1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// ignore-lexer-test FIXME #15679

#![allow(missing_docs)]

use self::ExponentFormat::*;
use self::SignificantDigits::*;
use self::SignFormat::*;

use char::{self, CharExt};
use num::{self, Int, Float, ToPrimitive};
use num::FpCategory as Fp;
use ops::FnMut;
use slice::SliceExt;
use str::StrExt;
use string::String;
use vec::Vec;

/// A flag that specifies whether to use exponential (scientific) notation.
#[derive(Copy)]
pub enum ExponentFormat {
    /// Do not use exponential notation.
    ExpNone,
    /// Use exponential notation with the exponent having a base of 10 and the
    /// exponent sign being `e` or `E`. For example, 1000 would be printed
    /// 1e3.
    ExpDec,
    /// Use exponential notation with the exponent having a base of 2 and the
    /// exponent sign being `p` or `P`. For example, 8 would be printed 1p3.
    ExpBin,
}

/// The number of digits used for emitting the fractional part of a number, if
/// any.
#[derive(Copy)]
pub enum SignificantDigits {
    /// All calculable digits will be printed.
    ///
    /// Note that bignums or fractions may cause a surprisingly large number
    /// of digits to be printed.
    DigAll,

    /// At most the given number of digits will be printed, truncating any
    /// trailing zeroes.
    DigMax(uint),

    /// Precisely the given number of digits will be printed.
    DigExact(uint)
}

/// How to emit the sign of a number.
#[derive(Copy)]
pub enum SignFormat {
    /// No sign will be printed. The exponent sign will also be emitted.
    SignNone,
    /// `-` will be printed for negative values, but no sign will be emitted
    /// for positive numbers.
    SignNeg,
    /// `+` will be printed for positive values, and `-` will be printed for
    /// negative values.
    SignAll,
}

/// Converts an integral number to its string representation as a byte vector.
/// This is meant to be a common base implementation for all integral string
/// conversion functions like `to_string()` or `to_str_radix()`.
///
/// # Arguments
///
/// - `num`           - The number to convert. Accepts any number that
///                     implements the numeric traits.
/// - `radix`         - Base to use. Accepts only the values 2-36.
/// - `sign`          - How to emit the sign. Options are:
///     - `SignNone`: No sign at all. Basically emits `abs(num)`.
///     - `SignNeg`:  Only `-` on negative values.
///     - `SignAll`:  Both `+` on positive, and `-` on negative numbers.
/// - `f`             - a callback which will be invoked for each ascii character
///                     which composes the string representation of this integer
///
/// # Panics
///
/// - Panics if `radix` < 2 or `radix` > 36.
fn int_to_str_bytes_common<T, F>(num: T, radix: uint, sign: SignFormat, mut f: F) where
    T: Int,
    F: FnMut(u8),
{
    assert!(2 <= radix && radix <= 36);

    let _0: T = Int::zero();

    let neg = num < _0;
    let radix_gen: T = num::cast(radix).unwrap();

    let mut deccum = num;
    // This is just for integral types, the largest of which is a u64. The
    // smallest base that we can have is 2, so the most number of digits we're
    // ever going to have is 64
    let mut buf = [0u8; 64];
    let mut cur = 0;

    // Loop at least once to make sure at least a `0` gets emitted.
    loop {
        // Calculate the absolute value of each digit instead of only
        // doing it once for the whole number because a
        // representable negative number doesn't necessary have an
        // representable additive inverse of the same type
        // (See twos complement). But we assume that for the
        // numbers [-35 .. 0] we always have [0 .. 35].
        let current_digit_signed = deccum % radix_gen;
        let current_digit = if current_digit_signed < _0 {
            _0 - current_digit_signed
        } else {
            current_digit_signed
        };
        buf[cur] = match current_digit.to_u8().unwrap() {
            i @ 0...9 => b'0' + i,
            i         => b'a' + (i - 10),
        };
        cur += 1;

        deccum = deccum / radix_gen;
        // No more digits to calculate for the non-fractional part -> break
        if deccum == _0 { break; }
    }

    // Decide what sign to put in front
    match sign {
        SignNeg | SignAll if neg => { f(b'-'); }
        SignAll => { f(b'+'); }
        _ => ()
    }

    // We built the number in reverse order, so un-reverse it here
    while cur > 0 {
        cur -= 1;
        f(buf[cur]);
    }
}

