automatic parses. The overall results are shown in

Table 7.8. We see similar error reductions in Predicate-ID F-measure as was the case

with only explicit connectives: a 14% reduction on the development data, and a 13%

reduction on the evaluation data when comparing the Full Joint Seq model against the

Cascade+Indep model.

Markov Feature Analysis

Again, we look at the the individual Markov feature classes with various local argu-

ment identification feature subsets. First, the affects of Markov dependencies for identify-

ing the arguments of given discourse connectives are shown in Table 7.9. An interesting

contrast is made with the connective accuracy results for only explicit connectives in

Table 7.6 — there is considerably more benefit from the Markov features and sequential

model when both explicit and implicit connectives are considered, just as was observed

with the gold-standard parses.
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Predicate-ID F-measure

Feature Set None Constraints Patterns Dominates SynPath All

Base 44.01 43.52 43.58 43.17 44.20 44.63

+Intervening 51.64 51.88 52.22 52.26 52.62 53.42

+Para 57.75 58.43 59.00 58.29 61.62 61.92

+ConstParse 64.68 65.46 66.07 65.51 66.79 67.11

+DepParse 69.33 69.12 69.72 69.22 68.95 69.30

All 71.41 71.48 71.76 71.61 71.78 71.82

Avg. Reduction 0.0% 0.5% 1.6% 0.6% 2.9% 3.8%

Table 7.10: The effect of various Markov feature sets with different argument identification

features using automatic parses on the full task of identifying connectives and their

arguments for explicit and implicit connectives.

Evaluation Development

Model Gold Std Auto Gold Std Auto

Explicit

Cascade+Indep 66.29 61.26 71.40 63.99

Cascade+Joint 68.67 62.93 73.54 65.74

Full Joint 70.34 64.70 74.52 69.73

Full Joint Seq 70.50 65.42 75.33 70.18

Explicit+Implicit

Cascade+Indep 70.14 64.96 72.19 67.20

Cascade+Joint 71.36 67.40 74.19 70.00

Full Joint 72.34 68.58 74.99 70.28

Full Joint Seq 72.96 69.47 75.26 71.92

Table 7.11: Summary of Predicate-ID F-measure results for discourse parsing comparing

systems based on gold-standard and automatic parses.

Table 7.10 shows the Predicate-ID F-measure results for various feature combinations

for the task of identifying both connectives and their arguments. As before with only

explicit connectives, the performance improvements with the introduction of Markov

features are lower when considering joint connective and argument identification.

7.2.3 Summary Comparison of Automatic Versus Gold-standard Parses

In looking at the full discourse parsing task, we summarize here the primary results
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comparing performance with automatic parses versus performance using gold-standard

parses. Table 7.11 summarizes Predicate-ID F-measure results for discourse parsing

using the four different models for just explicit connectives as well as for both implicit

and explicit connectives.4 Clearly, the use of automatic parses degrades performance.

However, when considering both explicit and implicit connectives on the evaluation data

the Full Joint Seq model is able to hold the error introduced by automatic parses to

11.4% down from 14.8% when the simpler Cascade+Indep model is used with a similar

reduction in the error term introduced on the development data from 15.2% with the

Cascade+Indep model down to 11.9% with the Full Joint Seq model.

7.3 Summary

In this chapter we have explored fully automatic methods for discourse parsing. We have

identified discourse connectives and their arguments for both explicit and implicit con-

nectives. The resulting system is a fully-fledged low-level informational discourse parser.

However, there is one subtle case not considered here: identifying implicit connectives.

Determining whether an implicit connective exists involves identifying whether there is an

explicit connective that connects the current sentence to a prior sentence in the discourse.

Thus, a completely fully automatic parser aiming to generate all the PDTB connective

and argument annotations would need to carry out this step.

The primary results of this chapter captured the degree to which automatic parsing

4This is a summary of Predicate-ID F-measure results found in Tables 5.8, 5.9, 7.5 and 7.8.
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degrades the performance of the discourse parsing model. We saw error increases on

the order of 21% for argument identification Connective Accuracy and error increases of

over 15% for explicit connectives alone but under 12% for both explicit and implicit in

terms of Predicate-ID F-measure on the evaluation data. We also established that jointly

identifying explicit and implicit relations appears to help in the sense that Markov features

are better able to model contextual dependencies. As in Chapter 5, we saw that jointly

identifying connectives and their arguments, sequentially or not, improved performance

over identifying those aspects independently. We also demonstrated how performance

correlates with the quantity of training data and how recall can be traded for precision

using both non-sequential and sequential joint models.

One interesting observation we noted is that it appears there are stronger contextual

dependencies between adjacent discourse connectives rather than adjacent candidate con-

nectives. The sequential model operating over candidate connectives appears to lose some

of this contextual information. A simple way to correct for this would be to not identify

discourse connectives jointly with their arguments and instead first identify the discourse

connectives and subsequently identify their arguments using the sequential ranking model.

However, we have already established that it helps to carry these steps out jointly. An

interesting alternative for future work would be to re-rank candidate discourse connective

sequences. This would be yet another level of re-ranking that applies to sequences of

connectives and their candidate arguments (rather than just re-ranking argument pairs of

individual connectives as we have done). Such an approach would allow for additional
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features to capture properties of the entire sequence of candidate connectives and each of

their candidate argument pairs.
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Chapter 8

Relation Type Disambiguation

In Chapters 5 and 7, we addressed the problem of identifying the low-level discourse

structure of a document by first identifying discourse connectives and then identifying

their argument heads. The next important step in processing discourse is identifying

the type of the rhetorical relation that holds between two abstract objects — i.e., the

two arguments of a discourse connective, whether explicit or implicit. By analogy with

verbal predicates, we can view this process as disambiguating the sense of the discourse

connective that lexicalizes relation. Throughout this chapter, we will use the phrases

“connective sense” and “relation type” interchangeably, with the former brining the notion

of a discourse connective to the fore and the latter being more general, also applicable

to discourse relations that do not involve a connective (such as those coherence relations

based on entities and not abstract objects).
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8.1 Background

The problem of assigning rhetorical types to discourse relations has received some at-

tention in the literature. In previous work [Wellner et al., 2006] we looked at classifying

discourse relations in the Discourse Graphbank into one of 11 different categories, such

as elaboration, cause, contrast and attribution achieving 81% accuracy when provided

the segments participating in the relations.

Sporleder & Lascarides [2005, 2008], following the framework and relation inventory

of SDRT, and Marcu & Echihabi [2002] following RST, look at methods for identifying

unmarked coherence relations (i.e., relations not signaled by a discourse connective) by

creating large amounts of artificially labeled data in the following manner: 1) unambigu-

ous discourse connectives (e.g. because, but) are identified in an unannotated corpus, 2)

heuristics are applied to identify the argument spans for the connective, and 3) the two

spans are presented with the unambiguous discourse connective removed as a training

instance with the coherence type determined by the connective. These approaches are

interesting since they directly address the more difficult problem of determining rhetorical

types where there isn’t an explicit discourse connective.