/// Converts a number to its string representation as a byte vector.
/// This is meant to be a common base implementation for all numeric string
/// conversion functions like `to_string()` or `to_str_radix()`.
///
/// # Arguments
///
/// - `num`           - The number to convert. Accepts any number that
///                     implements the numeric traits.
/// - `radix`         - Base to use. Accepts only the values 2-36. If the exponential notation
///                     is used, then this base is only used for the significand. The exponent
///                     itself always printed using a base of 10.
/// - `negative_zero` - Whether to treat the special value `-0` as
///                     `-0` or as `+0`.
/// - `sign`          - How to emit the sign. See `SignFormat`.
/// - `digits`        - The amount of digits to use for emitting the fractional
///                     part, if any. See `SignificantDigits`.
/// - `exp_format`   - Whether or not to use the exponential (scientific) notation.
///                    See `ExponentFormat`.
/// - `exp_capital`   - Whether or not to use a capital letter for the exponent sign, if
///                     exponential notation is desired.
///
/// # Return value
///
/// A tuple containing the byte vector, and a boolean flag indicating
/// whether it represents a special value like `inf`, `-inf`, `NaN` or not.
/// It returns a tuple because there can be ambiguity between a special value
/// and a number representation at higher bases.
///
/// # Panics
///
/// - Panics if `radix` < 2 or `radix` > 36.
/// - Panics if `radix` > 14 and `exp_format` is `ExpDec` due to conflict
///   between digit and exponent sign `'e'`.
/// - Panics if `radix` > 25 and `exp_format` is `ExpBin` due to conflict
///   between digit and exponent sign `'p'`.
pub fn float_to_str_bytes_common<T: Float>(
        num: T, radix: u32, negative_zero: bool,
        sign: SignFormat, digits: SignificantDigits, exp_format: ExponentFormat, exp_upper: bool
        ) -> (Vec<u8>, bool) {
    assert!(2 <= radix && radix <= 36);
    match exp_format {
        ExpDec if radix >= DIGIT_E_RADIX       // decimal exponent 'e'
          => panic!("float_to_str_bytes_common: radix {} incompatible with \
                    use of 'e' as decimal exponent", radix),
        ExpBin if radix >= DIGIT_P_RADIX       // binary exponent 'p'
          => panic!("float_to_str_bytes_common: radix {} incompatible with \
                    use of 'p' as binary exponent", radix),
        _ => ()
    }

    let _0: T = Float::zero();
    let _1: T = Float::one();

    match num.classify() {
        Fp::Nan => { return (b"NaN".to_vec(), true); }
        Fp::Infinite if num > _0 => {
            return match sign {
                SignAll => (b"+inf".to_vec(), true),
                _       => (b"inf".to_vec(), true)
            };
        }
        Fp::Infinite if num < _0 => {
            return match sign {
                SignNone => (b"inf".to_vec(), true),
                _        => (b"-inf".to_vec(), true),
            };
        }
        _ => {}
    }

    let neg = num < _0 || (negative_zero && _1 / num == Float::neg_infinity());
    let mut buf = Vec::new();
    let radix_gen: T = num::cast(radix as int).unwrap();

    let (num, exp) = match exp_format {
        ExpNone => (num, 0i32),
        ExpDec | ExpBin => {
            if num == _0 {
                (num, 0i32)
            } else {
                let (exp, exp_base) = match exp_format {
                    ExpDec => (num.abs().log10().floor(), num::cast::<f64, T>(10.0f64).unwrap()),
                    ExpBin => (num.abs().log2().floor(), num::cast::<f64, T>(2.0f64).unwrap()),
                    ExpNone => unreachable!()
                };

                (num / exp_base.powf(exp), num::cast::<T, i32>(exp).unwrap())
            }
        }
    };

    // First emit the non-fractional part, looping at least once to make
    // sure at least a `0` gets emitted.
    let mut deccum = num.trunc();
    loop {
        // Calculate the absolute value of each digit instead of only
        // doing it once for the whole number because a
        // representable negative number doesn't necessary have an
        // representable additive inverse of the same type
        // (See twos complement). But we assume that for the
        // numbers [-35 .. 0] we always have [0 .. 35].
        let current_digit = (deccum % radix_gen).abs();

        // Decrease the deccumulator one digit at a time
        deccum = deccum / radix_gen;
        deccum = deccum.trunc();

        buf.push(char::from_digit(current_digit.to_int().unwrap() as u32, radix)
             .unwrap() as u8);

        // No more digits to calculate for the non-fractional part -> break
        if deccum == _0 { break; }
    }