These unsupervised, or semi-supervised, methods are able to achieve scores ranging

from 49.7% accuracy at 6-way classification [Marcu & Echihabi, 2002] to 57.6% accuracy

at 5-way classification [Sporleder & Lascarides, 2005]. A problem with these results,

however, is that the evaluations in these cases were carried out using an artificially

imposed uniform distribution over the different relation types for both the training and
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the test data. Of course, the various relation types do not occur uniformly in real, found

data. It therefore makes it difficult to extrapolate these results to more realistic evaluation

settings, such as identifying the relation types in the PDTB. Further, as discussed in detail

in Sporleder & Lascarides [2008], these evaluations were further biased in that the test

samples used for evaluation were created by taking discourse relations signaled by an

unambiguous discourse connective and artificially removing the connective, just as done

for the training data. When testing such a model on naturally occurring discourse relations

that do not have a discourse connective present, rather than on artificial examples that

involved an explicit discourse connective that was removed, the results drop considerably

(to only slightly better than random guessing).

Within the context of RST, Soricut & Marcu [2003] provide a full discourse parsing

model for intra-sentential discourse relations. Their system, using gold-standard syntactic

parses and discourse segments is able to identify which segments and segment groups are

participating in a discourse relation with 96.2% accuracy, while performance at identifying

those relations and their rhetorical type is 70.3%. This indicates that given a discourse

relationship, their system can assign the correct rhetorical type 72.7% of the time.

Miltsakaki et al. [2005] present a MaxEnt classifier approach to disambiguating am-

biguous explicit connectives such as when, while and since in the PDTB (using somewhat

different sense categories as part of their classification than those that appear in PDTB

2.0). They are able to achieve disambiguation accuracies 15 to 20% higher than the

majority class baseline using a set of features based on tense and aspect for these explicit
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connectives.

8.2 Discourse Connective Senses in the PDTB 2.0

For our work here, we again utilize the Penn Discourse Treebank 2.0. In addition to

annotation of discourse connectives (explicit and implicit) and their arguments, the PDTB

assigns one sense (and in some cases two) to each discourse connective. These senses

can be broken down into four broad categories or classes:

Comparison This class includes relations that emphasize differences between the two

arguments, such as different/contrasting predicates, different arguments to similar

predicates or where one argument denies or refutes the other.

Contingency These relations hold when one argument causally influences the other in

some manner.

Temporal A temporal relation holds when the two arguments are related temporally in

some fashion.

Expansion This broad class of relations involve instances where one argument is expand-

ing the discourse, adding additional relevant information or moving the narrative

forward coherently.

In the PDTB, each of these four sense classes include a set of different relation types,

some of which have one or more sub-types. The full hierarchy of senses is shown in

Figure 8.1.
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EXPANSION CONTINGENCY

Conjunction Cause

Instantiation reason

Restatement result

specification Pragmatic Cause

equivalence justification

generalization Condition

Alternative hypothetical

conjunctive general

disjunctive unreal past

chosen alternative unreal present

Exception factual past

List factual present

Pragmatic Condition

relevance

implicit assertion

COMPARISON TEMPORAL

Contrast Synchronous

juxtaposition Asynchronous

opposition precedence

Pragmatic Contrast succession

Concession

expectation

contra-expectation

Pragmatic Concession

Figure 8.1: Hierarchy of connective senses/types.
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We provide here a few examples of a couple of ambiguous discourse connectives that

have multiple senses. For a more detailed overview and description of the various sense

distinctions, the reader is referred to [Miltsakaki et al., 2008; Prasad et al., 2008].

(33) (Contingency.Condition.General) The Senate-House conference committee is

used when a bill is passed by the House and Senate in different forms.

(34) (Temporal.Synchronous) When test booklets were passed out 48 hours ahead of

time, she says she copied questions in the social studies section and gave the

answers to students.

Of course, senses are also attributed to discourse relations signaled by implicit con-

nectives:

(35) (Expansion.Conjunctive) The strong growth followed year-to-year increases of

21% in August and 12% in September. Implicit = In fact The monthly sales

have been setting records every month since March. .

Additionally, recall from Section 4.3 that besides explicit and implicit rhetorical re-

lations, there are relations expressed via 1) alternative lexicalizations (AltLex) 2) co-

herence relations based on entity relations rather than relations between abstract objects

(EntRel) and 3) adjacent sentence units where no coherence relation is present (NoRel).

Throughout this chapter, we will combine the EntRel and NoRel types into a single

type Other. AltLex relations will be treated just as other implicit relations. That is, the

phrase denoting the alternative lexicalization is not provided as a discourse connective
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for computing features to determine the relation type, since identifying such alternative

lexicalizations appears non-trivial and has not yet been automated.

8.3 Automatic Sense Disambiguation

In this section we present our approach towards automatically disambiguating discourse

connectives and provide some experimental results.

8.3.1 Task Formulation

As shown in Figure 8.1 there are 29 fine-grained categories – i.e., those senses at the

leaves in the hierarchy. In cases where two annotators disagreed about a particular

fine-grained sense, the sense assigned to that item was the next consistent coarser-

grained sense up the hierarchy consistent. For example, if one annotator assigned

a connective the sense CONTINGENCY.Condition.hypothetical and another assigned

CONTINGENCY.Condition.unreal-present the connective would be labeled simply CON-

TINGENCY.Condition. Due to this process of “backing-off”, there are actually 42 fine-

grained categories in the PDTB.

The inventory and level of granularity for sense distinctions remains open for debate.

No doubt, the level of granularity is application-specific: some applications may need to

make fine-grained distinctions whereas others do not. The degree to which performance

degrades when making finer-grained distinctions is also something to consider and in-

vestigate. In our experiments we explore three different sets of sense categories: 1) the
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Semi-Coarse Categories Fine Categories

EXPANSION.Restatement EXPANSION.Restatement.*

EXPANSION.Conjunction EXPANSION.Conjunction

EXPANSION.Instantiation EXPANSION.Instantiation

EXPANSION.Other

EXPANSION.Exception

EXPANSION.List

EXPANSION.Alternative.*

COMPARISON.Contrast
COMPARISON.Contrast.*

COMPARISON.Pragmatic Contrast

COMPARISON.Concession
COMPARISON.Concession.*

COMPARISON.Pragmatic Concession

CONTINGENCY.Cause.Reason
CONTINGENCY.Cause.Reason

CONTINGENCY.Pragmatic Cause.Reason

CONTINGENCY.Cause.Result CONTINGENCY.Cause.Result

CONTINGENCY.Condition
CONTINGENCY.Condition.*

CONTINGENCY.Pragmatic Condition.*

TEMPORAL.Synchronous TEMPORAL.Synchronous

TEMPORAL.Asynchronous.Precedence TEMPORAL.Asynchronous.Precedence

TEMPORAL.Asynchronous.Succession TEMPORAL.Asynchronous.Succession

Figure 8.2: The mapping from fine-grained categories to semi-coarse-grained categories.

four coarse-grained classes along with a fifth class OTHER (for EntRel and NoRel), 2)

the fine-grained categorization with 42 categories (including OTHER) and 3) a semi-

coarse-grained level of categorization including 13 senses which collapses some of the

fine-grained categories that occur quite infrequently according to the mapping in Fig-

ure 8.2.

For each of these three sense label inventories, we consider the problems of assigning

senses to both explicit and implicit connectives jointly as well as to explicit and implicit

connectives, separately.
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Sense Disambiguation as a Sequence Labeling Problem

Recent work [Pitler et al., 2008] has shown that there are clear dependencies between

adjacent discourse relations (i.e., adjacent connectives). That is, some pairs of relation

types appear adjacent to each other in the text more frequently than they would by chance.

Being able to leverage this context of the surrounding discourse could be especially

important for implicit connectives since disambiguating these outright is very difficult;

even weak contextual dependencies could help identify the senses for implicit connectives.

A naive way to handle this might be to identify the sense of each discourse connective,

one at a time, starting from the beginning of each document or paragraph. This would

allow the decision procedure for the nth discourse connective to use the previous n − 1

connectives and their assigned senses as features. Of course, a more principled approach

is to use a global sequence model that jointly identifies the best sequence of connective

senses or relation types for the corresponding sequence of discourse connectives.

To model these dependencies between adjacent discourse relations, we once again

return to using a first-order, sequential CRF. We treat each connective/relation as an

element in a sequence where sequences are delimited by paragraph boundaries, just as

was done for argument identification with CRFs. As we have a fixed set of labels for each

discourse relation (i.e. the set of coarse-grained or fine-grained senses, depending on the

task) and each connective is assigned a single label 1, we can use a standard factored

CRF, rather than the non-factored CRF that we have developed in this dissertation for

1In this work, we only consider the problem of assigning the first sense to each connective. The problem

of identifying the second sense for those connectives with multiple sense is left for future work.
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argument identification.

8.3.2 Features

For our experiments we consider the following set of features:

Connective This is a single feature which is the connective phrase itself. In the case

of implicit connectives, this feature simply denotes that the connective is, in fact,

implicit (vs. explicit).

Argument Heads These features include the Arg1 semantic head conjoined with the

connective and the Arg2 semantic head similarly conjoined.

Discourse Context The connectives before and after the connective as well as the bi-

gram including the previous and current connective.

Syntactic Context These features include the path from the Arg1 head to the Arg2 head

as well as the same path, but conjoined with the connective.

Tense and Aspect The tense of the two arguments conjoined with the connective with the

following categories: present-continuous, past-continuous, copula, present-perfect,

present, past-perfect-progressive, present-perfect, present-perfect-progressive, past-

perfect, aorist (simple-past), future-perfect, future, conditional-perfect, and condi-

tional.

Part-of-speech Context The part-of-speech of the previous and succeeding words to the

connective along with various conjunctions including the connective.
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Modal/Adverbial Context Negation adverbials as well as basic “manner” adverbs of the

Arg1 and Arg2 heads.

Discourse-Syntactic Context This feature includes the syntactic dependency path be-

tween the current connective and the previous discourse connective.

Argument Coherence Whether the discourse arguments for the connective have the same

syntactic subject head string, syntactic object string.

LexPos These features included 1) content lexemes from both argument spans along with

their part-of-speech, 2) the positions of the sentences containing the two arguments

relative to paragraph boundaries (with value of: beginning, middle, end), and 3)

features capturing the length of the two argument spans in terms of tokens. The

length features were binned at 3,6,9,12,15,20 and 30. So, a span with 11 words

would trigger the feature len=LessThan12, while a span with 26 words would

trigger len=LessThan30.

The LexPos features were inspired by those introduced in Sporleder & Lascarides

[2005]. Following that work, we also considered various overlap features that measured

the degree to which various words overlapped in the two argument spans, including

features that captured the degree to which WordNet senses overlap (by following the

hypernym links to the “root” senses for each word). These features did not improve

performance, however, when used together with the lexical, positional and span length

features. This may have been due to the fact that we did not perform word-sense disam-
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Sense Granularity

Feature Set Coarse Semi-coarse Fine

Connective 64.63 54.57 52.36

Argument Heads 66.58 54.41 50.69

Connective Context 64.47 54.82 51.92

Syntactic Context 66.80 57.85 54.13

Tense 65.07 54.98 51.32

Part-of-speech Context 65.07 55.42 50.76

Modal Context 64.66 54.67 52.43

Discourse Context 64.79 54.67 52.14

Argument Coherence 64.38 55.20 52.99

LexPos 65.76 55.63 53.15

Syntactic+Discourse+Argument 67.47 57.16 53.59

Syntactic+Discourse+Argument+LexPos 68.38 56.72 52.89

All Features 68.88 57.29 51.36

Table 8.1: Accuracies on the evaluation data for labeling explicit and implicit connectives

using the four coarse-grained categories with different feature sets. All feature sets include

the “Connective” feature.

biguation, and simply selected the most frequent, first sense of each word in WordNet,

following Sporleder & Lascarides [2005].

8.3.3 Results

Table 8.1 provides results for the various feature sets described for the task of labeling

both explicit and implicit discourse connectives with their coarse-grained category, which

includes the four connective classes as well as the class Other for NoRel and EntRel

cases. Note that the majority baseline for this task provides 36.6% accuracy, which

is achieved by labeling all connectives with type EXPANSION. The Syntactic Context

features provide the most help, individually, but here the entire set of features works

additively to provide a modest, but notable improvement over the Connective baseline,
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Relation Type Prec. Rec. F1 Count

Comparison 88.41 67.57 76.60 666

Contingency 65.90 55.68 60.02 616

Expansion 66.62 78.66 72.14 1162

Temporal 81.48 77.81 79.61 311

Other 50.54 56.59 53.99 417

Table 8.2: Precision, recall and f-measure scores for assigning relation types to explicit

and implicit discourse connectives using the best performing feature configuration (All

Features).

improving results from 64.6% to 68.9%. That the Connective feature, by itself, provides a

very competitive baseline has been demonstrated in previous work [Wellner et al., 2006].

The results for labeling connectives with semi-coarse and fine sense categories are also

shown in Table 8.1. For both these granularities of categorization, using all the features

or combinations of different feature sets does not perform as well as using the Syntactic

Context features on their own. This appears to be due to data sparsity and overfitting.

The accuracies on the training data (not shown) are considerably higher using greater

numbers of features, but those results to not generalize well to the evaluation data. With

the fine categorization the class sparsity is considerable with 9 categories of them having

fewer than 15 occurrences in the training data.

While there remains considerable room for improvement, the inter-annotator agree-

ment (among two annotators) within the PDTB was 92% at the coarse level and just 77%

at the fine level of classification [Miltsakaki et al., 2008]. Further, these agreement num-

bers do not include agreement on identifying relations as Other (i.e., NoRel or EntRel),

thus the agreement numbers are likely somewhat lower for the classification tasks put

forward here.
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Relation Type Prec. Rec. F1 Count

Comparison.Contrast 90.75 60.65 72.71 615

Comparison.Other 32.76 37.25 34.86 51

Contingency.Cause.Reason 74.17 30.58 43.31 291

Contingency.Cause.Result 94.23 23.44 37.55 209

Contingency.Condition 94.85 79.31 86.38 116

Expansion.Conjunction 76.02 72.14 74.03 646

Expansion.Instantiation 96.88 21.53 35.23 144

Expansion.Other 92.31 24.24 38.40 99

Expansion.Restatement 22.81 26.74 24.62 273

Temporal.Asynchronous.Precedence 89.86 72.09 80.00 86

Temporal.Asynchronous.Succession 98.33 54.63 70.24 108

Temporal.Synchronous 54.26 87.18 66.89 117

Other 35.17 94.96 51.33 417

Table 8.3: Precision, recall and f-measure scores for assigning semi-coarse relation types

to explicit and implicit connectives using the Syntactic Context features.

Beyond looking at overall classification accuracies it is insightful to examine precision,

recall and f-measure results for each individual category. Tables 8.2, 8.3 and 8.4 show the

per-category results for coarse, semi-coarse and fine categorizations, respectively. The

counts in the test data are also provided. Clearly, the fine categorization suffers from

class sparsity and performance for each category tends to correlate with the number of

instances of that category in the data. Another clear difficulty apparent from these results

is that the model is having a difficult time distinguishing Other relations — i.e., NoRel

and EntRel — from actual discourse relations.