    // If limited digits, calculate one digit more for rounding.
    let (limit_digits, digit_count, exact) = match digits {
        DigAll          => (false, 0,       false),
        DigMax(count)   => (true,  count+1, false),
        DigExact(count) => (true,  count+1, true)
    };

    // Decide what sign to put in front
    match sign {
        SignNeg | SignAll if neg => {
            buf.push(b'-');
        }
        SignAll => {
            buf.push(b'+');
        }
        _ => ()
    }

    buf.reverse();

    // Remember start of the fractional digits.
    // Points one beyond end of buf if none get generated,
    // or at the '.' otherwise.
    let start_fractional_digits = buf.len();

    // Now emit the fractional part, if any
    deccum = num.fract();
    if deccum != _0 || (limit_digits && exact && digit_count > 0) {
        buf.push(b'.');
        let mut dig = 0;

        // calculate new digits while
        // - there is no limit and there are digits left
        // - or there is a limit, it's not reached yet and
        //   - it's exact
        //   - or it's a maximum, and there are still digits left
        while (!limit_digits && deccum != _0)
           || (limit_digits && dig < digit_count && (
                   exact
                || (!exact && deccum != _0)
              )
        ) {
            // Shift first fractional digit into the integer part
            deccum = deccum * radix_gen;

            // Calculate the absolute value of each digit.
            // See note in first loop.
            let current_digit = deccum.trunc().abs();

            buf.push(char::from_digit(
                current_digit.to_int().unwrap() as u32, radix).unwrap() as u8);

            // Decrease the deccumulator one fractional digit at a time
            deccum = deccum.fract();
            dig += 1;
        }

        // If digits are limited, and that limit has been reached,
        // cut off the one extra digit, and depending on its value
        // round the remaining ones.
        if limit_digits && dig == digit_count {
            let ascii2value = |chr: u8| {
                (chr as char).to_digit(radix).unwrap()
            };
            let value2ascii = |val: u32| {
                char::from_digit(val, radix).unwrap() as u8
            };

            let extra_digit = ascii2value(buf.pop().unwrap());
            if extra_digit >= radix / 2 { // -> need to round
                let mut i: int = buf.len() as int - 1;
                loop {
                    // If reached left end of number, have to
                    // insert additional digit:
                    if i < 0
                    || buf[i as uint] == b'-'
                    || buf[i as uint] == b'+' {
                        buf.insert((i + 1) as uint, value2ascii(1));
                        break;
                    }

                    // Skip the '.'
                    if buf[i as uint] == b'.' { i -= 1; continue; }

                    // Either increment the digit,
                    // or set to 0 if max and carry the 1.
                    let current_digit = ascii2value(buf[i as uint]);
                    if current_digit < (radix - 1) {
                        buf[i as uint] = value2ascii(current_digit+1);
                        break;
                    } else {
                        buf[i as uint] = value2ascii(0);
                        i -= 1;
                    }
                }
            }
        }
    }

    // if number of digits is not exact, remove all trailing '0's up to
    // and including the '.'
    if !exact {
        let buf_max_i = buf.len() - 1;

        // index to truncate from
        let mut i = buf_max_i;

        // discover trailing zeros of fractional part
        while i > start_fractional_digits && buf[i] == b'0' {
            i -= 1;
        }

        // Only attempt to truncate digits if buf has fractional digits
        if i >= start_fractional_digits {
            // If buf ends with '.', cut that too.
            if buf[i] == b'.' { i -= 1 }

            // only resize buf if we actually remove digits
            if i < buf_max_i {
                buf = buf[.. (i + 1)].to_vec();
            }
        }
    } // If exact and trailing '.', just cut that
    else {
        let max_i = buf.len() - 1;
        if buf[max_i] == b'.' {
            buf = buf[.. max_i].to_vec();
        }
    }

    match exp_format {
        ExpNone => (),
        _ => {
            buf.push(match exp_format {
                ExpDec if exp_upper => 'E',
                ExpDec if !exp_upper => 'e',
                ExpBin if exp_upper => 'P',
                ExpBin if !exp_upper => 'p',
                _ => unreachable!()
            } as u8);

            int_to_str_bytes_common(exp, 10, sign, |c| buf.push(c));
        }
    }

    (buf, false)
}

/// Converts a number to its string representation. This is a wrapper for
/// `to_str_bytes_common()`, for details see there.
#[inline]
pub fn float_to_str_common<T: Float>(
        num: T, radix: u32, negative_zero: bool,
        sign: SignFormat, digits: SignificantDigits, exp_format: ExponentFormat, exp_capital: bool
        ) -> (String, bool) {
    let (bytes, special) = float_to_str_bytes_common(num, radix,
                               negative_zero, sign, digits, exp_format, exp_capital);
    (String::from_utf8(bytes).unwrap(), special)
}