8.3.4 Explicit vs. Implicit Connectives

Identifying the rhetorical type of a relation is very difficult when an explicit discourse

connective is not present. Table 8.5 provides a breakdown of results for labeling explicit
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Relation Type Prec. Rec. F1 Count

Comparison 100.0 0.0 0.0 4

Comparison.Conecssion.Contra-expection 20.69 26.09 23.08 23

Comparison.Concession.Expectation 13.16 26.32 17.54 19

Comparison.Contrast 87.96 59.47 70.96 528

Comparison.Contrast.Juxtaposition 31.58 18.75 23.53 64

Comparison.Contrast.Opposition 0.0 0.0 0.0 23

Comparison.Contrast.Pragmatic-concession 100.0 0.0 0.0 5

Contingency.Cause.Reason 38.11 48.45 42.66 291

Contingency.Cause.Result 94.23 23.44 37.55 209

Contingency.Condition.Factual-past 100.0 0.0 0.0 2

Contingency.Condition.Factual-present 100.0 0.0 0.0 8

Contingency.Condition.General 100.0 0.0 0.0 24

Contingency.Condition.Hypothetical 52.58 98.08 68.46 52

Contingency.Condition.Unreal-past 100.0 0.0 0.0 2

Contingency.Condition.Unreal-present 100.0 0.0 0.0 14

Contingency.Pragmatic-cause.Justification 100.0 0.0 0.0 6

Contingency.Pragmatic-cond.Implicit-assertion 100.0 0.0 0.0 3

Contingency.Pragmatic-cond.Relevance 100.0 0.0 0.0 5

Expansion 100.0 0.0 0.0 4

Expansion.Alternative 100.0 0.0 0.0 9

Expansion.Alternative.Chosen-alternative 100.0 0.0 0.0 18

Expansion.Alternative.Conjunctive 13.33 100.0 23.53 2

Expansion.Alternative.Disjunctive 100.0 20.0 33.33 5

Expansion.Conjunction 73.86 72.60 73.22 646

Expansion.Exception 100.0 100.0 100.0 1

Expansion.Instantiation 96.88 21.53 35.23 144

Expansion.List 66.67 3.33 6.35 60

Expansion.Restatement 100.0 0.0 0.0 22

Expansion.Restatement.Equivalence 100.0 0.0 0.0 21

Expansion.Restatement.Generalization 100.0 0.0 0.0 12

Expansion.Restatement.Specification 100.0 0.0 0.0 218

Temporal.Asynchronous.Precedence 89.86 72.09 80.00 86

Temporal.Asynchronous.Succession 96.72 54.63 69.82 108

Temporal.Synchronous 54.26 87.18 66.89 117

Other 35.17 94.96 51.33 417

Table 8.4: Precision, recall and f-measure scores for assigning fine relation types to

explicit and implicit connectives using the Syntactic Context features.
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Connectives Coarse Semi-coarse Fine

Explicit Only 92.40 (35.84) 84.18 (29.44) 76.59 (29.44)

Implicit Only 45.85 (37.40) 31.03 (26.41) 30.40 (26.41)

Explicit+Implicit (Separate) 69.22 (36.63) 57.77 (20.37) 53.59 (20.37)

Explicit+Implicit (Joint) 68.88 (36.63) 57.85 (20.37) 54.13 (20.37)

Table 8.5: Coarse, semi-coarse and fine categorization results comparing separate classi-

fication of explicit and implicit connectives with joint classification using the best feature

configuration for each categorization. Baseline class-majority results are indicated in

parentheses.

and implicit connectives independently as well as jointly for both the coarse-grain and

fine-grain categorizations. The Explicit Only and Implicit Only results were obtained

by training separate CRFs over only explicit and only implicit connectives, respectively.

Combining these accuracies arrives at the results in row labeled: Explicit+Implicit (Sepa-

rate). The final row in the table shows the results using a single CRF across both explicit

and implicit connectives.

Modeling explicit and implicit connectives separately seems to be beneficial since

performance is roughly the same as modeling both connective types jointly, which would

have the advantage of better contextual dependencies. For example, the most important

dependencies identified in Pitler et al. [2008] were those where an implicit connective

of type Contingency was found following an explicit connective of type Comparison.

Further, 9 of the 10 most significant dependencies involved one explicit connective with

an adjacent implicit one. This would indicate that contextual advantages can be best

exploited in a model that handles both connective types jointly.

Handling the connective types separately, however, could benefit from further improve-

ments provided by separate, customized feature sets. For example, the lexical features
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are likely to be much more useful for implicit connectives, whereas syntactic features

are more useful for explicit ones. Also, however, having separate models allows for each

to capture the intrinsic differences between explicit and implicit relations. Even though

the features carefully conjoin the connective phrase with other features (e.g. an explicit

connective or simply implicit for implicit connectives is conjoined with the syntactic

path from the head of Arg1 to the head of Arg2), there are different class distributions

associated with explicit and implicit connectives.

8.4 Future Directions

We have demonstrated some benefits to identifying rhetorical types for discourse relations

in context — that is, taking into account how adjacent discourse relation types influence

each other. However, as made clear by the results in the previous section, performance

for identifying rhetorical types of implicit connectives, in particular, leaves much room

for improvement.

As mentioned earlier, two previous approaches [Marcu & Echihabi, 2002; Sporleder

& Lascarides, 2008] looked at bootstrapping classifiers to identify implicit discourse re-

lations (i.e., those without a discourse “marker”) by identifying unambiguous connectives

in a large body of text, identifying the argument spans of each connective and creating

a classification instance from the two spans with the label of the instance determined by

the connective. Crucially, the discourse connective is not used as a source of features, so

as to simulate an implicit discourse relation. As demonstrated in Sporleder & Lascarides
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[2008], however, this approach falls down when one applies a classifier trained in this

manner to found implicit discourse relations. Naturally occurring implicit relations are

qualitatively different from explicit relations minus the discourse connective.

Despite these results, semi-supervised approaches seem key to improving performance

for identifying implicit relations since performance is still poor even when training on the

entire Discourse Treebank training set. Rather than labeling data using the trick above,

however, an alternative approach in the context of the discourse parser in this dissertation

would be to use self-training. This could work by applying the discourse parser in

Chapter 7 along with the sense disambiguator discussed in this chapter to unannotated

text. Since it is possible to extract probability scores for each extracted discourse relation

and its assigned sense/type, it is possible to rank the extracted relations by the models’

confidence. In the case of self-training, the extracted (and labeled) relations with high

confidence scores can be used as new training exemplars. This process can be iterated

with the goal of improving performance until some local optimum is converged upon.

Self-training has been employed successfully in syntactic constituent parsing [McClosky

et al., 2006], and could perhaps be employed not only for sense disambiguation, but for

argument selection. Indeed, it has been shown that re-ranking models as we have utilized

in this work, are especially able to benefit from self-training [McClosky et al., 2008].

Co-training [Blum & Mitchell, 1998] could be employed in a similar fashion. These

methods could prove more successful than the unsupervised approaches described earlier

since they avoid modifying the actual data, however they may be susceptible to other
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pitfalls associated with semi-supervised learning such as failing to identify a good local

optimum.

Other future work could look at carefully constructing separate feature sets for explicit

and implicit connectives. Further along these lines would be to introduce separate features

for different explicit connectives. For example, the features most useful for disambiguating

when may be different than those for disambiguating indeed.

Another avenue worth exploring is modeling the actual connective phrase for implicit

connectives. Since the relation type can be identified quite reliably with a discourse

connective, trying to either explicitly generate the discourse connective or modeling it as

a hidden variable in a generative model may be one way to provide better performance.

Experimenting with other discriminative classifiers such as Support Vector Machines

may also improve performance. Kernel-based learning methods, in particular, could be

beneficial since designing features and appropriate feature combinations for this task is

especially problematic; methods that implicitly explore the space of features may do a

better job at discrimination.

Finally, jointly modeling relation type classification together with connective and ar-

gument identification may provide additional improvements. For example, certain relation

types may be more or less likely to select the complement of an attribution-denoting verb.

These regularities, to the extent that they exist, could jointly benefit both relation type

and argument identification.
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Chapter 9

Conclusions and Future Work

9.1 Summary

The main goal of this dissertation has been the development of a robust, machine-learning

based system for identifying informational discourse relations in text as annotated in the

Penn Discourse Treebank. The most novel contribution we have made is the development

of a sequential ranking model based on Conditional Random Fields (CRFs) that makes

use of non-factored feature functions. This model was applied to both discourse and

syntactic parsing with promising results. The model is general, applicable to many NLP

tasks that can be modeled sequentially (as discussed in more detail below) and is able to

leverage existing and future developments within the growing body of work on sequential

CRFs.

Additional accomplishments of this dissertation include: a dependency-based frame-

work for parsing discourse; a novel approach to syntactic dependency parsing based on
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the sequential ranking model; analysis of increasingly sophisticated log-linear statistical

models for deciding various sub-problems of the discourse parsing task; and a comprehen-

sive analysis of various features and knowledge sources for the various parsing sub-tasks

and their relative contributions to performance.

Along the way we have built a fully automated discourse parser based on the anno-

tations found in the Penn Discourse Treebank, capable of identifying discourse relations

and disambiguating their types. Our plan is to include the discourse parser as part of

the Carafe open source toolkit1 for statistical modeling of natural language in the near

future to help accelerate the progress of research in discourse analysis as well as to enable

applications that could make use of discourse parsing.

The results we have presented here further a trend within the computational linguis-

tics community towards global models that 1) jointly model various sub-problems within

a complex, multi-staged process, and 2) consider larger contexts within a single sub-

problem in which decisions are made jointly with other “nearby” decisions. In this work,

we have explored identifying both arguments jointly and also jointly identifying discourse

connectives and their arguments as an instance of (1). We considered sequential depen-

dencies between argument (and connective) decisions as an instance of (2). The results

fairly clearly demonstrated that modeling the discourse parsing sub-tasks of connective

and (joint) argument identification improves performance over carrying out such steps

separately. Identifying discourse relations in sequence appears to offer promise for fur-

ther improving performance, however the improvement over non-sequential methods using

1Carafe is available at: http://www.sourceforge.net/project/carafe.
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the full set of features was only slight when automatic parses were used and non-existent

with gold-standard parses.

Beyond discourse parsing, we established that sequential ranking can be applied in

a novel fashion to the problem of syntactic dependency parsing. Ranking the candidate

governors for each word in the sentence sequentially through the introduction of appro-

priate Markov feature improved performance, at a statistically significant level, over a

model not capturing sequential dependencies.

Throughout this work we have paid careful attention to designing various feature sets

and providing analysis as which sets of features are most promising. Feature engineering

is a difficult and somewhat arduous process. Beyond the statistical models put forth, it is

hoped that the features developed herein will provide useful starting points for additional

work in discourse parsing. For example, Elwell & Baldridge [2008] have provided some

improved results at argument identification building upon the features and approach in

this work.

9.2 Future Directions

There are a number of directions for future work that we outline below.

9.2.1 Global Modeling

Whether and the degree to which global modeling helps, is something that will always

require empirical verification. We demonstrated, for the most part, advantages to global
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modeling in the context of discourse parsing. However, as our work here has explored,

there are many different architectures with various advantages and disadvantages along

the spectrum of local-cascaded models to fully global-joint models. For example, we

noticed here that the advantages of modeling sequential dependencies was greater when

operating over sequences of “given” (or previously identified) discourse connectives rather

than the sequence of candidate connectives. This indicates that it may be beneficial, in

fact, to identify connectives up-front in a separate process so as to enable better modeling

of argument dependencies between adjacent connectives, interesting area of future work

to explore further.

A related idea is to move beyond sequential Markov type models for discourse as

we have looked at here and consider longer-range dependencies. For example, the Arg1

for a given connective may exist in the neighborhood not of the immediately preceding

connective (and its arguments), but of a connective occurring much earlier in the dis-

course. Interesting future research might consider methods for capturing these longer

distance dependencies, such as skip-chain CRFs [Galley, 2006; Sutton & McCallum,

2007] or two-pass CRFs [Krishnan & Manning, 2006] — an advantage of our formula-

tion of discourse parsing within CRFs, is the ability to leverage the considerable amount

of existing and future work with CRFs for improvements in capturing such global de-

pendencies. Another approach would be to avoid sequential models and explicitly con-

sider richer discriminative models that capture arbitrary dependencies. Markov Logic

Networks (MLNs) [Richardson & Domingos, 2006] are an interesting instance of such
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models, which allow the specification of dependencies between output variables as well

as specification of features via first-order logic statements. One difficulty, however, is that

selecting the arguments of discourse connectives seems more naturally formulated as a

ranking problem, rather than multinomial classification as would be required with MLNs.

Thus, extensions to the MLNs to handle ranking problems would be an interesting area

to explore in this vein.

Rather than abandoning sequence methods altogether, yet another option would be

to move to higher-order sequential CRFs that would allow features not over pairs of

connectives (and their arguments), but triples or larger groupings of connectives. Data

sparsity then becomes an issue. This could be mitigated, however, with careful feature

engineering.

9.2.2 Sequential Ranking and Additional Applications

A final interesting extension, more in line with our current approach, would be to again

use re-ranking — given the k-best sequences of connectives and their selected arguments,

a re-ranking approach could consider features over entire sequences of connectives and

their arguments with the aim of learning to identify the best sequence. Indeed, carrying

our notion of sequential (re-)ranking to the next level, it would be possible to re-rank the

arguments for sequences of connectives in sequence. That is, re-ranking the sequences

of connectives and their arguments for a given paragraph2 could be dependent on the

2Recall that we have identified the paragraph as the delimiting unit for sequences of connectives in this

work.
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candidate sequences in the previous and subsequent paragraph, allowing for even greater

contextual dependencies to be modeled.

Many other complex NLP tasks could be modeled with the sequential ranking ap-

proach we have developed. For example, PropBank parsing could be approached by 1)

ranking the arguments for each predicate in sequence and 2) re-ranking the arguments

for a sequence of predicates (within a sentence, for example) taking into account depen-

dencies between the arguments of adjacent predicates. This would amount to applying

the same sequential ranking generalization in this work to previous work on re-ranking

PropBank arguments [Toutanova et al., 2005]. Other semantic predicate-argument parsing

tasks would be amenable to this architecture, such as FrameNet and NomBank parsing.

Co-reference is another problem that may be well-suited to this framework. For

example, Denis & Baldridge [2007] approach the problem of anaphora resolution as

a ranking problem — i.e., the potential antecedents are ranked (as we have done here

for discourse connective argument identification). A natural extension of their approach

would be to rank the antecedents for the sequence of pronouns (or other entity mentions).