// Some constants for from_str_bytes_common's input validation,
// they define minimum radix values for which the character is a valid digit.
static DIGIT_P_RADIX: u32 = ('p' as u32) - ('a' as u32) + 11;
static DIGIT_E_RADIX: u32 = ('e' as u32) - ('a' as u32) + 11;

#[cfg(test)]
mod tests {
    use string::ToString;

    #[test]
    fn test_int_to_str_overflow() {
        let mut i8_val: i8 = 127_i8;
        assert_eq!(i8_val.to_string(), "127");

        i8_val += 1 as i8;
        assert_eq!(i8_val.to_string(), "-128");

        let mut i16_val: i16 = 32_767_i16;
        assert_eq!(i16_val.to_string(), "32767");

        i16_val += 1 as i16;
        assert_eq!(i16_val.to_string(), "-32768");

        let mut i32_val: i32 = 2_147_483_647_i32;
        assert_eq!(i32_val.to_string(), "2147483647");

        i32_val += 1 as i32;
        assert_eq!(i32_val.to_string(), "-2147483648");

        let mut i64_val: i64 = 9_223_372_036_854_775_807_i64;
        assert_eq!(i64_val.to_string(), "9223372036854775807");

        i64_val += 1 as i64;
        assert_eq!(i64_val.to_string(), "-9223372036854775808");
    }
}

#[cfg(test)]
mod bench {
    #![allow(deprecated)] // rand
    extern crate test;

    mod uint {
        use super::test::Bencher;
        use rand::{weak_rng, Rng};
        use std::fmt;

        #[inline]
        fn to_string(x: uint, base: u8) {
            format!("{}", fmt::radix(x, base));
        }

        #[bench]
        fn to_str_bin(b: &mut Bencher) {
            let mut rng = weak_rng();
            b.iter(|| { to_string(rng.gen::<uint>(), 2); })
        }

        #[bench]
        fn to_str_oct(b: &mut Bencher) {
            let mut rng = weak_rng();
            b.iter(|| { to_string(rng.gen::<uint>(), 8); })
        }

        #[bench]
        fn to_str_dec(b: &mut Bencher) {
            let mut rng = weak_rng();
            b.iter(|| { to_string(rng.gen::<uint>(), 10); })
        }

        #[bench]
        fn to_str_hex(b: &mut Bencher) {
            let mut rng = weak_rng();
            b.iter(|| { to_string(rng.gen::<uint>(), 16); })
        }

        #[bench]
        fn to_str_base_36(b: &mut Bencher) {
            let mut rng = weak_rng();
            b.iter(|| { to_string(rng.gen::<uint>(), 36); })
        }
    }

    mod int {
        use super::test::Bencher;
        use rand::{weak_rng, Rng};
        use std::fmt;

        #[inline]
        fn to_string(x: int, base: u8) {
            format!("{}", fmt::radix(x, base));
        }

        #[bench]
        fn to_str_bin(b: &mut Bencher) {
            let mut rng = weak_rng();
            b.iter(|| { to_string(rng.gen::<int>(), 2); })
        }

        #[bench]
        fn to_str_oct(b: &mut Bencher) {
            let mut rng = weak_rng();
            b.iter(|| { to_string(rng.gen::<int>(), 8); })
        }

        #[bench]
        fn to_str_dec(b: &mut Bencher) {
            let mut rng = weak_rng();
            b.iter(|| { to_string(rng.gen::<int>(), 10); })
        }

        #[bench]
        fn to_str_hex(b: &mut Bencher) {
            let mut rng = weak_rng();
            b.iter(|| { to_string(rng.gen::<int>(), 16); })
        }

        #[bench]
        fn to_str_base_36(b: &mut Bencher) {
            let mut rng = weak_rng();
            b.iter(|| { to_string(rng.gen::<int>(), 36); })
        }
    }

    mod f64 {
        use super::test::Bencher;
        use rand::{weak_rng, Rng};
        use f64;

        #[bench]
        fn float_to_string(b: &mut Bencher) {
            let mut rng = weak_rng();
            b.iter(|| { f64::to_string(rng.gen()); })
        }
    }
}