This model would be able to capture dependencies between adjacent pronouns and their

candidate antecedents. For example, a subjective and objective pronoun within the same

sentence (e.g. “He did not like him”) would not refer to the same antecedent. These

types of dependencies/constraints could be easily captured using the appropriate Markov

features. This approach would occupy a middle ground between “local” approaches to

co-reference that resolve each referent independently and approaches that consider the
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full transitive closure during inference and/or learning [McCallum & Wellner, 2003;

Richardson & Domingos, 2006].

9.2.3 Argument Extents

In this dissertation, we have argued for a dependency representation of discourse as a

way to avoid the difficult and less well-defined aspect of identifying discourse argument

extents. While in many cases the extent can be retrieved accurately by following the

syntactic descendents of the lexical head (in a dependency parse), there are cases where

the extent is difficult to determine (e.g. whether to include a free adjunct). Further,

syntactic parser errors will thwart accurate extraction of the extent. Measuring this is

important, especially since the extents of discourse arguments are larger than those for the

arguments in semantic role labeling, for example. Most importantly, requiring systems to

identify the extent would provide a better means to compare different systems, since the

argument extents are established in the PDTB (while lexical heads are derived and may

vary depending on the heuristics used).

One additional point is that identifying extents may be useful as a source of ad-

ditional features for argument selection. Recall that we introduced a class of Markov

features called Dominates that determined whether the candidate argument for a con-

nective πi was dominated by the candidate argument for an adjacent connective. As

some discourse extents don’t follow exactly from syntactic dominance, better modeling

of argument extents could improve the quality of Markov features such as those in the
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Dominates feature class. Relatedly, there may be other features of a candidate argument’s

proposed extent (e.g. its size) that could prove useful for argument selection.

Finally, as we observed earlier, identifying only the lexical head of a discourse argu-

ment is ambiguous in some cases. In particular, in cases of subordination and coordina-

tion, identifying the lexical head of the matrix clause and first conjunct, respectively, does

not distinguish between whether the argument is only the matrix clause or first conjunct or

whether the argument includes the entire sentence. Relatedly, some arguments span over

multiple sentences and identifying the head only indicates where such argument extents

begin.

Towards Identifying Argument Extents

We outline here a few possible approaches for automatically identifying the arguments of

discourse extents.

Heuristic post-processing The simplest method for identifying argument extents

would be to use the existing system(s) put forth in this dissertation to recover the head-

based discourse structure and identify the extents with a simple, heuristic post-process.

For many Arg2 arguments, the argument extent is retrieved reliably by identifying all

descendents of the identified argument head. The Arg1 argument is then identified by

taking the descendents of the identified head excluding the already identified Arg2 ex-

tent. This is analogous to the tree-subtraction heuristic employed in Dinesh et al. [2005].

Manual inspection of a part of the development data indicates that the vast majority of

argument extents for intra-sentential relations can be identified using this approach.
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Machine learning post-processing The tree-subtraction approach breaks down when

considering Arg1 arguments that lie in prior sentences within the document and when

supplementary text is found (typically as parentheticals, appositional phrases and clauses,

or free adjuncts) that is deemed unnecessary as a realization of the abstract object denoted

by the argument extent. Supplementary text associated with arguments is annotated in the

PDTB when it is relevant to the discourse but not “minimally necessary”; in other cases

such supplementary text is not included at all as with the free adjunct below beginning

with “which was..”:

(36) But a Soviet bank here would be crippled unless Moscow found a way to settle the

$188 million debt, which was lent to the country’s short-lived democratic Kerensky

government before the Communists seized power in 1917.

While some of these cases might be handled heuristically, identifying what to include

as part of the argument in cases like the above appears to be a major source of inter-

annotator disagreement, as mentioned earlier and noted in Miltsakaki et al. [2004b].

There are at least two ways to form the argument identification task as a machine

learning problem. The first approach would be to identify, through heuristic means, a

set of reasonable candidate argument extents (again, assuming the existing head-based

discourse structure is provided as an input) and use a ranking or classification approach to

select the best extent3. An alternative framework would be to view the argument extraction

task as a text compression task [Clarke & Lapata, 2006]. Such an approach could work

3This kind of approach has been applied in the context of Semantic Role Labeling.
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by first identifying the maximum possible (or maximum most likely) argument extent,

which would typically consist of all descendents of the head in the dependency graph

( this could include subsequent sentences when considering the augmented discourse

dependency graph that forms a directed link between the root word of a sentence and the

subsequent sentence). Given the maximal extent, the argument extent could be extracted

using sentence/text compression techniques. Briefly, these techniques take a sentence

(or other unit of text) and determine which portions to elide such that the remaining

text is both coherent and contains relevant information. This approach would allow for

identification of disjoint argument extents and likely be more robust than the candidate

selection approach in the face of syntactic parser errors.

Joint identification of discourse Arguments, rhetorical types and extents Identi-

fying argument extents jointly with the other aspects of discourse parsing we have ad-

dressed in this dissertation may offer improved performance over carrying out this stage

independently. This could be carried out by identifying for each candidate head, the top

k candidate extents for that head which could be achieved with the candidate selection

method above or text compression methods that can identify the top k compressions.

The set of candidates for each argument would thus be Nk where N is the number of

candidate heads and k the number of candidate extents for each head. The argument ex-

tent appears to be useful for identifying rhetorical types (e.g. certain rhetorical types are

correlated with larger or smaller argument extents). Considering extents may also help

identify the arguments for certain adverbial connectives such that are strongly correlated

182



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

with particular rhetorical types. For example, instead frequently has a negated predicate

or quantifier over the scope of it’s argument that could be identified by determining the

scope of the candidate argument extent. The extent to which having access to the can-

didate arguments potential extents improves argument selection is the prime determining

factor for favoring a fully joint model over a cascaded model in this context.

9.2.4 Additional Features and Finer-grained Analyses

In this work, we have approached the discourse parsing problem by employing large

numbers of features whose weights are determined by machine learning methods. For

a given task (e.g. argument identification), we have, for the most part, employed the

same set of features for all instances of that task. Many of these instances can be

grouped into different classes, such as the arguments of different connective types (e.g.

coordinating connectives vs. adverbials). Finer-grained classifications are also possible.

For example, adverbial connectives such as instead or in fact behave quite differently

from connectives such as nevertheless or moreover. A systematic analysis that groups

these different categories and then leverages different sets of features for each group

may provide accuracy improvements for identifying discourse arguments. Similarly, this

approach could benefit rhetorical type identification.

Beyond different sets of features, a more detailed set of heuristics could benefit argu-

ment identification or rhetorical type identification since, in some cases, high precision

rules are fairly obvious. These heuristics could be utilized in a hybrid system that identi-
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fies certain cases using heuristics and others using machine learning methods; they could

also serve as a new set of richer features; and finally, their evaluation provides a clearer

indication of the phenomena involved for identifying discourse relations than using ma-

chine learning methods in which it is somewhat difficult to determine the contribution of

linguistic features due to the lack of statistical independence among the features.

9.2.5 Employing Richer Semantics

We have explored discourse parsing from the task of connective identification to the task

of relation type disambiguation using a number of linguistically motivated, yet largely

surface-based, features. As mentioned in Chapter 8, we made some use of WordNet to

help reduce lexical sparsity for identifying relation types. We found this did not improve

performance, however, quite possibly due to naïvely using just the most frequent WordNet

sense for each lexical item, instead of carrying out word sense disambiguation.

Clearly, however, lexical semantics is important for properly identifying discourse

relation types and their semantics [Asher & Lascarides, 2003]. Beyond using lexical

knowledge to simply reduce data sparsity, explicitly taking into account lexical aspect and

event structure [Pustejovsky, 1995] also seems important for constraining the discourse.

For example, causatives and resultatives may provide strong cues for causation discourse

relations. Also, logically polysemous constructions [Pustejovsky & Bouillon, 1995] with

aspectual predicates such as begin as in

(37) He began the trip.
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may, for example, prime the discourse for subsequent Elaboration-type relations since

the predicate selected by the aspectual predicate is elided. Indeed, coercions in general

may be correlated with particular types of coherence relations.

Another important source of information about coherence relations involves entity-

level co-reference. There appear to be clear correlations between entity-level coherence

and particular relation types such as Elaboration. Such information may help to not only

disambiguate relation types but also serve to help identify long-distance Arg1 arguments.

For example, the Arg1 of the connective also frequently involves the same entity as

described in its Arg2.

An interesting area for future work would be to leverage existing and emerging linguis-

tic resources such as Ontonotes [Hovy et al., 2006] which annotates the Penn Treebank

with word sense information and co-reference. The PropBank and NomBank resources

could also be leveraged. NomBank could provide useful information about nominaliza-

tions while certain PropBank ArgM arguments, in particular, overlap with the discourse

annotations in the PDTB. Beyond using these as sources of features, jointly modeling

PropBank and/or NomBank arguments and discourse arguments may be fruitful. The

higher density of arguments for these tasks combined might provide a better setting for

the sequence models we have put forward here to improve performance. Annotations con-

forming to the emerging Generative Lexicon Mark-up Language (GLML) [Pustejovsky

et al., 2008] could provide important information regarding lexical aspect and coercions

that aids in parsing discourse. As automating these levels of analyses in these cor-
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pora are difficult tasks themselves, establishing which analyses have the greatest utility

for discourse parsing using gold-standard annotations is important for making additional

progress in automated discourse parsing by focusing development on important enabling

components.

Integrating and modeling the interaction of multiple levels of linguistic annotation

and resulting automatic analyses is a promising trend in computational linguistics. Rich

learning architectures, such as those advocated in this dissertation, will be required to

exploit these interactions to their fullest.
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Argument Identification Errors Per

Connective

This appendix provides a detailed listing of the the accuracies per explicit connective

phrase on the evaluation data for argument identification. These accuracies correspond

to the aggregate results in Table 4.3 .

1.000000 38 / 38 If (subord)

1.000000 10 / 10 or (coord)

1.000000 5 / 5 After (subord)

1.000000 5 / 5 thus (disadv)

1.000000 4 / 4 still (disadv)

1.000000 4 / 4 Or (coord)

1.000000 3 / 3 largely because (subord)

1.000000 3 / 3 even after (subord)

1.000000 3 / 3 just as (subord)

1.000000 3 / 3 Even if (subord)

1.000000 3 / 3 Since (subord)

1.000000 2 / 2 on the other hand (disadv)

1.000000 2 / 2 in part because (subord)

1.000000 2 / 2 specifically (disadv)

1.000000 2 / 2 Nonetheless (disadv)

1.000000 2 / 2 now that (disadv)

1.000000 2 / 2 so that (disadv)

1.000000 2 / 2 if then (coord)

1.000000 2 / 2 Besides (disadv)

1.000000 2 / 2 Before (subord)
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1.000000 2 / 2 once (subord)

1.000000 1 / 1 just eight days before (subord)

1.000000 1 / 1 presumably because (subord)

1.000000 1 / 1 particularly after (subord)

1.000000 1 / 1 just a month after (subord)

1.000000 1 / 1 especially because (subord)

1.000000 1 / 1 A few hours after (subord)

1.000000 1 / 1 especially after (subord)

1.000000 1 / 1 perhaps because (subord)

1.000000 1 / 1 especially when (subord)

1.000000 1 / 1 On the contrary (disadv)

1.000000 1 / 1 Simultaneously (disadv)

1.000000 1 / 1 In other words (disadv)

1.000000 1 / 1 shortly after (subord)

1.000000 1 / 1 especially if (subord)

1.000000 1 / 1 nevertheless (disadv)

1.000000 1 / 1 consequently (disadv)

1.000000 1 / 1 Additionally (disadv)

1.000000 1 / 1 not because (subord)

1.000000 1 / 1 nonetheless (disadv)

1.000000 1 / 1 long before (subord)

1.000000 1 / 1 if and when (subord)

1.000000 1 / 1 by contrast (disadv)

1.000000 1 / 1 Even though (subord)

1.000000 1 / 1 as long as (subord)

1.000000 1 / 1 otherwise (disadv)

1.000000 1 / 1 only when (subord)

1.000000 1 / 1 even when (subord)

1.000000 1 / 1 either or (coord)

1.000000 1 / 1 as though (subord)

1.000000 1 / 1 Similarly (disadv)

1.000000 1 / 1 Just when (subord)

1.000000 1 / 1 moreover (disadv)

1.000000 1 / 1 whereas (subord)

1.000000 1 / 1 only if (subord)

1.000000 1 / 1 much as (subord)

1.000000 1 / 1 in fact (disadv)

1.000000 1 / 1 even if (subord)

1.000000 1 / 1 even as (subord)

1.000000 1 / 1 by then (coord)

1.000000 1 / 1 If only (disadv)

1.000000 1 / 1 Even as (subord)

1.000000 1 / 1 unless (subord)

1.000000 1 / 1 rather (disadv)

1.000000 1 / 1 except (disadv)

1.000000 1 / 1 Rather (disadv)

1.000000 1 / 1 hence (disadv)

1.000000 1 / 1 as if (subord)

1.000000 1 / 1 Later (disadv)

1.000000 1 / 1 Hence (disadv)

1.000000 1 / 1 yet (coord)

0.972222 35 / 36 while (subord)

0.967742 30 / 31 When (subord)

0.954545 21 / 22 before (subord)

0.928571 26 / 28 after (subord)

0.916667 11 / 12 since (subord)

0.909804 232 /255 and (coord)

0.909091 10 / 11 for instance (disadv)

0.909091 10 / 11 Although (subord)

0.900000 9 / 10 As (subord)

0.892857 50 / 56 as (subord)

0.877551 43 / 49 if (subord)

0.866667 52 / 60 because (subord)

0.858407 97 /113 but (coord)
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0.857143 6 / 7 even though (subord)

0.851064 40 / 47 when (subord)

0.846154 11 / 13 although (subord)

0.800000 12 / 15 While (subord)

0.800000 12 / 15 so (subord)

0.800000 4 / 5 As a result (disadv)

0.800000 4 / 5 Though (subord)

0.800000 4 / 5 nor (coord)

0.750000 3 / 4 previously (disadv)

0.750000 3 / 4 Because (subord)

0.714286 5 / 7 until (subord)

0.692308 9 / 13 Still (disadv)

0.684211 13 / 19 then (coord)

0.666667 4 / 6 In fact (disadv)

0.666667 2 / 3 earlier (disadv)

0.625000 5 / 8 Then (coord)

0.611940 41 / 67 And (coord)

0.605714 106 /175 But (disadv)

0.570175 65 /114 also (disadv)

0.545455 6 / 11 though (subord)

0.533333 8 / 15 Also (disadv)

0.500000 7 / 14 However (disadv)

0.500000 4 / 8 for example (disadv)

0.500000 4 / 8 For example (disadv)

0.500000 2 / 4 For instance (disadv)

0.500000 2 / 4 Moreover (disadv)

0.500000 2 / 4 later (disadv)

0.500000 1 / 2 partly because (subord)

0.500000 1 / 2 as a result (disadv)

0.500000 1 / 2 as soon as (subord)

0.500000 1 / 2 therefore (disadv)

0.500000 1 / 2 Instead (disadv)

0.500000 1 / 2 Once (subord)

0.500000 1 / 2 Yet (coord)

0.400000 8 / 20 In addition (disadv)

0.363636 4 / 11 Nevertheless (disadv)

0.363636 4 / 11 Meanwhile (disadv)

0.333333 3 / 9 Thus (disadv)

0.333333 2 / 6 meanwhile (disadv)

0.323529 11 / 34 however (disadv)

0.250000 2 / 8 Indeed (disadv)

0.250000 2 / 8 So (subord)

0.250000 1 / 4 Separately (disadv)

0.000000 0 / 3 instead (disadv)

0.000000 0 / 2 Accordingly (disadv)

0.000000 0 / 1On the one hand On the other hand (disadv)

0.000000 0 / 1 two months before (subord)

0.000000 0 / 1 On the other hand (disadv)

0.000000 0 / 1 in the meantime (disadv)

0.000000 0 / 1 In the meantime (disadv)

0.000000 0 / 1 simultaneously (disadv)

0.000000 0 / 1 By comparison (disadv)

0.000000 0 / 1 Specifically (disadv)

0.000000 0 / 1 accordingly (disadv)

0.000000 0 / 1 Furthermore (disadv)

0.000000 0 / 1 By contrast (disadv)

0.000000 0 / 1 Meantime (disadv)

0.000000 0 / 1 thereby (disadv)

0.000000 0 / 1 in turn (disadv)

0.000000 0 / 1 finally (disadv)

0.000000 0 / 1 Overall (disadv)

0.000000 0 / 1 Earlier (disadv)

0.000000 0 / 1 indeed (disadv)

0.000000 0 / 1 Next (disadv)
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Log-linear Ranking Model Derivations

Let Yi = {yi,1, yi,2, ..., yi,m} be a set of instances to rank. The conditional probability for

an instance, yi,j ∈ Yi is:

PΛ(yi,j|Yi) =

exp(
∑

k

λkfk(yi,j, Yi))

∑

yi,j∈Yi
exp(

∑

k

λkfk(yi,j, Yi))

Our training set consists of a set of instance sets:

D = {〈Y1, P̃1(Y1)〉, 〈Y2, P̃2(Y2)〉, ..., 〈Yn, P̃n(Yn)〉}

where associated with each instance set, Yi, is a probability distribution over that set,

P̃i.

The weights in a ranking model are learned by maximizing the conditional log-

likelihood:
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LΛ(D) =

|D|
∑

i=1

|Yi|
∑

j=1

P̃i(yi,j) logPΛ(yi,j|Yi) (B.1)

This equation is maximized when the conditional probabilities according to the model,

PΛ most closely match the empirical distributions, P̃i.

Unfortunately, finding the set of parameters, Λ, that maximize the conditional log-

likelihood can’t be solved in closed form. Moreover, for many practical problems (es-

pecially in NLP) the number of features can be in the hundreds of thousands or even

millions. The conditional log-likelihood function is, however, convex and thus amenable

to a variety of convex optimization methods. In general, these methods require at each

iteration an evaluation of the function being optimized (with the current set of input val-

ues), in this case the conditional log-likelihood B.1. Also required is the gradient of the

function at the input values — i.e., at the current parameter values, Λ.

For the conditional log-likelihood, the gradient takes on an intuitive form: each com-

ponent ∂LΛD
∂λi

is simply the difference between the empirically measured expected value

of the corresponding feature, fi, according to the training data and the expected value

according to the model, PΛ.

∂LΛD

∂λi
= Ẽ(fi)− EΛ(fi) =

|D|
∑

i=1

|Yi|
∑

j=1

(P̃i(yi,j)− PΛ(yi,j|Yi))fi (B.2)

To derive the gradient of the conditional log-likelihood, let us first rewrite the condi-

tional log-likelihood function as follows:
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LΛ(D) =

|D|
∑

i=1

|Yi|
∑

j=1

P̃i(yi,j, Yi) logPΛ(yi,j|Yi)

=

|D|
∑

i=1

|Yi|
∑

j=1

P̃i(yi,j, Yi) log

(

exp (
∑

k λkfk(yi,j, Yi))
∑

m exp (
∑

k λkfk(yi,j, Yi))

)

=

|D|
∑

i=1

|Yi|
∑

j=1

P̃i(yi,j, Yi)





∑

k

λkfk(yi,j, Yi)− log

|Yi|
∑

m=1

exp

(

∑

k

λkfk(yi,m, Yi)

)





The gradient is obtained by taking the partial derivative of the conditional log-

likelihood function with respect to the parameters λi.

∂LΛ(D)

∂λk
=

|D|
∑

i=1

|Yi|
∑

j=1

P̃i(yi,j, Yi)



fk(yi,j, Yi)−

|Yi|
∑

m=1

exp (
∑

k λkfk(yi,m, Yi)) fk(yi,m, Yi)
∑

n exp (
∑

k λkfk(yi,n, Yi))





Note that the latter part of the second term in the above equation is arrived at by

applying the chain rule twice, first with log(x) and then with exp(x) as follows:

∂

∂λk
log
∑

m

exp
∑

k

λkfk(yi,m, Yi) =
∂
∂λk

∑

m exp (
∑

k λkfk(yi,m, Yi))
∑

n exp (
∑

k λkfk(yi,n, Yi))

=

∑

m exp (
∑

k λkfk(yi,m, Yi))
∂
∂λk

∑

k λkfk(yi,m, Yi)
∑

n exp (
∑

k λkfk(yi,n, Yi))

=

|Yi|
∑

m=1

exp (
∑

k λkfk(yi,m, Yi)) fk(yi,m, Yi)
∑

n exp (
∑

k λkfk(yi,n, Yi))

Continuing now with the original gradient derivation, we have:
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LΛ(D) =

|D|
∑

i=1

|Yi|
∑

j=1

P̃i(yi,j, Yi)



fk(yi,j, Yi)−

|Yi|
∑

m=1

fk(yi,m, Yi)PΛ(yi,m|Yi)





=

|D|
∑

i=1

|Yi|
∑

j=1

P̃i(yi,j, Yi)fk(yi,j, Yi)−

|D|
∑

i=1

|Yi|
∑

j=1

P̃i(yi,j, Yi)

|Yi|
∑

m=1

fk(yi,m, Yi)PΛ(yi,m|Yi)

=

|D|
∑

i=1

|Yi|
∑

j=1

P̃i(yi,j, Yi)fk(yi,j, Yi)−

|D|
∑

i=1

|Yi|
∑

m=1

fk(yi,m, Yi)PΛ(yi,m|Yi)

= Ẽ(fk)− EΛ(fk)

Note that the term
(

∑|Yi|
j=1 P̃i(yi,j, Yi)

)

above sums to one and can be factored out

since the index j only appears within that term.
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